Use este identificador para citar ou linkar para este item: https://ric.cps.sp.gov.br/handle/123456789/8879
Título: Desenvolvimento de um modelo para identificação de anomalias no consumo de energia elétrica
Autor(es): AZEVEDO, Rodrigo de Melo
Tipo documental: Projeto de pesquisa
Palavras-chave: Energia elétrica;Machine learning;Modelagem de dados;Energia elétrica (consumo)
Data do documento: 2021
Editor: 002
Referência Bibliográfica: AZEVEDO, Rodrigo de Melo. Desenvolvimento de um modelo para identificação de anomalias no consumo de energia elétrica, 2021. Trabalho de conclusão de curso (Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas) - Faculdade de Tecnologia de São Paulo, São Paulo, 2021.
Resumo: Visando um consumo cada vez mais eficiente de energia, o emprego de tecnologias, como IOT e aprendizado de máquina, tem se tornado mais popular. Um elemento fundamental para o monitoramento e controle do uso de eletricidade, é a detecção de anomalias. Nesta pesquisa foram identificados dois métodos genéricos de detecção de anomalias; métodos baseados em predição, e métodos baseados em clustering. Foi utilizada a biblioteca Tsfresh no processo de engenharia de dados. O algoritmo de detecção usado foi DBSCAN, um algoritmo de clustering baseado em densidade, onde pontos de dados que não pertencem a nenhum cluster, são classificados como anomalias. Durante os experimentos, foi observado que, o produto do processo automatizado de engenharia de dados, no lugar de agregar valor, estava comprometendo a interpretabilidade dos resultados. Por este motivo, foi feito um estudo dos parâmetros usados pelo DBSCAN, e como eles afetam o seu resultado. Concluiu-se que, é necessário buscar equilíbrio entre os parâmetros usados, para extrair resultados mais coerentes.
Aiming at an increasingly efficient consumption of energy, the use of technologies such as IOT and machine learning, has become more popular. A fundamental element for monitoring and controlling the use of electricity is anomaly detection. In this research, two generic detection methods were identified, methods based on prediction, and methods based on clustering. The Tsfresh library was used in the data engineering process. The detection algorithm used was DBSCAN, a density-based clustering algorithm, where data points that do not belong to any cluster are classified as anomalies. During the experiments, it was observed that the product of the automated data engineering process, instead of adding value, was compromising the interpretability of the results. For this reason, a study was made of the parameters used by DBSCAN, and how they affect its result. It was concluded that it is necessary to seek a balance between the parameters used, in order to extract more coherent results.
URI: http://ric.cps.sp.gov.br/handle/123456789/8879
Aparece nas coleções:Trabalhos de conclusão de curso

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ads_2021_2_rodrigodeazevedodemelo_desenvolvimentodeummodeloparaidentificacaodeanomalias.pdf
  Restricted Access
1.19 MBAdobe PDFVisualizar/Abrir    Solictar uma cópia


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.