
FACULDADE DE TECNOLOGIA DE TAUBATÉ

GILMAR APARECIDO SANTOS COSTA

JÚLIO CÉSAR VALIM

MARCO AURÉLIO ALVES

RAFAEL PIRES TOSETTO

RODRIGO CARDOSO MUNIZ

SISTEMA DE TELEMETRIA PARA MONITORAMENTO E

SEGURANÇA EM EQUIPAMENTOS DE MOVIMENTAÇÃO

TAUBATÉ

2025

FACULDADE DE TECNOLOGIA DE TAUBATÉ

GILMAR APARECIDO SANTOS COSTA

JÚLIO CÉSAR VALIM

MARCO AURÉLIO ALVES

RAFAEL PIRES TOSETTO

RODRIGO CARDOSO MUNIZ

SISTEMA DE TELEMETRIA PARA MONITORAMENTO E

SEGURANÇA EM EQUIPAMENTOS DE MOVIMENTAÇÃO

Trabalho de Graduação apresentado à Coordenação

do Curso Superior de Tecnologia em Eletrônica

Automotiva do Centro Estadual de Educação

Tecnológica Paula Souza para a obtenção da

aprovação do Projeto de Trabalho de Graduação.

Orientadora: Prof.ª Me. Tamy Fernandes Pereira

Orientador: Prof.º Cristovão Guimarães Miranda

TAUBATÉ

2025

GILMAR APARECIDO SANTOS COSTA

JÚLIO CÉSAR VALIM

MARCO AURÉLIO ALVES

RAFAEL PIRES TOSETTO

RODRIGO CARDOSO MUNIZ

SISTEMA DE TELEMETRIA PARA MONITORAMENTO E

SEGURANÇA EM EQUIPAMENTOS DE MOVIMENTAÇÃO

Trabalho de Graduação apresentado a Faculdade de

Tecnologia de Taubaté, como parte das exigências

para a aprovação do Projeto de Trabalho de

Graduação.

Orientadora: Prof.ª Me. Tamy Fernandes Pereira

Orientador: Prof.º Cristovão Guimarães Miranda

Taubaté, 02 de Dezembro de 2025.

BANCA EXAMINADORA

Prof. Clayton Koba

FATEC Taubaté

Prof. Flávio Groh

FATEC Taubaté

Prof. Cristóvão Guimarães Miranda

FATEC Taubaté

Dedico este trabalho ao Prof. MSc. Claudio Alberto

Langui pelo apoio, incentivo e empenho incansável

em busca da excelência de seus alunos. Sempre

buscando oportunidades para demonstrar que a

especialização não se constrói apenas com os livros,

mas também pela paixão de colocá-los em prática

AGRADECIMENTOS

A todos que, direta ou indiretamente, contribuíram para a realização deste

trabalho. Aos nossos pais, esposas e companheiras que proporcionaram toda

condição necessária para a conclusão desta faculdade, e amigos, pela amizade.

Aos professores envolvidos, pelo inestimável apoio na orientação deste trabalho.

Aos professores pelos ensinamentos e dedicação ímpar em nos ensinar, aos colegas

de classe, com quem nesses anos de estudo tive a felicidade de conviver.

Não se deve ir atrás de objetivos fáceis, é preciso

buscar o que só pode ser alcançado por meio dos

maiores esforços.

.

(Albert Einstein)

RESUMO

O aumento da procura por soluções sustentáveis e seguras na indústria está

impulsionando a utilização da telemetria em equipamentos de movimentação. Este

estudo apresenta um sistema de telemetria fundamentado no ESP32, incorporado à

plataforma Arduino IoT Cloud, visando o acompanhamento de empilhadeiras. O

sistema reúne informações como temperatura do motor, inclinação, nível de bateria,

presença e velocidade, permitindo medidas preventivas, diminuição de falhas e

aumento da eficiência energética. Além de aprimorar as operações, sua contribuição

para a sustentabilidade é notável, pois diminui paradas não planejadas, consumo de

recursos e impacto ambiental. O estudo comprova que a proposta é uma solução

tecnológica inteligente e acessível para o setor logístico.

Palavras-chave: Sistemas Embarcados, Indústria 4.0, Sustentabilidade, Gestão de

Frota.

ABSTRACT

The growing demand for sustainable and safe solutions in industry is driving the use

of telemetry in handling equipment. This study presents a telemetry system based on

ESP32, integrated into the Arduino IoT Cloud platform, for monitoring forklifts. The

system gathers information such as motor temperature, inclination, battery level,

presence, and speed, enabling preventive measures, reducing failures, and increasing

energy efficiency. In addition to improving operations, its contribution to sustainability

is notable, as it reduces unplanned downtime, resource consumption, and

environmental impact. The study proves that the proposal is a smart and affordable

technological solution for the logistics sector.

Keywords: Embedded Systems, Industry 4.0, Sustainability, Fleet Management.

LISTA DE ILUSTRAÇÕES

FIGURA 1 Dados CSV SDCARD .. 26

FIGURA 2

FIGURA 3

Gráfico Bateria ..

Gráfico Inclinação ...

27

27

FIGURA 4 Gráfico Presença .. 27

FIGURA 5 Gráfico TempRTC .. 27

FIGURA 6 Gráfico Temperatura Motor .. 27

FIGURA 7 Gráfico Velocidade ... 27

FIGURA 8 Painel Arduino IoT Cloud ... 29

FIGURA 9 Variáveis do sistema .. 29

FIGURA 10 Configuração da rede wi-fi ... 30

FIGURA 11 Sistema de monitoramento .. 31

FIGURA 12 Sinais digitais capturados .. 32

FIGURA 13 Tela dados ECU .. 32

FIGURA 14 Cabo adaptador OBD2 para DB15 .. 33

FIGURA 15 Leitura do sensor de velocidade .. 34

FIGURA 16 Leitura de tensão da bateria .. 34

FIGURA 17 Leitura de temperatura .. 35

FIGURA 18 Telas do sistema de telemetria ... 35

FIGURA 19 Fluxograma ... 37

FIGURA 20 Módulo ESP32 DevKit V1 (30 pinos) 40

FIGURA 21 Sensor Inercial MPU6050 ... 42

FIGURA 22 Sensor Inercial MPU6050 – Pinagem 42

FIGURA 23 Gráfico de Saída do Sensor de Temperatura LM35 42

FIGURA 25 Sensor Hall 3144E ... 43

FIGURA 26 O sensor de movimento RCWL-0516 ... 44

FIGURA 27 Relógio RTC DS3231 ...45

FIGURA 28 Cartão SD 4Mb formatação FAT32 ... 45

FIGURA 29 O relé (RY-12W-K) .. 45

FIGURA 30 Buzzer (HYDZ) .. 46

FIGURA 31 Display ST7735 ... 46

FIGURA 24 Sensor de Temperatura LM35 .. 43

FIGURA 32 Esquema Elétrico: Módulo ESP32-C3 48

FIGURA 33 Esquema Elétrico: Display ST7735 .. 49

FIGURA 34 Esquema Elétrico: Sensor de Temperatura LM35 50

FIGURA 35 Esquema Elétrico: Sensor de Presença 50

FIGURA 36 Esquema Elétrico: Sensor de Movimento MPU6050r 50

FIGURA 37 Esquema Elétrico: Sensor Magnético Hall (3144E) 51

FIGURA 38 Esquema Elétrico: Divisor de Tensão da Bateria 51

FIGURA 39 Esquema Elétrico: Relógio (DS3231) 52

FIGURA 40 Esquema Elétrico: Buzzer ... 52

FIGURA 41 Esquema Elétrico: Relê RY-K (K1) ... 53

FIGURA 42 Esquema Elétrico: Regulador de Tensão 78M05 53

FIGURA 43 Esquema Elétrico: Regulador de Tensão LD1117.................. 54

FIGURA 44 Esquema Elétrico: Botão Não .. 55

FIGURA 45 Esquema Elétrico: Botão Sim ... 55

FIGURA 46 Esquema Elétrico: Botão Enter ... 55

FIGURA 47 Esquema elétrico do conector DB25 55

LISTA DE ABREVIATURAS E SIGLAS

ADC Conversor Analógico-Digital

AD Conversor Digital-Analógico

API Interface de Programação de Aplicações

CAN Controller Area Network

C++ Linguagem de Programação

DAC Digital-to-Analog Converter

DISPATCH Despachar

ERP Sistema de Planejamento de Recursos

ESP32 Espressif Systems 32 bits

GPIOs General-Purpose Input-Output

GPRS Serviço Geral de Pacotes por Rádio

GPS Sistema de Posicionamento Global

GSM Sistema Global para Comunicações Móveis

HTTP Protocolo de Transferência de Hipertexto

IA Inteligência Artificial

I2C Inter-Integrated Circuit

INT Telemetria de Rede em Banda

IoT Internet das Coisas

IHM Interface Homem Maquina

LoRa Comunicação de Longo Alcance

LTE
Evolução de Longo Prazo (Tecnologia de transmissão de dados

móveis)

LAN Rede Local

MQTT Protocolo de Transporte de Telemetria por Fila de Mensagens

ODS Objetivos de Desenvolvimento Sustentável

ONU Organização das Nações Unidas

OBD Diagnóstico de Bordo

P4
Programação de Processadores de Pacotes Independentes de

Protocolo

PWM Pulse Width Modulation

RFID Identificação por Rádio Frequência

SCADA Supervisão, Controle e Aquisição de Dados

SDN Objetivando da Telemetria In-Band

CSV Comma Seoarated Values

TCP/IP Protocolo de Controle de Transmissão / Protocolo da Internet

UART Receptor-Transmissor Assíncrono Universal

SUMÁRIO

1 INTRODUÇÃO .. 14

1.1 Objetivo ... 14

1.2 Justificativa ... 15

1.3 Aspecto Metodológico ... 15

1.4 Aporte Teórico .. 15

2 FUNDAMENTAÇÂO TEÓRICA .. 16

2.1 Telemetria ... 16

2.1.1 Evolução da Telemetria... 17

2.1.2 Arquitetura de Sistemas de Telemetria ... 18

2.2 Equipamentos Automotores .. 18

2.3 Telemetria em Equipamentos Automotores... 19

2.3.1 Aplicações em Logística e Indústria .. 20

2.4 Telemetria em Empilhadeiras .. 20

2.5 Telemetria e Sustentabilidade (ODS) .. 21

3 METODOLOGIA ... 22

4 RESULTADOS .. 37

4.1. Desempenho do Sistema Desenvolvido .. 38

4.2. Comparação com Tecnologias Existentes .. 38

4.3. Módulo de Conectividade Sem Fio: ESP32 ... 39

4.3.1. Sensor Inercial MPU6050 ... 41

4.3.2. Sensor de Temperatura: LM35 ... 42

4.3.3. Sensor de Velocidade / Rotação: Sensor Hall 3144E 43

4.3.4. Sensor de Presença RCWL-0516 ... 43

4.3.5. Relógio RTC-DS3231 ... 45

4.3.6. Cartão de Memória ... 45

4.3.7. Relê ... 45

4.3.8. Buzzer ... 45

4.3.9. Display TFT ... 46

4.4. Estrutura de Hardware .. 46

4.4.1. Esquema Elétrico: ESP32 ... 47

4.4.2. Esquema Elétrico: Display ST7735 ... 48

4.4.3. Esquema Elétrico: Sensor de Temperatura ... 49

4.4.4. Esquema Elétrico: Sensor de Presença .. 50

4.4.5. Esquema Elétrico: Sensor de Inclinação ... 50

4.4.6. Esquama Elétrico: Sensor Hall.. 51

4.4.7. Esquema Elétrico: Divisor de Tensão Bateria ... 51

4.4.8. Esquema Elétrico: Relógio ... 52

4.4.9. Esquema Elétrico: Buzzer ... 52

4.4.10. Esquema Elétrico: Relê RY-12-K ... 53

4.4.11. Esquema Elétrico: Reguladores de Tensão .. 53

4.4.12. Esquema Elétrico: Botões .. 54

4.5. Estrutura de Software ... 56

4.5.1. Inicialização e Configuração ... 56

4.5.2. Autenticação de Operador .. 56

4.5.3. Checklist de Segurança .. 56

4.5.4. Operação Contínua ... 57

4.5.5. Ajuste de Data e Hora ... 57

4.5.6. Interface de Ajuste ... 57

4.5.7. Implementação ... 57

4.6. Gestão de Energia e Conexão ... 57

4.6.1. Interface do Usuário ... 58

4.6.2. Gestão de Segurança .. 58

4.6.3. Protocolo de Comunicação .. 58

5 Custo do Projeto .. 59

6 CONCLUSÕES ... 60

7 PROJETOS FUTUROS .. 61

8 REFERÊNCIAS .. 62

ANEXO .. 66

Código

14

1 INTRODUÇÃO

A crescente complexidade das operações industriais, aliada à demanda por

segurança e sustentabilidade, impulsiona o uso de tecnologias de monitoramento

avançado. A telemetria, nesse contexto, surge uma solução estratégica para o

controle em tempo real de equipamentos de movimentação, como empilhadeiras.

Sua capacidade de coletar, transmitir e analisar dados operacionais permite não

apenas antecipar falhas e reduzir paradas não planejadas, mas também garantir a

integridade dos equipamentos e a segurança dos operadores.

Ao integrar sensores e sistemas inteligentes, a telemetria viabiliza práticas de

manutenção preditiva e gestão energética mais eficiente. Tais ações, além de

elevarem a produtividade, alinham-se aos princípios da sustentabilidade, ao

contribuírem para a redução do consumo de insumos e da geração de resíduos

industriais.

Dessa forma, a aplicação da telemetria configura-se como um pilar tecnológico

indispensável à modernização da indústria, promovendo operações mais seguras,

econômicas e ambientalmente responsáveis.

Como um sistema de telemetria pode auxiliar as funções logísticas de forma

que os equipamentos de movimentação de materiais se tornem mais sustentáveis?

1.1 Objetivo

Desenvolver um sistema de telemetria para empilhadeiras, visando aprimorar a

segurança, eficiência e sustentabilidade das operações logísticas.

Objetivos Específicos

 Identificar variáveis operacionais relevantes (temperatura, velocidade,

inclinação, presença e bateria).

 Utilizar sensores e microcontroladores de baixo custo para coleta e

transmissão dos dados.

 Avaliar a viabilidade de integração com plataformas em nuvem (IoT).

15

1.2 Justificativa

A justificativa para o desenvolvimento deste projeto está ancorada na

necessidade de soluções tecnológicas que respondam simultaneamente aos desafios

de produtividade, segurança operacional e sustentabilidade ambiental no setor

industrial. A telemetria, enquanto tecnologia de monitoramento remoto, tem se

consolidado como um recurso fundamental para a gestão de equipamentos críticos,

como empilhadeiras, ao permitir a coleta e análise contínua de dados operacionais.

A proposta deste trabalho está alinhada aos pilares da Indústria 4.0,

especialmente pela adoção de dispositivos conectados (IoT) Internet das Coisas e

pela ênfase na automação inteligente. Além disso, o projeto contribui para o

cumprimento das metas dos Objetivos de Desenvolvimento Sustentável (ODS) 8, 9 e

12, sobretudo aqueles voltados à modernização da indústria, uso responsável de

recursos e melhoria das condições de trabalho.

Ao utilizar plataformas de hardware e software acessíveis, a solução

apresentada se torna especialmente relevante para pequenas e médias empresas,

promovendo a democratização do acesso à tecnologia e incentivando práticas

sustentáveis no ambiente fabril.

1.3 Aspecto Metodológico

Esta subseção descreve o método de pesquisa que será utilizado para o

desenvolvimento deste trabalho, que pode ser classificado como de natureza

aplicada, com objetivo exploratório e uma abordagem quantitativa. Para o alcance dos

objetivos propostos, serão utilizados procedimentos que incluirão revisão teórica e

modelagem e simulação para a coleta de dados.

1.4 Aporte Teórico

Para avaliar a relevância do tema, no dia 24/03/2025 foram pesquisados os

artigos publicados na base de dados Google Acadêmico. A busca foi realizada no

idioma Português, considerando os termos leitura do resumo e aderência ao tema,

16

exclusivamente no título dos artigos indexados entre os anos 2019 a 2025. Esta busca

obteve 119 resultados, sendo classificados por ordem de relevância, e escolhidas as

50 pesquisas mais pertinentes para este estudo após a leitura dos respectivos

resumos.

1 FUNDAMENTAÇÃO TEÓRICA

Esta seção irá descrever os aspectos relacionados à telemetria, abordando sua

origem, funcionamento e evolução com ênfase na aplicação em equipamentos

automotores especialmente em empilhadeiras, destacando seus benefícios para a

operação, segurança e gestão eficiente dos processos logísticos.

2.1 Telemetria

A telemetria veicular é uma tecnologia que permite o monitoramento remoto de

veículos por meio da captação e transmissão de dados em tempo real, como

velocidade, localização, consumo de combustível e condições mecânicas. Essa

prática tem sido amplamente utilizada na gestão de frotas, com o objetivo de reduzir

custos, aumentar a segurança, prevenir falhas e melhorar a eficiência operacional.

Apesar dos inúmeros benefícios, a telemetria apresenta limitações, como o alto custo

de implantação, a dependência de conectividade estável, questões relacionadas à

privacidade e possível resistência dos motoristas ao monitoramento contínuo. Em

paralelo, a telemetria também tem sido aplicada em redes computacionais, onde

permite o acompanhamento preciso do tráfego e do desempenho de dispositivos de

rede, especialmente por meio das filas associadas às portas dos switches. A técnica

de In-band Network Telemetry (INT), por exemplo, permite a coleta de métricas

detalhadas com alta frequência, proporcionando uma visão precisa do estado da rede

(BRAGATTO et al., 2024). Essa abordagem é fortalecida pelo uso de tecnologias

como a linguagem P4 e arquiteturas de redes definidas por software (SDN), permitindo

medir latência, ocupação de filas e outras variáveis críticas (JOB et al., 2023). Além

disso, com o avanço da Ethernet Industrial e da integração com sistemas inteligentes

de controle e automação, a telemetria passou a ser uma ferramenta estratégica para

transformar dados em informações úteis e apoiar a tomada de decisões ágeis e com

menor margem de erro (GOMES, 2022). Isso se torna essencial diante das exigências

17

do mercado atual, caracterizado por rápidas mudanças e alta competitividade. A

instrumentação de redes com foco em telemetria in-band, apesar de demandar maior

capacidade de armazenamento e processamento, possibilita a utilização de técnicas

de inteligência artificial para análise de dados em tempo real, promovendo segurança,

qualidade e lucratividade. Dessa forma, a telemetria veicular, quando aplicada

corretamente, contribui significativamente para a redução de falhas operacionais e

para a adaptação eficiente às demandas do mercado moderno.

2.1.1 Evolução da Telemetria

A telemetria é uma tecnologia destinada à medição e transmissão remota de

dados, essencial para o monitoramento de equipamentos e veículos. Com origem na

palavra grega que combina “tele” (longe) e “meter” (medir), foi inicialmente aplicada

em 1845 na Rússia, para comunicações militares, e posteriormente expandiu-se para

outras áreas, como meteorologia e sismologia, antes de se popularizar na década de

1990, com destaque para sua utilização na Fórmula 1, revolucionando o

monitoramento veicular em tempo real (MIOTTO, 2023). Evoluindo de medições

simples para sistemas inteligentes, a telemetria atualmente utiliza sensores,

microcontroladores e Internet das Coisas (IoT), permitindo uma gestão segura e eficaz

de equipamentos industriais e sistemas energéticos residenciais. No ambiente

industrial, destaca-se por detectar falhas precocemente, otimizar recursos e aumentar

a competitividade das empresas (GUILMO, 2021). Suas funcionalidades incluem

geração de relatórios, análise preditiva e detecção de falhas em tempo real, sendo

fundamentais para a segurança dos operadores, prevenção de paradas e otimização

de recursos (FACCIONI FILHO, 2016). A telemetria também potencializa a

manutenção preventiva, reduzindo custos de reparos emergenciais e evitando falhas

operacionais, especialmente com o uso de tecnologias como IoT e protocolos como

MQTT, que permitem monitoramento contínuo e preciso (OLIVEIRA, 2023). No

entanto, sua implementação apresenta desafios, como a integração com sistemas

legados e a necessidade de garantir segurança da informação, protegendo os dados

sensíveis de acessos não autorizados e ataques cibernéticos (REIS et al., 2019). A

aplicação conjunta de telemetria e inteligência artificial tem contribuído para mitigar

riscos operacionais em equipamentos de movimentação, antecipando falhas e

emitindo alertas preventivos, o que fortalece a segurança e melhora a eficiência dos

18

processos (MENEGHINI, 2018). Casos reais demonstram que empresas que

adotaram a telemetria reduziram custos de manutenção, aumentaram a produtividade

e aprimoraram a segurança operacional, evidenciando seu impacto positivo na gestão

industrial (MACHADO, 2017). Assim, a telemetria se consolida como uma ferramenta

estratégica para a inovação, eficiência e sustentabilidade nos mais diversos setores

industriais.

2.1.2 Arquitetura de Sistemas de Telemetria

A arquitetura de sistemas de telemetria exerce papel fundamental no

monitoramento e na segurança de equipamentos de movimentação, ao possibilitar a

coleta, transmissão e análise de dados em tempo real. Essa arquitetura é responsável

por integrar sensores, dispositivos de controle e servidores de processamento, além

de definir as camadas de hardware e software necessárias para o funcionamento

eficaz do sistema, oferecendo uma visão completa do estado operacional dos

equipamentos (MARTINS, 2020). Tecnologias como sensores sem fio, redes IoT,

protocolos MQTT e plataformas em nuvem são comumente empregadas nesse tipo

de arquitetura, permitindo o armazenamento e análise eficiente dos dados coletados

(CARÁ, 2021). Os benefícios operacionais são significativos: monitoramento remoto,

aumento da disponibilidade dos equipamentos, redução de custos com manutenção

corretiva e maior eficiência dos processos produtivos por meio da identificação de

padrões anômalos (REIS et al., 2013). Estudos de caso evidenciam a eficácia desses

sistemas, mostrando redução de acidentes e melhoria na gestão da manutenção,

além da possibilidade de análises históricas que contribuem para a longevidade e

desempenho dos equipamentos (ANDRADE, 2022). Assim, a arquitetura de sistemas

de telemetria consolida-se como elemento estratégico na modernização e na

segurança operacional da indústria.

2.2 Equipamentos Automotores

Os equipamentos automotores exercem um papel estratégico na indústria de

movimentação de cargas, contribuindo diretamente para a eficiência e agilidade no

transporte de materiais em diversos setores. Equipamentos como empilhadeiras e

guindastes são essenciais para as operações logísticas e produtivas, o que torna

19

fundamental a adoção de sistemas de segurança e monitoramento que evitem

acidentes e prejuízos (SILVEIRA, 2021). Contudo, desafios persistem, como a

ausência de visibilidade em tempo real, dificultando a previsão de falhas mecânicas e

comprometendo a segurança operacional. Além disso, a interoperabilidade entre

sensores e plataformas de telemetria nem sempre é eficiente, exigindo avanços em

segurança cibernética, infraestrutura digital e capacitação profissional para garantir a

integridade dos operadores (SILVA; AMICI, 2022). A integração da telemetria com

sistemas de segurança, como alarmes sonoros, alertas visuais e bloqueios

automáticos, permite respostas imediatas a situações de risco, reduzindo danos

materiais e lesões (OLIVEIRA, 2025). Nesse contexto, a telemetria se consolida como

ferramenta indispensável para a gestão inteligente e segura dos equipamentos

automotores no setor industrial.

2.3 Telemetria em Equipamentos Automotores

Sua aplicação tem sido decisiva na modernização do setor automotivo,

oferecendo soluções inovadoras para otimização do desempenho e sustentabilidade

(FUCK, 2024). No contexto industrial, a telemetria é essencial para a segurança e

eficiência dos equipamentos, possibilitando análise preditiva dos dados operacionais

por meio de sensores inteligentes, que detectam falhas precocemente, diminuem

riscos de acidentes e viabilizam a manutenção preditiva, evitando paradas não

programadas. Entre as tecnologias empregadas destacam-se GPS, sensores de

temperatura e acelerômetros, que permitem rastrear a localização e condições dos

equipamentos, tornando a gestão das frotas mais abrangente e detalhada (BOFF,

2017). Contudo, desafios persistem, como a compatibilidade entre diferentes marcas

e modelos de sistemas de telemetria e a necessidade de padronização para garantir

interoperabilidade, coleta e análise eficaz dos dados. Além disso, a segurança

cibernética é imprescindível para proteger informações sensíveis transmitidas pelos

equipamentos (SILVA; AMICI, 2022). A implementação desses sistemas gera

impactos positivos na produtividade das empresas do setor ao permitir o

acompanhamento remoto das atividades da frota e identificar oportunidades de

otimização, tornando-se uma ferramenta essencial para impulsionar o crescimento

organizacional (MIOTTO, 2023). As perspectivas futuras para o desenvolvimento da

telemetria incluem a integração com inteligência artificial e machine learning para

20

análise preditiva, possibilitando antecipar falhas com base em padrões identificados e

otimizar rotinas operacionais, aprimorando ainda mais o desempenho dos

equipamentos (SANTOS, 2018).

2.3.1 Aplicações em Logística e Indústria

A telemetria depende da integração de tecnologias como sensores

embarcados, GPS, redes sem fio e softwares especializados de análise, os quais

possibilitam o monitoramento preciso e em tempo real dos equipamentos, apoiando

decisões estratégicas nas operações industriais (SANTOS, 2018). Em veículos

elétricos, a telemetria contribui diretamente para a segurança ao permitir o

monitoramento de variáveis críticas como sobrecargas e superaquecimento,

possibilitando a manutenção antecipada e promovendo maior vida útil dos

componentes, além de reduzir comportamentos de risco e acidentes, por meio da

análise de dados históricos e padrões de condução (PINTO, 2017). Os avanços

recentes na área têm sido impulsionados pela integração com inteligência artificial e

automação industrial, proporcionando sistemas mais sofisticados, eficientes e seguros

para o setor logístico e industrial (FACCIONI FILHO, 2016). As perspectivas futuras

indicam um cenário de maior eficiência com a convergência da telemetria, Internet das

Coisas (IoT) e IA, viabilizando gestão integrada da frota em tempo real, análises

preditivas de falhas, otimização dos processos operacionais e práticas sustentáveis,

como o controle de emissões e consumo de combustível. Soluções como o sistema

DISPATCH demonstram os avanços nessa direção, promovendo automação

inteligente e elevação da produtividade (ANDRADE, 2022).

2.4 Telemetria em Empilhadeiras

A aplicação da telemetria em empilhadeiras tem se mostrado uma solução

eficaz para o aprimoramento do controle operacional e da gestão de frotas, por meio

da coleta de dados em tempo real sobre consumo de energia, utilização dos

equipamentos e desgaste de componentes (LINO, 2019). Sensores embarcados

monitoram parâmetros como temperatura do motor, velocidade, vibração e carga

transportada, permitindo a manutenção preditiva, a redução de custos operacionais e

o aumento da vida útil dos equipamentos (OLIVEIRA, 2023). Além disso, o sistema

21

analisa estilos de condução, detecta comportamentos de risco, como excesso de

velocidade ou impactos, e emite alertas automáticos que contribuem para a segurança

dos operadores. Os testes realizados validaram a eficácia da tecnologia, consolidando

sua importância para operações logísticas inteligentes e sustentáveis (LINO, 2019). A

integração da telemetria com sistemas empresariais, embora desafiadora, permite o

alinhamento das informações coletadas com processos de gestão mais amplos,

otimizando recursos e garantindo maior confiabilidade nas operações (OLIVEIRA,

2023). A padronização das práticas de telemetria em empilhadeiras permite uma

análise mais precisa do desempenho dos equipamentos, facilitando a adoção de

medidas preventivas e melhorando a produtividade nas operações de movimentação

de cargas (FUCK, 2024). Estudos de caso demonstram que empresas que

implementaram esses sistemas obtiveram redução de custos, melhoria nas condições

de trabalho e aumento da eficiência na gestão da frota, evidenciando o potencial

transformador da telemetria no setor logístico (REIS et al., 2019).

2.5 Telemetria e Sustentabilidade (ODS)

A telemetria exerce um papel fundamental no monitoramento remoto e em

tempo real de equipamentos, sendo uma aliada estratégica para a eficiência

operacional e a sustentabilidade, em consonância com os Objetivos de

Desenvolvimento Sustentável (ODS). Por meio da coleta e análise de dados, é

possível otimizar o consumo de recursos, prever falhas, reduzir custos operacionais e

prolongar a vida útil dos equipamentos, além de melhorar a gestão de frotas e reduzir

impactos ambientais (LINO, 2019). Com testes e simulações, confirma-se a eficácia

desses sistemas para ajustes estratégicos voltados à sustentabilidade e ao

desempenho técnico (PINTO, 2017). Outro aspecto relevante é a relação entre a

telemetria e a segurança dos trabalhadores, visto que o monitoramento contínuo

permite identificar situações de risco antes que se concretizem, prevenindo acidentes

e promovendo ambientes de trabalho mais seguros (FUCK, 2024). Casos de sucesso

relatados por empresas do setor de movimentação de cargas comprovam os impactos

positivos da telemetria na redução de custos, aumento da produtividade e elevação

da segurança laboral, servindo de modelo para organizações que almejam excelência

operacional e sustentabilidade (FACCIONI FILHO, 2016).

22

3 METODOLOGIA

O desenvolvimento deste projeto de TG foi estruturado em cinco etapas

principais, com o objetivo de garantir um processo lógico, seguro e tecnicamente

consistente. Cada fase foi cuidadosamente planejada para atender aos requisitos

funcionais e normativos do projeto, com base em normas técnicas como a NBR 14153

e a NBR ISO/IEC 20922.

A metodologia adotada envolve desde a aquisição de dados por sensores,

passando pelo processamento das informações, comunicação remota e interação

com o operador, até a validação final do sistema. Essa abordagem modular permite

melhor controle sobre cada aspecto do desenvolvimento, assegurando a

confiabilidade dos dados, a usabilidade da interface e a segurança da operação.

A seguir, são descritas detalhadamente as cinco etapas que compõem o

processo de desenvolvimento do sistema:

Desenvolvimento em 5 etapas

Na Etapa 1 a Aquisição de Dados é a primeira etapa do desenvolvimento foi

dedicada à preparação e configuração dos sensores que capturam os dados

essenciais do equipamento.

 Sensor Hall para contagem de rotações e cálculo de velocidade.

 MPU6050 para detecção de inclinação.

 Tensão da Bateria divisor resistivo.

 LM35 para medir a temperatura.

 Sensor RCWL-0516 para detectar pessoas próximas.

 Sistema de Arquivos Cartão SD para registrar atividade.

Para garantir precisão, todos os sensores foram calibrados de acordo com os

parâmetros da norma NBR 14153, que define critérios de segurança para sistemas

de parada de emergência em máquinas e equipamentos. Além disso, foram

realizados testes preliminares para verificar a consistência dos dados e a

estabilidade da leitura.

23

O circuito foi equipado com proteções contra curto-circuito, além da aplicação

de filtros RC nas entradas analógicas — esses filtros atuam como uma primeira

barreira contra ruídos elétricos, assegurando que os dados recebidos sejam limpos e

confiáveis.

Na Etapa 2 com os dados sendo adquiridos corretamente, passou-se ao

desenvolvimento dos algoritmos responsáveis pelo processamento dessas

informações, sendo que um dos principais cálculos realizados é o da velocidade,

obtida por meio da seguinte equação:

Velocidade: O firmware utiliza uma janela de contagem, acumulando os pulsos do

sensor Hall e calculando a velocidade média nesse intervalo.

1. Frequência de pulsos de medida:

𝑓𝑝 = 0,884𝐻𝑧

2. Conversão para rotações por segundo (4 pulsos por volta):

𝑓𝑟𝑒𝑣 =
𝑓𝑝

=
𝑃𝑈𝐿𝑆𝑂𝑆_𝑃𝑂𝑅_𝑉𝑂𝐿𝑇𝐴

0,884
≈ 0,221 𝑟𝑒𝑣/𝑠

4

3. Circunferência da roda (R = 0,2 m):

𝐶 = 2𝜋𝑅 = 2𝜋 ∗ 0,2 ≈ 1,2566 𝑚

4. Velocidade em metros por segundo:

𝑣𝑚 = 𝑓𝑟𝑒𝑣 ∗ 𝐶 = 0,221 ∗ 1,2566 ≈ 0,2777 𝑚/𝑠

5. Conversão para km/h:

𝑣𝑘𝑚/ℎ = 𝑣𝑚/𝑠 ∗ 3,6 = 0,2777 ∗ 3,6 ≈ 1 𝑘𝑚/ℎ

Além disso, o sistema aplica um tempo limite para zerar a velocidade em caso

de ausência de pulsos e utiliza um filtro de média exponencial (EWMA) para suavizar

variações rápidas. Esse método garante maior estabilidade e confiabilidade na leitura

em comparação com o cálculo direto por período.

A diferença entre o valor injetado (0,884 Hz) e o mostrado (1 km/h) deve-se aos

arredondamentos matemáticos na conversão e à precisão dos cálculos com variáveis

float. O sistema está funcionando conforme programado, convertendo frequência de

pulsos em velocidade linear baseada no raio da roda.

24

Inclinação: Processamento de dados do MPU6050 usando funções trigonométricas

(arctangente) para determinar ângulos nos eixos X e Y configurado no endereço I2C

0x69.

Princípio de Cálculo
O cálculo da inclinação utiliza as componentes do vetor aceleração para determinar

os ângulos de inclinação nos eixos X e Y através das seguintes fórmulas:

InclinaçãoX = atan2(ax, sqrt(ay² + az²)) × 180/π

InclinaçãoY = atan2(ay, sqrt(ax² + az²)) × 180/π

Tensão da Bateria: A tensão da bateria é medida através do pino analógico

conectado ao divisor resistivo, que adequa a tensão de entrada ao limite de 3,3 V do

ADC do ESP32. A leitura passa por uma média aparada para reduzir ruídos e por um

filtro de suavização (EWMA) para maior estabilidade.

Fórmula de Cálculo

Implementação

𝑇𝑒𝑛𝑠ã𝑜

(𝑉)

𝑙𝑒𝑖𝑡𝑢𝑟𝑎𝑎𝑛𝑎𝑙ó𝑔𝑖𝑐𝑎

= (
4095

∗ 3,3) ∗ 6,06

A função lerTensaoBateria() realiza a leitura analógica com média aparada de

32 amostras, converte para tensão (0–3,3 V) e aplica o fator do divisor resistivo (6,06),

retornando o valor em volts suavizado por filtro EWMA.

Parâmetros Utilizados

 leitura_analógica: Valor lido pelo ADC de 12 bits (0–4095)

 3,3 V: Tensão de referência nominal do ESP32

 20v / 3,3v = 6,06: Fator do divisor de tensão (R1/(R1+R2)) definido no circuito.

Temperatura Motor: A temperatura do motor é medida através do sensor LM35

conectado ao pino analógico GPIO34. Esse sensor fornece uma saída linear de

aproximadamente 10 mV/°C, porém no ESP32 a leitura passa por ajustes de

calibração para compensar não linearidades do ADC.

Fórmula de Cálculo

25

𝑙𝑒𝑖𝑡𝑢𝑟𝑎 𝑎𝑛𝑎𝑙𝑜𝑔𝑖𝑐𝑎
𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑎 (°𝐶) = (

4095
∗ 1100) ∗ 0,1 ∗ 𝑇 − 𝐺𝐴𝐼𝑁 + 𝑇_𝑂𝐹𝐹𝑆

Implementação

A função lerTemperatura() realiza a leitura do ADC com média aparada de

múltiplas amostras, converte o valor em milivolts (faixa 0–1100 mV) e aplica a

sensibilidade do LM35 (10 mV/°C). Em seguida, utiliza fatores de calibração

(T_GAIN, T_OFFS) e um filtro de média exponencial (EWMA) para obter uma leitura

mais estável e precisa.

RCWL-0516

Utiliza um sinal de micro-ondas na frequência de ~3,18 GHz (banda ISM).

Quando o sinal emitido reflete em um objeto em movimento, ocorre uma mudança

na frequência (efeito Doppler), que é detectada pelo circuito integrado RCWL-9196.

Diferentemente de sensores PIR, detecta movimento através de materiais não

metálicos (como vidro ou plástico) e não é sensível a variações de temperatura.

Vantagens

 Detecta movimento através de obstáculos não metálicos

 Não requer aquecimento inicial (diferente de PIR)

 Insensível a corpos estáticos (evita falsos positivos)

 Cobertura omnidirecional (útil para aplicações de 360°)

Limitações

 Pode ser ativado por movimento de fluidos (ex.: água em tubulações)

 Sensível a metais em movimento (ex.: ventoinhas, portas metálicas)

 Menor precisão em ambientes com múltiplos reflexos de micro-ondas

Fundamento Teórico

Baseia-se no efeito Doppler para detecção de movimento:

𝑓′ = 𝑓
𝑐 ± 𝑣

𝑐 ∓ 𝑣

Onde 𝑓′ é a frequência refletida, 𝑓 a frequência emitida, 𝑐 a velocidade da luz e 𝑣 a

velocidade do objeto.

26

Sistema de Arquivos

 Arquivos de log nomeados por data (log_AAAAMMDD.csv)

 Cabeçalho CSV com todas as variáveis monitoradas

 Registro periódico com timestamp preciso do RTC

 Otimização para evitar abrir/fechar arquivo frequentemente

Figura 1: Dados CSV SDCARD

Data Hora Operador TempLM3 TempRTC Bateria Inclinacao Velocidade Presenca Checklist

29/08/2025 01:13 ID 179 47.4 26.2 0.48 66.7 7.1 0 1,1,1,1,1,0,1,0,1,

29/08/2025 01:14 34.1 26.2 0.25 72.4 7.1 0

29/08/2025 01:14 37.7 26.2 0.35 68.0 7.1 0

29/08/2025 01:14 37.0 26.2 0.27 86.5 7.1 0

29/08/2025 01:14 33.4 26.2 0.33 50.6 7.0 0

29/08/2025 01:14 33.4 26.2 0.40 48.5 7.1 0

29/08/2025 01:14 33.8 26.5 0.36 61.1 7.1 0

29/08/2025 01:14 37.6 26.2 0.34 60.0 7.1 0

29/08/2025 01:14 34.4 26.5 0.34 58.2 7.1 0

29/08/2025 01:15 37.8 26.5 0.31 63.7 7.1 0

29/08/2025 01:15 33.0 26.5 0.25 60.8 7.1 0

29/08/2025 01:15 37.9 26.5 0.31 58.5 7.0 0

29/08/2025 01:15 34.3 26.5 0.43 66.9 7.1 0

29/08/2025 01:15 38.5 26.5 0.53 61.3 7.1 0

29/08/2025 01:15 36.9 26.5 1.64 60.9 7.1 0

Fonte: Elaborado pelo próprio Autor (2025).

A figura 1 apresenta um trecho do arquivo CSV gerado pelo sistema de telemetria e

armazenado no cartão SD.

Cada linha corresponde a um registro de amostra coletada em tempo real.

As colunas organizam os parâmetros monitorados:

 Data e Hora: momento da coleta.

 Operador: identificação do usuário autenticado.

 TempLM35 / TempRTC: leituras de temperatura (sensor LM35 e RTC

DS3231).

 Bateria: tensão da bateria medida e ajustada pelo divisor resistivo.

 Inclinacao: ângulo em graus obtido pelo sensor de inclinação.

 Velocide: velocidade calculada pelo sensor Hall.

 Presença: status do sensor de presença.

27

 Checklist: sequência de confirmações realizadas pelo operador.

Gráfico

Figura 2: Gráfico Bateria Figura 3: Gráfico Inclinação

Figura 4: Gráfico Presença Figura 5: Gráfico TempRTC

Figura 6: Gráfico Temperatura Motor Figura 7: Gráfico Velocidade

Fonte: Elaborado pelo próprio Autor no chat2csv.com (2025).

28

As figuras 2 a 7 apresentam os gráficos gerados a partir dos dados armazenados em

planilhas CSV no cartão de memória do sistema de telemetria. Cada gráfico

corresponde a uma variável monitorada:

Esses gráficos permitem visualizar de forma clara o comportamento temporal

das variáveis críticas, possibilitando identificar tendências, picos ou desvios em

relação aos limites estabelecidos. Dessa forma, o sistema garante não apenas o

monitoramento em tempo real, mas também a análise histórica para manutenção

preventiva e segurança operacional.

Na Etapa 3 é feito há Comunicação para que o sistema possa enviar e

monitorar dados remotamente, foi adotado o protocolo MQTT, conforme definido na

norma NBR ISO/IEC 20922. Esse protocolo é leve, eficiente e ideal para aplicações

embarcadas e IoT.

29

Figura 8: Painel Arduino IoT Cloud

Fonte: https://app.arduino.cc/ (2025).

A figura 8 apresenta o painel da Arduino IoT Cloud, no qual são exibidos em

tempo real os dados coletados pelo hardware ESP32 do sistema de telemetria.

 Temperatura (°C): leitura do motor, exibida em mostrador analógico e gráfico

temporal.

 Tensão da Bateria (V): monitoramento da alimentação elétrica, com registro

histórico.

 Velocidade (km/h): valor calculado pelo sensor Hall, mostrado em tempo real.

 Inclinação (grau): ângulo medido pelo sensor de inclinação.

 Lista de verificação: indicador de conclusão do checklist do operador.

Figura 9: Variáveis do sistema

30

Fonte: https://app.arduino.cc/ (2025).

A figura 9 mostra a tela de variáveis da Arduino IoT Cloud, que são os

parâmetros enviados e monitorados pelo ESP32 no sistema de telemetria.

 checklistCompleto (bool): variável booleana que indica se o checklist de

segurança foi concluído pelo operador.

 inclinacao (CloudAngle): armazena o valor do ângulo de inclinação da

empilhadeira, obtido pelo sensor MPU6050.

 temperatura (CloudTemperatureSensor): representa a temperatura do

motor, medida e processada pelo sistema.

 tensaoBateria (CloudElectricPotential): registra a tensão da bateria

após leitura e cálculo pelo divisor resistivo.

 velocidade (CloudVelocity): indica a velocidade atual, calculada a partir

dos pulsos do sensor Hall.

Figura 10: Configuração da rede wi-fi

Fonte: https://app.arduino.cc/ (2025).

A figura 10 apresenta a tela de configuração de rede da Arduino IoT Cloud para

o dispositivo DOIT ESP32 DEVKIT V1 utilizado no sistema de telemetria da

empilhadeira.

31

 Nome do Wi-Fi (SSID): rede sem fio à qual o ESP32 será conectado.

 Senha: chave de acesso à rede Wi-Fi.

 Chave secreta: credencial gerada pela plataforma para autenticar o

dispositivo na nuvem.

Na Etapa 4 à Interface Homem-Maquina (IHM); a interação entre o operador e

o sistema foi cuidadosamente planejada com base na mesma NBR 14153, aplicando

suas diretrizes de segurança ao design da interface. A tela TFT (128X160) _ST7735.

Exibe:

 Um checklist sequencial com 20 perguntas, que o operador deve responder

antes de iniciar a operação.

 As leituras dos sensores de forma clara e contínua.

 Alertas visuais (mensagens na tela) e auditivos (via buzzer), ativados

automaticamente em caso de falha.

A IHM foi desenhada para ser objetiva e fácil de usar, mesmo em condições de

trabalho intensas, reduzindo a possibilidade de erro humano.

Na Etapa 5 é feito a validação, o sistema foi submetido a uma fase intensiva de

testes em um ambiente controlado durante 24 horas contínuas. Durante esse período,

foram simuladas diversas situações de falha e operação normal para verificar a

robustez e a reatividade do sistema.

Figura 11: Sistema de monitoramento

Fonte: Elaborado pelo próprio Autor (2025).

A figura 11 demonstra o sistema de monitoramento em tempo real em bancada,

onde os valores de sensores de tensão, temperatura, inclinação, presença e

velocidade são simulados e exibidos no display TFT, validando o funcionamento do

projeto de telemetria.

32

Figura 12 : Sinais digitais capturados

Fonte: Elaborado pelo próprio Autor (2025).

A figura 12: tela do notebook está dividida em duas partes principais:

Parte superior (software Logic 1.1.30):

Mostra os sinais digitais capturados pelo analisador lógico, conectados ao pino 7 (K-

Line) da interface OBD2. É possível observar os pacotes de dados referentes à

comunicação entre a ECU e o Arduino UNO, exibidos como formas de onda no tempo.

Parte inferior (IDE Arduino – Monitor Serial):

Mostra os dados já decodificados pelo Arduino UNO e enviados via porta serial.

Entre os parâmetros recebidos da ECU estão:

 Tensão da bateria = 13,26 V

 Velocidade = 0 km/h

 Temperatura do motor = 66,4 °C

Figura 13: Tela dados ECU

Fonte: Elaborado pelo próprio Autor (2025).

A figura 13 mostra a tela TFT do sistema de telemetria em modo Status Normal.

Dados em verde (ECU): são informações recebidas do módulo eletrônico do veículo

via protocolo OBD2 e interpretadas pelo ESP32.

33

Nesse caso:

 ECU Ubat: tensão da bateria do veículo (12,65 V).

 ECU Vel: velocidade lida pelo módulo (26 km/h).

 ECU Temp: temperatura do motor (92,0 °C).

Dados em amarelo (Sensores locais): são os valores lidos diretamente pelos sensores

conectados ao ESP32:

 Bateria: monitoramento de tensão (0,00 V, sem leitura válida).

 Temp LM35: temperatura medida pelo sensor LM35 (10,2 °C).

 Temp RTC: temperatura ambiente (30,5 °C).

 Impacto: aceleração medida pelo acelerômetro (0,26 g).

 Velocidade: leitura via sensor Hall ou equivalente (0,0 km/h).

O display diferencia as leituras próprias dos sensores (amarelo) das leituras do

veículo via ECU/OBD2 (verde), permitindo comparar dados locais com os oficiais do

módulo eletrônico.

Essa tela foi utilizada apenas para demonstrar a viabilidade de obtenção de

dados diretamente da máquina, utilizando o protocolo correto com o ESP32. Esse

recurso comprova que é possível expandir o projeto de telemetria para além dos

sensores locais, integrando dados oficiais da ECU.

No software atual, está implementada apenas a função de leitura dos sensores

conectados ao ESP32 (temperatura, tensão, inclinação, presença, velocidade etc.).

Entretanto, o hardware já dispõe de entrada dedicada para a rede CAN/OBD2, o que

possibilita, em versões futuras, o desenvolvimento de um software específico para

determinado tipo de máquina, permitindo a aquisição direta dos dados pela rede CAN

e ampliando a confiabilidade e o escopo do sistema de telemetria.

Figura 14: Cabo adaptador OBD2 para DB15

Fonte: Elaborado pelo próprio Autor (2025).

A figura 14 mostra um cabo adaptador OBD2 para DB15, utilizado para comunicação

entre a ECU e o sistema de telemetria com ESP32.

34

Na placa interna é possível identificar:

O conversor L9637D, responsável por traduzir os sinais da linha K do OBD2

para nível lógico TTL 3,3 V, compatível com o ESP32.

Um filtro de alimentação estabilizado, implementado com o TIP122, garantindo

a regulação da tensão proveniente da tomada OBD2, de forma a alimentar

corretamente o ESP32.

Em resumo: este cabo atua como interface física e elétrica entre a rede OBD2

do veículo e o ESP32, permitindo que os sinais sejam convertidos e tratados de forma

segura no sistema de telemetria.

Figura 15: Leitura do sensor de velocidade

Fonte: Elaborado pelo próprio Autor (2025).

A figura 15 mostra a validação da leitura do sensor de velocidade. Quando são

injetados pulsos de 0,884 Hz, o sistema calcula aproximadamente 1 km/h.

Figura 16: Leitura de tensão da bateria

Fonte: Elaborado pelo próprio Autor (2025).

A figura 16 apresenta a validação prática da leitura de tensão da bateria

realizada pelo sistema. À esquerda, observa-se o display TFT conectado ao ESP32,

exibindo o valor de 13,8 V, e à direita, o osciloscópio registra o mesmo valor

diretamente nos terminais da bateria.

35

Figura 17: Leitura de temperatura

Fonte: Elaborado pelo próprio Autor (2025).

A figura 17 apresenta a validação prática da leitura de temperatura obtida no

pino analógico GPIO34 do ESP32. À direita, o osciloscópio registra uma tensão

contínua de aproximadamente 880 mV RMS aplicada ao pino. À esquerda, o display

TFT mostra a variável Temp Motor com valor de 87,3 °C.

Figura 18: Telas do sistema de telemetria

36

Fonte: Elaborado pelo próprio Autor (2025).

A figura 18 apresenta, de forma sequencial da esquerda para a direita, todas as

telas implementadas no sistema de telemetria desenvolvido. Nelas é possível

observar: a tela inicial de autenticação por senha, a identificação do operador, o

checklist de segurança interativo, a tela de status normal com exibição contínua das

variáveis monitoradas (tensão da bateria, temperatura, inclinação, ID Operador,

Data/Hora, Temperatura da case e velocidade), além das telas de alerta, que são

acionadas automaticamente quando algum parâmetro ultrapassa os limites

estabelecidos.

Essa disposição demonstra a estrutura lógica do fluxo de operação do sistema,

evidenciando desde a inicialização e validação do operador até a fase de

monitoramento e segurança ativa do equipamento.

37

Figura 19: Fluxograma

Fonte: Elaborado pelo próprio Autor no mermaidchart (2025).

4 RESULTADOS

O sistema demonstrou robustez na operação contínua, com:

 Tempo de resposta adequado para interface do usuário

 Precisão satisfatória nas medições dos sensores

 Confiabilidade na detecção de condições críticas

 Estabilidade na conexão com nuvem mesmo com intermitência

 Capacidade de operação offline com registro local de dados

A interface desenvolvida na plataforma Arduino IOT Cloud, demonstrou ser

eficiente, oferecendo visualização remota e acompanhamento em tempo real dos

dados obtidos.

Ao comparar o sistema proposto com tecnologias já existentes no mercado,

38

nota-se as soluções de redução de custo e recursos de conectividades robustas e

flexíveis. Embora sistemas já evolucionados e vendidos possuam interfaces mais

sofisticadas e com ERPs industriais, a proposta desenvolvida por nós se destaca pela

facilidade de customização, acessibilidade e foco no atendimento de pequenas e

médias operações de logística. Além da viabilidade de implementar rotinas de

manutenção preditiva, por meio de verificação dos dados coletados. É possível prever

desgastes dos equipamentos, falhas, reduzir paradas não programadas e melhorar o

planejamento em relação à manutenção. O que contribui de forma direta com a

diminuição de custos e maior efetividade do equipamento.

Além disso, vale ressaltar a pauta da sustentabilidade, visto que permite o

consumo de recursos desnecessários e ainda, visa contribuir para o ciclo de vida dos

equipamentos, o que leva consequentemente a redução de impactos ambientais.

Portanto, os resultados obtidos até o momento comprovam que o sistema de

telemetria atinge os objetivos propostos em relação às questões técnicas, econômicas

e operacionais. Na indústria este sistema pode trazer melhorias e transformar o

gerenciamento de equipamentos de movimentação, tornando-as mais eficientes, com

mais segurança e sustentável.

4.1. Desempenho do Sistema Desenvolvido

O sistema de telemetria desenvolvido demonstrou um desempenho satisfatório,

atendendo aos requisitos propostos, que é o monitoramento de empilhadeiras em

tempo real. Durante os testes simulados, os sensores MPU6050, temperatura LM35

e o sensor Hall 3144E — apresentaram respostas satisfatórias e rápidas na obtenção

de dados operacionais, como temperatura, aceleração, inclinação.

A plataforma ESP32, utilizada como núcleo do sistema, mostrou-se eficiente ao

integrar os sensores e ao transmitir os dados por via conexão Wi-Fi direcionada a

nuvem, por meio do serviço Arduino IoT Cloud.

4.2. Comparação com Tecnologias Existentes

Comparado com às tecnologias comerciais atualmente disponíveis no

mercado, o sistema desenvolvido apresenta vantagens e algumas limitações. As

principais vantagens estão associadas a redução de custo de desenvolvimento, à

39

flexibilidade para personalização e à facilidade de manutenção, pois se baseia em

plataformas de hardware livre, como o ESP 32, e em softwares de código aberto.

Soluções comerciais normalmente oferecem integração mais robusta com

sistemas de gestão empresarial (ERP), além de suporte técnico especializado e

interfaces gráficas mais sofisticadas, capazes de gerar relatórios avançados e

análises preditivas baseadas em IA. No entanto, essas soluções têm custos

significativamente elevados, tanto em relação à aquisição de uma interface quanto na

manutenção desta.

Por outro lado, o sistema desenvolvido se destaca pela simplicidade na

instalação, pela escalabilidade e pela facilidade de adaptação a diferentes tipos de

equipamentos. Ele é ideal para pequenas e médias empresas que buscam

alternativas viáveis para monitorar, sem a necessidade de altos investimentos iniciais.

Em termos funcionais, o sistema desenvolvido oferece os principais recursos

esperados de uma solução de telemetria moderna: coleta de dados operacionais em

tempo real, geração de alertas, acompanhamento remoto e histórico de dados.

Embora não atinja o mesmo nível de automação e integração dos sistemas de grandes

fabricantes, cumpre com eficiência as necessidades básicas de segurança,

monitoramento a gestão de equipamentos de movimentação; contribuindo em relação

às questões sustentáveis.

4.3. Módulo de Conectividade Sem Fio: ESP32

Na figura 20 o módulo de conectividade sem fio utilizado neste projeto é o

ESP32, um microcontrolador altamente integrado desenvolvido pela Espressif

Systems. Esse chip é amplamente reconhecido por seu desempenho elevado aliado

à eficiência energética, sendo ideal para aplicações embarcadas que exigem

conectividade Wi-Fi e Bluetooth de forma simultânea (PINO, 2018). O ESP32 possui

arquitetura de dois núcleos de processamento (dual-core), suporte a frequências de

até 240 MHz, memória RAM dinâmica (SRAM), além de interfaces como ADC, DAC,

SPI, I2C, UART, PWM, CAN e GPIOs, proporcionando ampla flexibilidade para

desenvolver sistemas.

Uma das características que o diferencia de modelos anteriores, como o

ESP8266, é a possibilidade de integração com sensores complementares. Entre eles

destaca-se a Unidade de Medida Inercial (IMU), frequentemente acoplada ao módulo

40

por meio de sensores, tais como o MPU6050 ou o BNO055, permitindo o

monitoramento de aceleração, rotação e orientação espacial. Essa funcionalidade é

extremamente útil para aplicações que envolvem detecção de movimento, como

controle gestual, estabilização de dispositivos, telemetria veicular, segurança e

automação residencial (STEWART, 2019).

Além disso, o ESP32 possui recursos avançados de economia de energia, com

modos como deep sleep, light sleep e modem sleep, o que o torna ideal para

aplicações alimentadas por bateria, como dispositivos portáteis e soluções IoT

remotas. Sua uniformidade com ferramentas de monitoramento em nuvem, como

Blynk, ThingsBoard, Arduino IoT Cloud e servidores MQTT, facilita a agregação de

sistemas inteligentes, dos quais tem recursos que alertam em tempo real por meio de

controle remoto por aplicativos móveis.

A escolha do ESP32 para este projeto se deu por sua aplicabilidade em

gerenciar múltiplas tarefas simultaneamente, pela alta demanda em documentos

disponíveis e por sua relação custo-benefício, sendo amplamente adotado no meio

acadêmico e em aplicações industriais.

Figura 20: Módulo ESP32 DevKit V1 (30 pinos)

Fonte: Elaborado pelo próprio (2025).

41

4.3.1. Sensor Inercial MPU6050

Na figura 21 o sensor MPU6050 é um módulo abundantemente utilizado em

sistemas embarcados para analisar movimentos e orientação. Refere-se a um

dispositivo do tipo IMU (Inertial Measurement Unit) que combina um acelerômetro de

três eixos com um giroscópio de três eixos em um único chip. Esse sensor tem a

capacidade na detecção de movimentos lineares (aceleração) e rotações angulares,

sendo essencial para aplicações que requerem monitoramento de inclinação,

vibração, impactos ou navegação inercial.

O MPU6050 se comunica com microcontroladores, como o ESP32, através do

protocolo I2C, permitindo uma integração rápida com sistemas embarcados, tensão

de operação 3-5v, conversor AD 16 bits. A alta sensibilidade do acelerômetro (±2g a

±16g) e do giroscópio (±250°/s a ±2000°/s) possibilita uma análise precisa de

movimentos, o que o torna ideal para projetos como drones, robótica móvel, wearables

e sistemas de telemetria veicular.

Aceleração, propriamente dita, refere-se a taxa de variação da velocidade de

um corpo em seu próprio quadro de repouso instantâneo, o que é diferente da

aceleração por coordenadas, sendo esta aceleração em um sistema de coordenadas

fixo. Por exemplo, um acelerômetro em repouso na superfície da Terra medirá uma

aceleração devida à gravidade da Terra, diretamente para cima (por definição) de g ≈

9,81 m/s2. Em contraste, acelerômetros em queda livre (caindo em direção ao centro

da Terra a uma taxa de cerca de 9,81 m/s2) medem zero.

Um acelerômetro funciona segundo o princípio do efeito piezo elétrico. Imagine

uma caixa cuboide com uma pequena bola dentro dela, como na foto abaixo. As

paredes desta caixa são feitas de cristais piezo elétricos. Sempre que você inclina a

caixa, a bola é forçada a se mover na direção da inclinação devido à gravidade. A

parede com a qual a bola colide cria pequenas correntes piezo elétricas. Existem três

pares de paredes opostas em um cuboide. Cada par corresponde a um eixo no espaço

3D: eixos X, Y e Z. Dependendo da corrente produzida pelas paredes piezo elétricas,

podemos determinar a direção de inclinação e sua magnitude (ELETROGATE, 2022).

42

Figura 21: Sensor Inercial MPU6050 - Princípio do efeito piezoeléctricos

Fonte: Eletrogate (2020).

Figura 22: Sensor Inercial MPU6050 – Pinagem

Fonte: Eletrogate (2020).

4.3.2. Sensor de Temperatura: LM35

Na figura 24 o LM35 trata-se de um sensor de temperatura analógico de

precisão, muito utilizado em projetos de monitoramento térmico. Ele fornece uma

saída linear proporcional à temperatura ambiente, com uma escala de 10 mV/°C. Por

exemplo, uma leitura de 250 mV corresponde a 25 °C. O principal diferencial refere-

se a facilidade de uso, não sendo necessário qualquer tipo de calibração externa.

O sensor pode ser alimentado com tensões entre 4V e 30V, operando

internamente na faixa de temperatura de -55°C a +150°C. No contexto deste projeto,

o LM35 serve para a monitoração da temperatura de componentes críticos

relacionados ao sistema, assim como o motor ou unidade hidráulica, sendo conectado

ao conversor analógico-digital do ESP32 para obtenção de dados.

Figura 23: Gráfico de Saída do Sensor de Temperatura LM35

Fonte: alldatasheet.com (2025).

43

Figura 24: Sensor de Temperatura LM35

Fonte: Elaborado pelo próprio Autor (2025).

4.3.3. Sensor de Velocidade / Rotação: Sensor Hall 3144E

Na figura 25 o Sensor Hall 3144E é um sensor digital baseado no efeito Hall,

utilizado para detectar a presença de campos magnéticos. Esse sensor fornece uma

saída digital que muda de estado quando um ímã se aproxima ou se afasta, sendo

ideal para aplicações como medição de rotação de eixos, para controlar a velocidade

e para detectar a posição.

No presente projeto, o sensor Hall é aplicado para medir a rotação de eixos

mecânicos por meio da contagem de pulsos gerados pela passagem de um ímã fixado

ao eixo, permitindo assim o cálculo da velocidade em km/h ou do número de rotações

por minuto (RPM). O sinal digital pode ser facilmente lido por uma entrada GPIO do

ESP32 com interrupções para maior precisão.

Figura 25: Sensor Hall 3144E

Fonte: Elaborado pelo próprio Autor (2025).

4.3.4. Sensor de Presença RCWL-0516

Na figura 26 o RCWL-0516 é um sensor de movimento por radar de micro-

ondas. Diferente dos sensores PIR (que detectam radiação infravermelha do corpo

humano), ele emite ondas eletromagnéticas de 3,18 GHz e mede a reflexão dessas

ondas nos objetos próximos.

44

Funcionamento: O módulo gera ondas de micro-ondas contínuas.

Quando um objeto em movimento (pessoa, veículo, etc.) altera o padrão de

reflexão, ocorre o chamado efeito Doppler. O circuito interno detecta essa variação e

ativa a saída digital (HIGH). O sinal fica ativo por alguns segundos (tempo configurável

com resistor ou capacitor).

Características principais:

 Alcance: 5 a 7 metros.

 Ângulo de detecção: ~360° (pode detectar até através de vidro ou paredes finas).

 Saída: digital (HIGH/LOW).

 Tensão de operação: 4–28 V DC.

Figura 26: O sensor de movimento RCWL-0516

Fonte: Elaborado pelo próprio Autor (2025).

4.3.5. Relógio RTC-DS3231

Na figura 27 o RTC DS3231 é um módulo de relógio em tempo real (Real Time

Clock) que mantém informações de data, hora e temperatura com alta precisão.

Ele fornece ao ESP32 a hora e data corretas, mesmo quando o

microcontrolador é desligado. Também pode medir a temperatura interna, usada para

compensação e para aplicações de monitoramento.

Oscilador interno compensado por temperatura (TCXO) - garante precisão muito

maior que RTCs comuns, sem necessidade de cristal externo. SQW/32K - pinos

opcionais que podem gerar sinal quadrado ou clock de 32 kHz (não usados aqui).

45

Figura 27: Relógio RTC DS3231

Fonte: Elaborado pelo próprio Autor (2025).

4.3.6. Cartão de Memória

Na figura 28 o Cartão SD é responsável pelo armazenamento de dados locais

em formato CSV.

Figura 28: Cartão SD 4Mb formatação FAT32

Fonte: Elaborado pelo próprio Autor (2025).

4.3.7. Relé

A figura 29 Módulo Relé é responsável pelo controle de ativação/desativação

do equipamento

Figura 29: O relé (RY-12W-K)

Fonte: th.bing.com (2025).

4.3.8. Buzzer

A figura 30 mostra Buzzer Alertas sonoros para notificações críticas

46

Figura 30: Buzzer (HYDZ)

Fonte: Elaborado pelo próprio Autor (2025).

4.3.9. Display TFT

Na figura 31 esse módulo combina display gráfico colorido (ST7735) e cartão

SD, ambos comunicando via SPI com o ESP32. O display mostra informações em

tempo real (temperatura, velocidade, status). O SD armazena dados históricos (ex.:

leituras de sensores).

Figura 31: Display ST7735

Fonte: Elaborado pelo próprio (2025).

4.4. Estrutura de Hardware

1. OBD2 K-LINE (DB15 - interface automotiva)

É a conexão padrão de diagnóstico OBD2 (K-Line) usada em veículos.

Permite ler sensores como:

 Temp. (temperatura)

 Pres. (pressão)

 Veloc. (velocidade)

 +B (alimentação do veículo)

 K-Line_TX / K-Line_RX: canais de comunicação serial com o barramento

OBD2.

2. Proteções adicionais

D9 e D10 (SMAJ3.3): protegem as linhas de comunicação contra surtos de tensão.

47

Esse circuito:

 Usa +12 V do veículo como fonte.

 Permite comunicação entre ESP32 - OBD2 (K-Line).

 Faz a leitura de parâmetros automotivos (temperatura, inclinação, velocidade

etc.).

 Inclui proteção contra surtos e adequação de nível de tensão para não danificar

o microcontrolador.

Em outras palavras: é o elo entre o veículo (via OBD2) e o sistema de telemetria no

ESP32.

4.4.1. Esquema Elétrico: ESP32

 ESP32-DEVKITC V1 (módulo com USB e fonte integrado) é uma placa de

desenvolvimento.

Já vem com:

 Chip ESP32-WROOM-32 montado.

 Conversor USB–Serial: permite gravar e comunicar com o PC via cabo USB.

 Regulador de tensão: aceita 5 V da USB ou fonte externa e converte para 3,3

V.

 Circuito de reset/boot automático: não precisa apertar botões ao programar.

 Uso: ideal para testes, protótipos e desenvolvimento rápido, basta ligar no USB

e começar a programar.

 ESP32-WROOM-32 (somente o chip/módulo)

 É o módulo “puro”, contendo apenas o ESP32 com memória flash.

 Precisa de circuitos externos para funcionar:

 Regulador de 3,3 V.

 Conversor USB–Serial para gravação.

 Circuito de reset/boot (com transistores).

 Uso: indicado para produtos finais, quando se quer integrar o ESP32

diretamente em um projeto, otimizando custo e espaço.

48

Resumo da diferença:

 O ESP32-DEVKITC é uma placa completa, pronta para desenvolvimento, com

USB e fonte inclusos.

 O ESP32-WROOM-32 é apenas o módulo WiFi/Bluetooth + MCU, exigindo que

o projetista adicione fonte, USB e circuitos auxiliares para funcionar.

Em outras palavras:

 DEVKITC = fácil de usar (plug and play).

 WROOM = flexível e econômico para projetos finais.

Figura 32: Esquema Elétrico: Módulo ESP32-C3

Fonte: Elaborado pelo próprio Autor (2025).

4.4.2. Esquema Elétrico: Display ST7735

Na figura 33 esse esquema mostra um display TFT 1.8" (128×160 pixels,

controlador ST7735, interface SPI) com suporte adicional para cartão SD.

Funcionamento do display (ST7735):

O controlador ST7735 recebe comandos e dados via SPI.

Os sinais principais:

 MOSI / SDA (Serial Data): envia os dados de imagem (pixels).

 SCK (Serial Clock): fornece o clock para sincronizar a transmissão SPI.

 CS_TFT (Chip Select): habilita o display para comunicação.

 RESET: reinicializa o display.

 A0/DC (Data/Command): define se o que está sendo enviado é um comando

ou dado gráfico.

 Alimentado com 3,3 V, ele aciona a matriz TFT de 128×160 pixels coloridos.

49

Funcionamento do Cartão SD (no mesmo módulo):

Também usa a interface SPI (MOSI, MISO, SCK), mas com um pino CS_SD

exclusivo para selecionar o cartão. Permite salvar/ler arquivos (ex.: logs de telemetria

em CSV). Resistor R2 (100 Ω): Limita a corrente para o pino de LED do backlight,

protegendo e controlando a intensidade da iluminação.

Figura 33: Esquema Elétrico: Display ST7735 128 x 160 1.8”

Fonte: Elaborado pelo próprio Autor (2025).

4.4.3. Esquema Elétrico: Sensor de Temperatura

A figura 34 mostra o circuito do LM35, sensor analógico de temperatura no qual

fornece uma saída linear proporcional à temperatura ambiente (10 mV/°C). É

conectado a uma entrada analógica do ESP32, permitindo o monitoramento térmico

do motor ou de componentes da empilhadeira.

50

Figura 34: Esquema Elétrico: Sensor de Temperatura LM35

Fonte: Elaborado pelo próprio Autor (2025).

4.4.4. Esquema Elétrico: Sensor de Presença

A figura 35 mostra o circuito do RCWL-0516 que funciona como um “radar em

miniatura” para detectar movimento, sendo mais sensível e de maior alcance que

sensores PIR comuns.

Figura 35: Esquema Elétrico: Sensor de Presença

Fonte: Elaborado pelo próprio Autor (2025).

4.4.5. Esquema Elétrico: Sensor de Inclinação

A figura 36 mostra o circuito do MPU6050 que combina um acelerômetro de três

eixos e um giroscópio, possibilitando a medição de aceleração, inclinação e rotação.

A comunicação é feita via I2C com o ESP32. Esse sensor é essencial para detectar

impactos, inclinação da empilhadeira e análise de segurança operacional.

Figura 36: Esquema Elétrico: Sensor de Movimento MPU6050

Fonte: Elaborado pelo próprio Autor (2025).

51

4.4.6. Esquema Elétrico: Sensor Magnético Hall

A figura 37 mostra o circuito do sensor Hall 3144E que detecta campos

magnéticos e usa-se para monitorar velocidade ou posição de rodas/eixos. Ao

detectar um ímã passando em sua frente, ele gera um sinal digital.

Figura 37: Esquema Elétrico: Sensor Magnético Hall (3144E)

Fonte: Elaborado pelo próprio Autor (2025).

4.4.7. Esquema Elétrico: Divisor de Tensão Bateria

A figura 38 mostra o divisor resistivo (R10 e R9) reduz a tensão da bateria

para um valor proporcional, dentro da faixa de leitura do ADC do ESP32. Exemplo:

se a bateria for 12 V, o divisor ajusta para algo próximo de 3 V. Diodo zener D13

(5V6) garante que a tensão na entrada nunca ultrapasse ~ 5,6 V, protegendo o pino

analógico do ESP32. Capacitores (C17 e C2, ambos 100 nF) fazem o filtro

(desacoplamento), eliminando ruídos e estabilizando a leitura analógica. Diodo D8

(SMAJ15) Atua como proteção contra surtos (transientes de tensão), evitando danos

ao circuito em caso de picos vindos da bateria.

Figura 38: Esquema Elétrico: Divisor de Tensão da Bateria

Fonte: Elaborado pelo próprio Autor (2025).

52

4.4.8. Esquema Elétrico: Relógio

A figura 39 mostra o circuito do DS3231, ele é responsável por fornecer data,

hora exata e temperatura ao ESP32 via I²C, garantindo que o sistema de telemetria

registre os eventos corretamente no tempo, mesmo em reinicializações ou quedas

de energia.

Funcionamento no esquema mostrado

 Alimentação (VCC = 3,3 V e GND): mantém o circuito ativo.

 Comunicação I²C (SCL e SDA): permite que o ESP32 troque dados com o

DS3231.

 SCL = linha de clock.

 SDA = linha de dados.

Figura 39: Esquema Elétrico: Relógio (DS3231)

Fonte: Elaborado pelo próprio Autor (2025).

4.4.9. Esquema Elétrico: Buzzer

A figura 40 mostra o circuito do buzzer ativado por um transistor NPN BC847,

configurados como chave. Ele fornece alertas sonoros em situações críticas, como

alta temperatura ou falha no sistema. O resistor serve como polarização do circuito.

Figura 40: Esquema Elétrico: Buzzer de Alerta

Fonte: Elaborado pelo próprio Autor (2025).

53

4.4.10. Esquema Elétrico: Relé RY-12-K

A figura 41 mostra o circuito do relé controlado pelo ESP32 através de um

transistor, o relé é aplicado para atuar cargas maiores, como chave geral do sistema.

Opera com tensão de controle de 12V e permite o isolamento galvânico entre o circuito

lógico e a carga.

Figura 41: Esquema Elétrico: Relê RY-K (K1)

Fonte: Elaborado pelo próprio Autor (2025).

4.4.11. Esquema Elétrico: Reguladores de Tensão

Regulador de tensão +5 V

A figura 42 apresenta o circuito regulador de tensão responsável pela

alimentação do ESP32 e demais módulos. O sistema recebe +12 V na entrada, que é

protegido por um diodo de supressão de transientes (SMAJ15) contra picos e surtos

de tensão. O regulador 78M05 converte essa tensão para +5 V estáveis.

Na saída, capacitores de desacoplamento e filtragem (C23 = 100 nF e C22 = 100 µF)

garantem a redução de ruídos e a estabilidade da linha de alimentação. Um LED

indicador em série com resistor (R20 = 220 Ω) sinaliza o estado de operação da fonte

(+5V_ON).

Esse arranjo assegura uma alimentação estável e protegida, fundamental para

o correto funcionamento do ESP32 e sensores do sistema de telemetria.

54

Figura 42: Esquema Elétrico: Regulador de Tensão 78M05.

Fonte: Elaborado pelo próprio Autor (2025).

A figura 43 mostra o circuito regulador de tensão responsável por fornecer

+3,3 V para a alimentação dos sensores e da tela TFT do sistema. O circuito recebe

+12 V na entrada, protegido por um fusível de 2 A e estabilizado por capacitores de

filtro (C9, C10, C19).

O regulador LD1117 reduz a tensão para +3,3 V, enquanto os resistores (R15

e R16) ajustam a operação interna do regulador. Capacitores adicionais (C20, C21)

garantem a filtragem fina e a estabilidade da saída.

Um LED em série com resistor (R19) atua como indicador de funcionamento

(+3V3_ON), confirmando a presença da tensão regulada.

Esse arranjo assegura uma fonte estável e confiável, essencial para o correto

funcionamento de componentes sensíveis como sensores analógicos e a interface

gráfica do display TFT.

Figura 43: Esquema Elétrico: Regulador de Tensão LD1117.

Fonte: elaborado pelo próprio Autor (2025).

4.4.12 Esquema Elétrico: Botões

Nas figuras 44,45 e 46 os botões são usados para entrada do operador, como

Sim, Não, Enter. Estão conectados com resistores pull-up, seguidos dos capacitores

de 100nF (C1, C4 e C5) garantindo leitura estável pelo ESP32.

55

Figura 44: Esquema Elétrico: Botão Não

Fonte: Elaborado pelo próprio Autor (2025).

Figura 45: Esquema Elétrico: Botão Sim

Fonte: Elaborado pelo próprio Autor (2025).

Figura 46: Esquema Elétrico: Botão Enter

Fonte: Elaborado pelo próprio Autor (2025).

A figura 47 apresenta o esquema elétrico do módulo de interconexão baseado

em um conector DB25, responsável pela entrada e distribuição dos sinais no sistema

de telemetria. À esquerda observa-se a entrada de alimentação em +12 V, que é

regulada e distribuída internamente para fornecer saídas de +3,3 V e +5 V utilizadas

pelos sensores externos.

À direita, está representada a interface OBD2 K-Line, com suporte ao protocolo

CAM, permitindo futura implementação da leitura direta da ECU automotiva. Além

disso, são mostradas as conexões dedicadas aos sensores de temperatura, presença

e velocidade, bem como linhas de transmissão e recepção (K-Line_TX e K-Line_RX).

Esse arranjo garante a modularidade e expansibilidade do sistema, permitindo

56

tanto o monitoramento de sensores dedicados quanto a integração futura com a rede

de diagnóstico automotivo (OBD2).

Figura 47 – Esquema elétrico do conector DB25 e interfaces do sistema

Fonte: Elaborado pelo próprio Autor (2025).

4.5. Estrutura de Software
O firmware implementa uma máquina de estados complexa com as seguintes fases

sequenciais:

4.5.1. Inicialização e Configuração

- Inicialização de periféricos (display, sensores, SD card)

- Conexão não-bloqueante com Arduino IoT Cloud

- Carregamento da senha da EEPROM

- Configuração de interrupções para sensor de velocidade

4.5.2. Autenticação do Operador

- Sistema de senha de 5 dígitos com entrada por botões

- Validação contra senha armazenada na EEPROM

- Identificação por ID numérico de 3 dígitos

4.5.3. Checklist de Segurança

- Sequência de 20 perguntas abrangentes sobre condições do equipamento

- Interface intuitiva com botões SIM/NÃO/ENTER

- Armazenamento das respostas para registro e análise

- Liberação do relay apenas após conclusão satisfatória

57

4.5.4. Operação Contínua

- Monitoramento em tempo real dos sensores:

- Temperatura do motor (LM35)

- Inclinação do equipamento (MPU6050)

- Tensão da bateria (divisor resistivo)

- Velocidade de deslocamento (sensor Hall)

- Detecção de presença (RCWL-0516)

- Atualização periódica para Arduino Cloud

- Registro em arquivo CSV no cartão SD

- Alertas visuais e sonoros para condições críticas

4.5.5. Ajuste de Data e Hora

- Método de Acesso

O ajuste de data e hora é realizado através da combinação simultânea dos botões

SIM e NÃO por 3 segundos, que aciona a função ajustarDataHora().

4.5.6. Interface de Ajuste

O sistema apresenta uma interface sequencial para ajuste de:

Ano (formato completo 20XX)

Mês (1-12)

Dia (1-31, com verificação de validade)

Hora (0-23)

Minuto (0-59)

4.5.7. Implementação

A função ajustarDataHora() guia o usuário através das etapas de ajuste

utilizando os botões SIM (incrementar), NÃO (decrementar) e ENTER (confirmar).

Os valores são gravados no RTC DS3231 através das funções rtc.setYear(),

rtc.setMonth(), rtc.setDate(), rtc.setHour() e rtc.setMinute().

4.6. Gestão de Energia e Conexão

O sistema implementa estratégia de reconexão não-bloqueante para Wi-Fi e

Arduino IoT Cloud, garantindo operação contínua mesmo com flutuações de conexão.

A verificação periódica evita travamentos do sistema.

58

4.6.1. Interface do Usuário
- Telas contextuais adaptadas a cada fase de operação

- Feedback visual imediato para ações do usuário

- Alertas coloridos conforme criticidade (vermelho, amarelo, verde)

- Sistema de navegação intuitivo com três botões

4.6.2. Gestão de Segurança
- Bloqueio do equipamento via relay até conclusão do checklist

- Monitoramento contínuo durante operação

- Parâmetros configuráveis de limites críticos (temperatura, inclinação, velocidade)

- Detecção de pessoas próximas com alerta específico

4.6.3. Protocolo de Comunicação
- Arduino IoT Cloud: Atualização periódica das variáveis definidas no Thing

- Formato CSV: Estrutura padronizada para análise posterior dos dados

- Protocolo I2C: Comunicação com MPU6050 e DS3231

- SPI: Comunicação com display e cartão SD

59

5. Custo do Projeto:

ID Nome Designador Pegada Quantidade Valor

9 240R R15 R0603 1 R$ 0,76

10 390R R16 R0603 1 R$ 0,76

1 10k R8,9,21,22,23,3,6,18 R0603 8 R$ 6,08

2 47k R10 R0603 1 R$ 0,76

3 820R R1 R0603 1 R$ 0,76

4 100R R2, R19 R0603 2 R$ 1,52

5 220R R20 R0603 1 R$ 0,76

6 100R R4, R5, R7 R0603 3 R$ 2,28

7 3.3k R11, R12 R0603 2 R$ 1,52

8 100nF C2,12,14,15,16,17,19,20,23,1,4,5,6,7,11,24 C0603 16 R$ 10,40

9 100uF C21, C22, C13 CAP-SM D_BD5.0-L5.3-W5.3-RD 3 R$ 32,52

10 220uF C9 CAP-SM D_BD5.0-L5.3-W5.3-RD 1 R$ 10,84

11 1N4007 D1 SM A_L4.3-W2.6-LS5.2-RD 1 R$ 0,54

12 5v6 D13 DO-35_BD2.0-L4.2-P8.20-D0.5-RD 1 R$ 1,90

13 SMAJ15 D2, D8 SM A_L4.3-W2.6-LS5.1-BI 2 R$ 4,00

14 SMAJ3.3 D3, D4, D5, D9, D10 SM A_L4.3-W2.6-LS5.1-BI 5 R$ 10,00

15 BC847A Q1,Q2 SOT- 23- 3_L2.9- W1.6- P1.90- LS2.8- BR 2 R$ 5,10

16 LD1117 +3V3 LD1117AG-33-AA3-A-R-SOT-223 1 R$ 14,25

17 78M05 +5V TO-252-2L78M05 1 R$ 19,00

18 2A FUSIVEL FUSÍVEL-SMD_L6.1-W2.7 1 R$ 10,00

19 RY-12W-K K1 RELÉ-TH_RY-XXW-K 1 R$ 27,10

20 DB15 OBDII_K Plug Femea DB15 1 R$ 8,00

21 Buzzer ALERTA BUZ-TH_BD12.0-P7.60-D0.6-FD 1 R$ 5,23

22 Push-Buttom ENTER, NAO, SIM SWICHE PULSADOR 6X6X4M M 5 R$ 12,20

23 ESP32-WROOM-32 (16MB) U2 WIFIM- SMD_ESP32- WROOM- 32- N4 1 R$ 45,90

24 TFT (128X160) _ST7735 U9 TFT1,8_SPI_128X160ST7735S_M Y 1 R$ 50,46

25 Led 3MM +3V3_ON,+5V_ON,M AQUINA_ON LED- TH_BD3.8- P2.54_L240CTZ0G3MM 3 R$ 1,50

26 MPU6050 MPU6050 HDR-TH_9P-P2.54-H-F-W10.0-N 1 R$ 40,41

27 RTC-DS3231 RELOGIO DS3231 OK 1 R$ 33,92

28 RCWL-0516 Sensor Presença 1 R$ 9,35

29 LM 35 Sensor Temperatura 1 R$ 23,00

30 Hall 3144E Sensor Velocidade 1 R$ 19,90

31 Placa Circuito Impresso PCB JLCPCB 5 R$ 131,44

TOTAL: R$ 542,16

Fonte: Elaborado pelo próprio Autor no easyeda.com

60

6 CONCLUSÕES

O hardware desenvolvido alcançou plenamente os objetivos propostos pelo

trabalho, proporcionando uma solução completa de telemetria e segurança para

empilhadeiras. A integração entre componentes físicos, software embarcado e

plataforma cloud resultou em um sistema confiável que atende aos requisitos de

segurança operacional e monitoramento contínuo.

O sistema implementa todas as funcionalidades especificadas: autenticação de

operadores, checklist preventivo, monitoramento em tempo real, registro de dados,

alertas de segurança e integração com plataforma IoT. A arquitetura escolhida permite

expansões futuras, como adição de novos sensores ou integração com sistemas de

gestão de frota.

A solução desenvolvida representa um avanço significativo na segurança de

equipamentos de movimentação de carga, potencialmente reduzindo acidentes e

melhorando a eficiência operacional através do monitoramento sistemático de

condições críticas do equipamento e do operador.

Mesmo que na execução dos sistemas de telemetria exija investimentos em

infraestrutura tecnológica e na capacitação de operadores, os benefícios

operacionais, econômicos e ambientais se mostram superiores aos desafios que

teremos na implantação do sistema. A evolução constante da tecnologia, com

sensores mais avançados e sistemas inteligentes, tem tornado esse processo cada

vez mais acessível e eficiente. Dessa forma, conclui-se que a telemetria representa

uma ferramenta imprescindível para organizações que buscam inovação, segurança

e competitividade.

As perspectivas futuras indicam uma evolução contínua dessa tecnologia,

principalmente com a incorporação de recursos como inteligência artificial (IA). Tais

avanços tendem a ampliar ainda mais as possibilidades de análise preditiva e de

automação, fortalecendo a gestão de equipamentos e contribuindo para operações

industriais mais seguras, eficientes e sustentáveis.

61

7 PROJETOS FUTUROS

Este trabalho abre caminho para diversas melhorias e expansões tecnológicas,

visto que podem ser implementadas em outras máquinas e equipamentos. O sistema

de telemetria é eficiente e aplicável a diferentes ambientes industriais. Sendo assim

há inúmeras possibilidades de projetos para o futuro, tais como:

Integração com Inteligência Artificial (IA): Desenvolver algoritmos de

aprendizado para que as máquinas possam realizar análises preditivas, precisas e

eficientes, permitindo antecipar falhas, otimizar rotas e melhorar o desempenho

operacional dos equipamentos e de forma sustentável.

Implementação de Machine Learning: na obtenção de dados de forma

contínua, é possível a criação de modelos que aprendam o comportamento padrão

dos equipamentos, detectando automaticamente anomalias ou padrões de uso que

possam indicar falhas iminentes.

Expansão para Outras Máquinas Industriais: Adaptar o sistema não apenas

para empilhadeiras, mas também para outros equipamentos de movimentação, como

guindastes, pontes rolantes, tratores, colheitadeiras e caminhões industriais.

Integração com Sistemas ERP e SCM: Incorporar o sistema de telemetria às

plataformas de gestão empresarial (ERP) e gestão da cadeia de suprimentos (SCM),

proporcionando uma visão mais ampla e integrada da operação.

Geolocalização Avançada: Implementar monitoramento por GPS para

rastreamento em tempo real dos equipamentos, controle de acesso por áreas e

segurança contra roubos ou uso indevido.

Dashboards Interativos e Relatórios Inteligentes: Desenvolver plataformas

gráficas mais sofisticadas, com dashboards que permitam personalização dos dados

visualizados, geração de relatórios automáticos e análises em tempo real.

Implementação de Sensores Adicionais: Ampliar a quantidade e variedade

de sensores, incluindo sensores de pressão hidráulica, detecção de colisões, controle

de carga transportada e monitoramento de consumo energético.

Uso de Redes LoRaWAN ou 5G: Explorar redes de comunicação de longo

alcance (LoRaWAN) ou 5G para permitir operação em ambientes industriais mais

amplos e com grande volume de dados, garantindo comunicação estável e de baixa

latência.

Soluções Voltadas à Sustentabilidade: Incorporar funcionalidades

62

específicas para monitorar o consumo de energia, emissões de CO₂ e promover

práticas sustentáveis dentro do sistema industrial, de suas operações.

Essas possibilidades reforçam que o projeto desenvolvido possui grande

potencial de evolução, podendo ser continuamente aprimorado para atender às

perspectivas do mercado e acompanhar as tendências tecnológicas do mercado.

8 REFERÊNCIAS

Usando o Display TFT 1.8" ST7735 com NodeMCU ou Arduino. 2018. Disponível
em: https://portalvidadesilicio.com.br/controlando-display-tft-st7735-nodemcu/.
Acesso em: 06 setembro 2025.

ADLER, D. MPU6050 Motion Sensor Guide. Instructables, 2020. Disponível em:
https://www.instructables.com/MPU6050-Tutorial/. Acesso em: 18 maio 2025.

ADVANCED MONOLITHIC SYSTEMS. K1, U1, U7, SW1, SW2 E SW3. AMS1117
Datasheet. AMS, 2015.

ALLEGRO MICROSYSTEMS. A3144 Hall Effect Sensor IC Datasheet. Worcester,
MA, 2021. Disponível em: <https://www.allegromicro.com/en/products/sense/hall-
effect-sensors>. Acesso em: 18 maio 2025.

ALTRONICS. Sensor Hall 3144E com Ímã. 2025. Disponível em:
<https://th.bing.com/th/id/OIP.zi0FIEybPB57EjCnuEYSzAAAAA?rs=1&pid=ImgDetM
ain>. Acesso em: 20 maio 2025.

ALTRONICS. Sensor Hall 3144E com Ímã. 2025. Disponível em:
<https://altronics.cl/image/cache/catalog/productos/electronica/sensores/efecto_hall_
ky003/sensor-hall-ky003-1-500x500.png>. Acesso em: 20 maio 2025.

ANDRADE, Danilo Cordeiro. Supervisório de frotas DISPATCH: eletrônica
embarcada aplicada na otimização de processos de mineração. 2022. Disponível
em: <https://repositorio.ufc.br/handle/riufc/72315>. Acesso em: 18 maio. 2025.

BOFF, Willian Malacarne. Sistema de alarme conectado via redes móveis para
monitoramento e segurança de veículos automotivos através de aplicativo de
telefone celular. 2017. Disponível em:
<https://lume.ufrgs.br/handle/10183/172714>. Acesso em: 18 maio 2025.

BRAGATTO, Mateus. Telemetria em Switches Programáveis com Múltiplas Filas
usando Roteamento Multicaminhos na Origem. 2024. Disponível em:
<https://sol.sbc.org.br/index.php/sbrc/article/view/29814>. Acesso em: 18 mai. 2025.

CARÁ, Cesar Augusto Führ. Aplicação de protocolo IOT para monitoramento
veicular. 2021. Disponível em:
<http://repositorio.jesuita.org.br/bitstream/handle/UNISINOS/11678/C%C3%A9sar+A
ugusto+F%C3%BChr+Car%C3%A1.pdf?sequence=1>. Acesso em: 18 maio 2025.

https://portalvidadesilicio.com.br/controlando-display-tft-st7735-nodemcu/
http://www.instructables.com/MPU6050-Tutorial/
http://www.allegromicro.com/en/products/sense/hall-
http://repositorio.jesuita.org.br/bitstream/handle/UNISINOS/11678/C%C3%A9sar%2BA

63

DIODES INCORPORATED. (U8 – 3144E). 3144 Hall-Effect Sensor Datasheet.
Diodes Incorporated, 2014.

ELETROGATE. Módulo ESP32 DevKit V1 (30 pinos). 2018. Disponível em:
<https://blog.eletrogate.com/wp-content/uploads/2018/11/ESP32-DEVKIT-
Gustavo.jpg>. Acesso em: 20 maio 2025.

ELETROGATE. Botões boot e reset. 2018. Disponível em:
<https://blog.eletrogate.com/wp-content/uploads/2018/11/ESP32-DTR-RQS.jpg>.
Acesso em: 20 maio 2025.

ELETROGATE. Sensor Inercial MPU6050. Princípio do efeito piezo elétrico.
Crédito: Maker Pro. 2020. Disponível em: <Fonte: https://blog.eletrogate.com/wp-
content/uploads/2020/08/como-funciona-acelerometro.jpg>. Acesso em: 20 maio
2025.

ESPRESSIF SYSTEMS. Módulo ESP32-C3 (U6). ESP32-C3-DevKitC-02
Datasheet. Espressif Systems, 2022.

ESPRESSIF SYSTEMS. ESP32-WROOM-32 Datasheet. Disponível em:
<https://www.espressif.com/en/products/socs/esp32/resources>. Acesso em: 18
maio 2025.

FACCIONI FILHO, Mauro. Internet das coisas. Disponível em:
<https://www.researchgate.net/profile/Mauro-Fazion-
Filho/publication/319881659_Internet_das_Coisas_Internet_of_Things/links/59c038d
5458515e9cfd54ff9/Internet-das-Coisas-Internet-of-Things.pdf>. Acesso em: 18 maio
2025.

FUCK, Guilherme. Proposta de estruturação do processo de montagem de
dispositivos eletrônicos de telemetria automotiva e portuária. 2024. Disponível
em: <https://repositorio.ufsc.br/handle/123456789/255718>. Acesso em: 18 maio
2025.

GOMES, Mariana. Monografia de Graduação em Engenharia de Controle e
Automação. 2022. Disponível em:
<https://monografias.ufop.br/bitstream/35400000/4331/2/MONOGRAFIA_Telemetria
Veicular.pdf>. Acesso em: 20 maio 2025.

GUILMO, João Antonio. Sistema semi-intrusivo de monitoramento de energia
elétrica residencial. 2021. Disponível em:
<http://riut.utfpr.edu.br/jspui/handle/1/36449>. Acesso em: 20 maio 2025.

INVENSENSE. MPU6050(H1). MPU-6050 Product Specification. InvenSense Inc.,
2013.

JOB, Débora. Telemetria Adaptativa Usando Aprendizado por Reforço Profundo
em Redes Definidas por Software. 2023. Disponível em:
<https://sol.sbc.org.br/index.php/sbrc/article/view/24540>. Acesso em: 20 maio 2025.

http://www.espressif.com/en/products/socs/esp32/resources
http://www.researchgate.net/profile/Mauro-Fazion-
http://riut.utfpr.edu.br/jspui/handle/1/36449

64

LINO, Matheus Silva de. Sistema de telemetria e rastreamento de veículos. 2019.
Disponível em: <http://repositorio.utfpr.edu.br/jspui/handle/1/15788>. Acesso em: 18
maio 2025.

MACHADO, Cesar Abascal. Sistema de telemetria para veículos automotores.
2017. Disponível em: <https://repositorio.ufsm.br/handle/1/25254>. Acesso em: 18
maio 2025.

MAKERGUIDES. Gráfico Voltage versus temperatura. 2020. Disponível em:
<https://www.makerguides.com/wp-content/uploads/2020/10/LM35-output-voltage-
versus-temperature.png>. Acesso em: 20 maio 2025.

MARTINS, Leandro Ramos. Construção de um protótipo de barco robô de baixo
custo para análise de qualidade de água em rios e reservatórios. 2020.
Disponível em: <http://repositorio.ufpa.br/handle/2011/12745>. Acesso em: 18 maio
2025.

MEDEIROS, Cleiton Baptista; PONGELUPPE FILHO, Eduardo; PAIVA, José Mauro
de. Gestão energética: estudos e alternativas para o uso eficiente e sustentável do
combustível no transporte rodoviário. 2024. Disponível em:
<https://repositorio.itl.org.br/jspui/handle/123456789/774>. Acesso em: 18 maio
2025.

MENEGHINI, Samuel. Sistema de advertência na operação de tratores. 2023.
Disponível em: <https://repositorio.ucs.br/xmlui/handle/11338/12043>. Acesso em:
18 maio 2025.

MIOTTO, João Vitor Araújo. Desenvolvimento de sistema de telemetria para
protótipo de carro elétrico aplicado a competições de eficiência energética.
2023. Disponível em: <https://repositorio.ufsc.br/handle/123456789/248465>.
Acesso em: 19 maio 2025.

NEXPERIA. (U2). BC847 Series Datasheet. Nexperia, 2020.

NOVA ELETRÔNICA. Sensor de Temperatura LM35. 2025.Disponível em:
<https://th.bing.com/th/id/R.5b3d0cc6fe643bc342470a35f6117897?rik=FPbpUlUNoh
VT7w&riu=http%3a%2f%2fblog.novaeletronica.com.br%2fimg%2fsensor-
lm35.gif&ehk=DxmWQVOis5tx87inDECNq7pb7zFuKdfOVw0kyrgir%2bQ%3d&risl=&
pid=ImgRaw&r=0>. Acesso em: 20 maio 2025.

OLIVEIRA, André Luís Araújo. Prototipagem para monitoramento e análise de
sistema de fluxo de ar em galerias de minas subterrâneas com o uso de
sistemas embarcados, módulos e sensores. Disponível em:
<https://repositorio.ufc.br/handle/riufc/80241>. Acesso em: 20 maio 2025.

OLIVEIRA, Matheus Silva de. Sistema de monitoramento e gerenciamento para
microrredes residenciais dotadas de geração solar fotovoltaica. 2023.
Disponível em: <https://repositorio.ufpe.br/handle/123456789/50259>. Acesso em:
19 maio 2025.

OLIVEIRA, Rubens Moreno Alves. Sistema embarcado para monitoramento
automotivo em tempo real. 2022. Disponível em: <https://www.eng-

http://repositorio.utfpr.edu.br/jspui/handle/1/15788
http://www.makerguides.com/wp-content/uploads/2020/10/LM35-output-voltage-
http://repositorio.ufpa.br/handle/2011/12745

65

automacao.araxa.cefetmg.br/wp-content/uploads/sites/152/2022/08/TCC2-Rubens-
Moreno-de-Oliveira.pdf>. Acesso em: 18 maio 2025.

PINO, J. Internet das Coisas com ESP32: Programação prática com Arduino IDE.
São Paulo: Novatec, 2018.

PINTO, Hyoran Spessatto. Desenvolvimento de dispositivo de medição e
aquisição de dados para veículo elétrico. 2017. Disponível em:
<http://repositorio.utfpr.edu.br/jspui/handle/1/15059>. Acesso em: 18 maio 2025.

POZZO, Luciano Augusto. Big data e suas vantagens no ramo de monitoramento
de veículos. 2017. Disponível em: <http://riut.utfpr.edu.br/jspui/handle/1/19417>.
Acesso em: 19 maio 2025.

REIS, Ícaro Uzeda; COSTA, João Marcelo; SANTANA, Juliana Maria; SAPUCAIA,
Rodrigo Travasso. Otimização do plano de manutenção de uma petrolífera
visando a melhoria da produtividade e confiabilidade do sistema. 2019.
Disponível em:
<http://repositoriosenaiba.fieb.org.br/bitstream/fieb/1732/1/Theoprax_%C3%8DCAR
O%20UZEDA%20REIS%20et%20al.pdf>. Acesso em: 18 maio 2025.

SANTOS, Mauricio Ribeiro. Programação embarcada para rastreamento de
veículos de transporte terrestre. Revista Eletrônica e-Fatec, 2018. Disponível em:
<https://pesquisafatec.com.br/ojs/index.php/efatec/article/view/130>. Acesso em: 20
maio 2025.

SILVA, Fernando Paim da. Sistema para gerenciamento de frotas automotivas
baseado em IOT. 2021. Disponível em:
<https://repositorio.ufsm.br/handle/1/21341>. Acesso em: 18 maio 2025.

SILVA, Luís Fernando Ferreira da; AMICI, Thiago Tadeu. Sistema remoto de
monitoramento de veículos auto guiados. 2022. Disponível em:
<https://revistabrmecatronica.sp.senai.br/ojs/index.php/revistabrmecatronica/article/vi
ew/166>. Acesso em: 20 maio 2025.

SILVEIRA, Saulo Lima da. Sistema de sensores para monitoramento de peso em
veículos de carga. 2021. Disponível em:
<http://riut.utfpr.edu.br/jspui/handle/1/29953>. Acesso em: 19 maio 2025.

STEWART, J. Smart Home Automation with ESP32: A practical guide to designing
IoT solutions. New York: Maker Media, 2019.

TEXAS INSTRUMENTS. LM35 Precision Centigrade Temperature Sensors.
Dallas, 2022. Disponível em: <https://www.ti.com/product/LM35>. Acesso em: 18
maio 2025.

http://repositorio.utfpr.edu.br/jspui/handle/1/15059
http://riut.utfpr.edu.br/jspui/handle/1/19417
http://repositoriosenaiba.fieb.org.br/bitstream/fieb/1732/1/Theoprax_%C3%8DCAR
http://riut.utfpr.edu.br/jspui/handle/1/29953
http://www.ti.com/product/LM35

66

ANEXO

/*
Sketch gerado pelo Arduino IoT Cloud Thing "Untitled"
https://create.arduino.cc/cloud/things/252b03c0-1674-4144-a69a-6962a560fdee

Descrição das variáveis da nuvem IoT do Arduino:
- As variáveis abaixo são automaticamente atualizadas quando alteradas no Thing

*/

/*
* SISTEMA DE TELEMETRIA PARA EMPILHADEIRAS COM ARDUINO CLOUD
* ---
*
* DESCRIÇÃO:
* Sistema completo de telemetria e segurança para empilhadeiras com:
* - Autenticação por senha de 5 dígitos
* - Checklist operacional interativo
* - Monitoramento de sensores (temperatura, inclinação, tensão da bateria,

presença e velocidade)
* - Comunicação via Arduino Cloud
* - Interface com display ST7735
* - Controle de relé para liberação do equipamento
* - Armazenagem de dados local, cartão sd
*
* AUTOR: Marco Aurélio Alves
* DATA: 14/06/2025
* VERSÃO: 1.3
*
* HARDWARE:
* - ESP32 DOIT DEVKIT V1
* - Display ST7735
* - Sensor MPU6050 (Acelerômetro/Giroscópio)
* - Sensor LM35 (Temperatura)
* - Sensor 3144 Hall (Velocidade)
* - Sensor RCWL-0516 (Presença)
* - Sensor e Relógio RTC-DS3231
* - Cartão de memória
* - Divisor de tensão para medição da bateria
* - Buzzer para alertas sonoros
* - Relé para controle do sistema
* - 3 botões para interface (SIM, NÃO, ENTER)
*/

// ======================= BIBLIOTECAS =======================
#include "thingProperties.h" // Gerada automaticamente pelo Arduino IoT Cloud
#include <Wire.h> // Para comunicação I2C
#include <Adafruit_MPU6050.h> // Para sensor MPU6050
#include <DS3231.h> // Relógio
#include <Adafruit_Sensor.h> // Base para sensores Adafruit

67

#include <Adafruit_GFX.h> // Gráficos para displays
#include <Adafruit_ST7735.h> // Biblioteca do display ST7735
#include <SPI.h> // Comunicação SPI
#include <SD.h> // Comunicação Cartão SD
#include <EEPROM.h> // Para armazenamento da senha
#include <WiFi.h>
#include <WiFiClientSecure.h>

// ================= CONFIGURAÇÕES GERAIS =================
#define BATERIA_MIN 10.0 // Tensão mínima da bateria (em volts)
#define BATERIA_MAX 14.2 // Tensão máxima da bateria (em volts)
#define TEMP_MAX 95.0 // Temperatura máxima permitida (°C)
#define INCLINACAO_MAX 85.0 // Inclinação máxima permitida (graus)
#define INCLINACAO_MIN 50.0 // Inclinação minima permitida (graus)
#define VELOC_MAX 20.0 // Velocidade máxima permitida (km/h)
#define HISTORICO_SIZE 20 // Tamanho do histórico de dados
#define TAMANHO_SENHA 5 // Tamanho da senha (5 dígitos)
#define RAIO_RODA 0.2 // Raio da roda em metros
#define PULSOS_POR_VOLTA 4 // Pulsos por volta completa do sensor Hall

// Pinos para display ST7735
#define TFT_CS 5 // Pino Chip Select do display
#define TFT_RST 2 // Pino Reset do display
#define TFT_DC 4 // Pino Data/Command do display
#define TFT_SCLK 18 // Pino Clock SPI do display
#define TFT_MOSI 23 // Pino MOSI SPI do display

// Pinos para SD Card
#define SD_CS 15 // Pino Chip Select do cartão SD
#define SD_MISO 19 // Pino MISO do cartão SD

// Pinos para DS3231
#define PIN_SDA 21 // Pino SDA para I2C (RTC)
#define PIN_SCL 22 // Pino SCL para I2C (RTC)

// ================= DEFINIÇÃO DOS PINOS =================
const int pinoLM35 = 34; // Pino do sensor de temperatura LM35
const int pinoHall = 35; // Pino do sensor de velocidade Hall 3144
const int pinoBateria = 36; // Pino para medição da tensão da bateria
const int pinoBuzzer = 25; // Pino do buzzer para alertas sonoros
const int pinoRele = 26; // Pino do relé para liberação do sistema
const int botaoSim = 14; // Pino do botão SIM (com pull-up interno)
const int botaoNao = 27; // Pino do botão NÃO (com pull-up interno)
const int botaoEnter = 12; // Pino do botão ENTER (com pull-up interno)
const int pinoPresenca = 13; // Pino sensor de presença RCWL-0516

// ================= CONFIGURAÇÕES ADC =================
constexpr float VDIV_BATT = 6.06f; // Fator de divisão de tensão da bateria
constexpr float ALPHA_VBAT = 0.20f; // Fator de suavização para bateria (0-1)

68

constexpr float ALPHA_TEMP = 0.15f; // Fator de suavização para temperatura
(0-1)
constexpr float T_GAIN = 1.000f; // Ganho para calibração do LM35 (ajuste se
necessário)
constexpr float T_OFFS = 0.0f; // Offset para calibração do LM35 (ajuste se
necessário)

// Protótipos de funções
float adcReadTrimmedMean(int pin, uint8_t N = 32, uint8_t K = 4);

// ================ CONFIGURAÇÃO DA SENHA =================
int senhaDigitada[TAMANHO_SENHA] = {0}; // Array para armazenar a senha
digitada pelo usuário
int senhaCorreta[TAMANHO_SENHA] = {1, 2, 3, 4, 5}; // Senha padrão do sistema
int digitoAtual = 0; // Índice do dígito atual sendo digitado

// ================= GERA ÍCONE DE ALERTA =================
int cx = 80; // Posição X do centro do triângulo de alerta
int cy = 45; // Posição Y do centro do triângulo de alerta
int halfBase = 10; // Metade da base do triângulo de alerta
int triHeight = 10; // Altura do triângulo de alerta

// ===================== OBJETOS ======================
Adafruit_ST7735 display = Adafruit_ST7735(TFT_CS, TFT_DC, TFT_RST); // Objeto
do display ST7735
DS3231 rtc; // Objeto do relógio RTC DS3231
Adafruit_MPU6050 mpu; // Objeto do sensor MPU6050
(acelerômetro/giroscópio)
File logFile; // Objeto para manipulação de arquivos no cartão SD

//================= VARIÁVEIS GLOBAIS ==================
bool sistemaAtivo = false; // Controla se o sistema está ativo ou não
int perguntaAtual = 0; // Índice da pergunta atual do checklist
bool senhaValidada = false; // Indica se a senha foi validada com sucesso
float velocidadeAtual = 0; // Velocidade atual em km/h
String operadorAtual = "OPERADOR"; // Nome ou identificação do operador atual
bool respostasChecklist[20]; // Array para armazenar as respostas do checklist
(20 perguntas)
bool century = false; // Flag para século no RTC (não utilizado no DS3231)
bool h12Flag; // Flag para formato de 12 horas no RTC
bool pmFlag; // Flag para período PM no RTC
String nomeArquivoLog = ""; // Nome do arquivo de log atual
unsigned long tempoUltimoLog = 0; // Timestamp do último registro no log
const unsigned long intervaloLog = 5000; // Intervalo entre registros no log (5
segundos)
float tempRTC; // Temperatura lida do RTC
bool checklistImpresso = false; // Indica se o checklist já foi impresso no log
bool operadorImpresso = false; // Indica se o operador já foi impresso no log
int operadorID = 0; // ID numérico do operador
bool modoAjusteHorario = false; // Controla o modo de ajuste de data/hora

69

int etapaAjuste = 0; // Etapa atual do ajuste de data/hora
bool pessoaDetectada = false; // Estado atual de detecção de pessoa
int contadorPresencas = 0; // Contador de detecções de presença

// ---- Contagem de pulsos do Hall (mais estável) ----
volatile uint32_t hallPulseCount = 0; // total acumulado de pulsos
volatile uint32_t lastPulseMicros = 0; // timestamp do último pulso (µs)

// Janelas/tempos (ajuste fino se quiser)
constexpr uint32_t HALL_GUARD_US = 500; // 0,5 ms: ignorar glitches muito
próximos
constexpr uint32_t VEL_WINDOW_US = 400000; // 400 ms: janela de contagem
constexpr uint32_t STOP_TIMEOUT_US = 800000; // 0,8 s sem pulso =>
velocidade = 0
constexpr float ALPHA_VEL = 0.25f; // filtro EWMA (25% amostra nova)

// ---- Valores locais para EXIBIÇÃO (não são Cloud) ----
volatile float ui_vbat = 0.0f;
volatile float ui_tlm35 = 0.0f;
volatile float ui_incl = 0.0f;
volatile float ui_vel = 0.0f;

// ---- Estado do MPU ----
bool mpuOK = false;

// ========== CONFIGURAÇÕES DE DISPLAY SEM CINTILAÇÃO ==========
static bool statusLayoutPronto = false;

// Calcular a coluna dos valores dinamicamente.
static int X_LABEL = 4;
static int X_VAL = 64; // valor padrão; será recalculado no desenho

// Linhas fixas (y)
static const int Y_TIT = 0;
static const int Y_HORA = 20;
static const int Y_OPID = 36;
static const int Y_BATT = 52;
static const int Y_TLM35 = 68;
static const int Y_TRTC = 84;
static const int Y_INCL = 100;
static const int Y_VEL = 116;

// Caches de texto (evita redesenho se igual)
static char cacheHora[24] = "";
static char cacheOpId[24] = "";
static char cacheBatt[24] = "";
static char cacheTLM35[24] = "";
static char cacheTRTC[24] = "";
static char cacheIncl[24] = "";
static char cacheVel[24] = "";

70

// thresholds/histéreses para não "piscar"
static const float H_BATT = 0.02f; // 20 mV
static const float H_TEMP = 0.10f; // 0.1 °C
static const float H_INCL = 0.20f; // 0.2 °
static const float H_VEL = 0.20f; // 0.20 km/h

// Agendadores por campo
static uint32_t tHora = 0, tBatt = 0, tTemp = 0, tIncl = 0, tVel = 0;

// Protótipos das funções
float lerTemperatura();
float lerInclinacao();
float obterVelocidade();
float lerTensaoBateria();
void mostrarAlerta(String tipoAlerta, float valor);
static void desenharLayoutStatus();
void mostrarDebugSensores();
void registrarNoSD();
void IRAM_ATTR detectarPulsoHall();
void inicializarSensorHall();
void verificarCombinacaoBotoes();
void ajustarDataHora();
void setupADC();

// "últimos valores" usados pela histerese (mantidos fora da função e resetados no
layout)
static float lastBatt = NAN, lastLM = NAN, lastRTC = NAN, lastInc = NAN, lastVel =
NAN;

// Função segura com verificação de tamanho do buffer
static void printIfChanged(int x, int y, char *cache, size_t cachesz, const char *novo) {

if (strncmp(cache, novo, cachesz - 1) != 0) {
display.setCursor(x, y);
display.setTextColor(ST77XX_YELLOW, ST77XX_BLACK);
display.print(novo);
strncpy(cache, novo, cachesz - 1);
cache[cachesz - 1] = '\0';

}
}

// calcula X_VAL para caber o maior campo (data). tamanho máximo: 16 chars (~96
px)
// usamos "DD/MM/AA HH:MM" = 14 chars (~84 px) para sobrar margem.
static void ajustarColunas() {
int W = display.width(); // no ST7735 costuma ser 160 em landscape
const int larguraValoresPx = 84 + 4; // 14 chars * 6 + margem (4)
// garante ao menos 2 colunas: rótulo à esquerda e valores à direita:
X_VAL = max(48, W - larguraValoresPx);

}

71

// zera caches + últimos valores (força 1ª pintura)
static void resetStatusCaches() {
cacheHora[0] = cacheOpId[0] = cacheBatt[0] = cacheTLM35[0] =
cacheTRTC[0] = cacheIncl[0] = cacheVel[0] = '\0';
lastBatt = lastLM = lastRTC = lastInc = lastVel = NAN;

}

// ================= PERGUNTAS DO CHECKLIST =================
const String perguntasChecklist[] = {

" FREIOS E\n\n"
" ESTACIONAMENTO OK?", // Pergunta 1 - Freios e estacionamento
" AVISOS SONOROS\n\n"
" FUNCIONANDO?", // Pergunta 2 - Avisos sonoros
" GIROFLEX E\n\n"
" RED ZONE OK?", // Pergunta 3 - Giroflex e red zone
" PDS FUNCIONANDO?", // Pergunta 4 - PDS (Painel de Segurança)
" FAROIS, RE E\n\n"
" SETAS OK?", // Pergunta 5 - Faróis, ré e setas
" VAZAMENTO DE OLEO?", // Pergunta 6 - Vazamento de óleo
" BOTAO EMERGENCIA OK?", // Pergunta 7 - Botão de emergência
" BATERIA COM FIO\n\n"
" EXPOSTO?", // Pergunta 8 - Fios da bateria expostos
" AVISOS VISIVEIS?", // Pergunta 9 - Avisos visíveis
" PNEUS COM DESGASTE?", // Pergunta 10 - Desgaste de pneus
" SINAIS DE COLISAO?", // Pergunta 11 - Sinais de colisão
" ESPELHOS DANIFICADOS?", // Pergunta 12 - Espelhos danificados
" SINTO DE SEGURANCA\n\n"
" OK?", // Pergunta 13 - Cinto de segurança
" EQUIPAMENTO LIMPO?", // Pergunta 14 - Limpeza do equipamento
" TORRE MOVIMENTA OK?", // Pergunta 15 - Movimento da torre
" GARFO MOVIMENTA\n\n"
" SEM RUIDO?", // Pergunta 16 - Movimento do garfo sem ruído
" DIRECAO COM FOLGA?", // Pergunta 17 - Folga na direção
" GRADE E TORRE OK?", // Pergunta 18 - Estado da grade e torre
" USANDO MEDICAMENTO?", // Pergunta 19 - Uso de medicamentos
" CONDICOES FISICAS OK?" // Pergunta 20 - Condições físicas do operador

};

//=================== FUNÇÕES DE ÁUDIO ====================

// Função para gerar um beep curto
void beep(int duracao) {
digitalWrite(pinoBuzzer, HIGH); // Ativa o buzzer
delay(duracao); // Mantém ativo pelo tempo especificado
digitalWrite(pinoBuzzer, LOW); // Desativa o buzzer

}

// Função para gerar alertas sonoros
void alertaBuzzer(int bips) {

72

for (int i = 0; i < bips; i++) {

digitalWrite(pinoBuzzer, HIGH); // Ativa o buzzer
delay(200); // Tempo ativo
digitalWrite(pinoBuzzer, LOW); // Desativa o buzzer
delay(200); // Tempo inativo

}
}

// ================= FUNÇÕES DO SISTEMA =================

// Inicializa o display
void inicializarDisplay() {
SPI.begin(TFT_SCLK, SD_MISO, TFT_MOSI); // Inicializa SPI com os pinos

definidos
display.initR(INITR_BLACKTAB); // Inicializa o ST7735 com o layout comum
display.setRotation(3); // Ajusta a orientação se necessário
display.fillScreen(ST77XX_BLACK); // Limpa a tela com fundo preto
display.setTextSize(1); // Define tamanho do texto
display.setTextColor(ST77XX_YELLOW); // Define cor do texto
display.setCursor(0, 30); // Posiciona cursor
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.println(" Iniciando sistema..."); // Mensagem de inicialização
delay(1000); // Aguarda 1 segundo
display.fillScreen(ST77XX_BLACK); // Limpa a tela novamente

}

// =============== Inicializa e carrega a senha da EEPROM ===============
void inicializarSenha() {

// Verifica se já foi inicializada antes
byte flag = EEPROM.read(0); // Lê flag de inicialização

if(flag != 255) { // Se já foi inicializada

// Carrega senha da EEPROM
for(int i = 0; i < TAMANHO_SENHA; i++) {

senhaCorreta[i] = EEPROM.read(i+1); // Lê cada dígito da senha
}

} else {
// Grava senha padrão na EEPROM
for(int i = 0; i < TAMANHO_SENHA; i++) {

EEPROM.write(i+1, senhaCorreta[i]); // Grava cada dígito da senha
}
EEPROM.write(0, 1); // Marca como inicializada
EEPROM.commit(); // Salva as alterações na EEPROM

}
}

// ================ Mostra a tela de digitação da senha ==============

73

void mostrarTelaSenha() {
display.fillScreen(ST77XX_BLACK); // Limpa a tela com fundo preto
display.setTextSize(1); // Define tamanho do texto
display.setTextColor(ST77XX_WHITE); // Define cor do texto
display.setCursor(0, 5); // Posiciona cursor
display.println(""); // Linha em branco
display.println(" DIGITE A SENHA:"); // Instrução para usuário
display.println(""); // Linha em branco
display.println(""); // Linha em branco

// Exibe cada dígito da senha
for(int i = 0; i < TAMANHO_SENHA; i++) {

if(i < digitoAtual) {
display.print("*"); // Dígitos já digitados como asterisco

} else if(i == digitoAtual) {
display.print(senhaDigitada[i]); // Dígito atual como número

} else {
display.print(" _"); // Dígitos faltantes como sublinhado

}
display.print(" "); // Espaço entre dígitos

}
display.println(""); // Nova linha

}

// Processa a entrada da senha pelos botões
void processarSenha() {
static unsigned long ultimoDebounce = 0; // Timestamp do último debounce
const unsigned long intervaloDebounce = 200; // Tempo para evitar bounce

if(millis() - ultimoDebounce < intervaloDebounce) return; // Aguarda intervalo de
debounce

// Botão SIM - incrementa dígito atual
if(digitalRead(botaoSim) == LOW) {

senhaDigitada[digitoAtual] = (senhaDigitada[digitoAtual] + 1) % 10; // Incrementa
dígito (0-9)

ultimoDebounce = millis(); // Atualiza timestamp do debounce
beep(50); // Feedback sonoro
mostrarTelaSenha(); // Atualiza display
return;

}

// Botão NÃO - decrementa dígito atual
if(digitalRead(botaoNao) == LOW) {

senhaDigitada[digitoAtual] = (senhaDigitada[digitoAtual] + 9) % 10; // Decrementa
dígito (0-9)

ultimoDebounce = millis(); // Atualiza timestamp do debounce
beep(50); // Feedback sonoro
mostrarTelaSenha(); // Atualiza display
return;

74

}

// Botão ENTER - confirma dígito ou senha
if(digitalRead(botaoEnter) == LOW) {
beep(100); // Feedback sonoro

digitoAtual++; // Avança para próximo dígito

// Verifica se completou a senha
if(digitoAtual >= TAMANHO_SENHA) {
bool senhaOk = true; // Assume que senha está correta

// Compara senha digitada com a correta
for(int i = 0; i < TAMANHO_SENHA; i++) {

if(senhaDigitada[i] != senhaCorreta[i]) {
senhaOk = false; // Senha incorreta
break; // Sai do loop

}
}

if(senhaOk) {
senhaValidada = true; // Marca senha como validada
display.fillScreen(ST77XX_BLACK); // Limpa tela
display.setCursor(30, 0); // Posiciona cursor
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.setTextColor(ST77XX_GREEN); // Texto verde
display.println(" SENHA CORRETA! "); // Mensagem de sucesso
delay(1000); // Aguarda 1 segundo

} else {
display.fillScreen(ST77XX_BLACK); // Limpa tela
display.setCursor(30, 0); // Posiciona cursor
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.setTextColor(ST77XX_RED); // Texto vermelho
display.println(" SENHA INCORRETA "); // Mensagem de erro
delay(1000); // Aguarda 1 segundo
digitoAtual = 0; // Reinicia índice do dígito
// Reseta senha digitada
for(int i = 0; i < TAMANHO_SENHA; i++) {

senhaDigitada[i] = 0; // Zera todos os dígitos
}
mostrarTelaSenha(); // Mostra tela de senha novamente

}
} else {

75

mostrarTelaSenha(); // Mostra próximo dígito

}

ultimoDebounce = millis(); // Atualiza timestamp do debounce
}

}

// ================= Mostra mensagem inicial do sistema ================
void mostrarMensagemInicial() {
display.fillScreen(ST77XX_BLACK); // Limpa tela com fundo preto
display.setTextSize(1); // Tamanho do texto
display.setTextColor(ST77XX_GREEN); // Cor do texto
display.setCursor(30, 0); // Posiciona cursor
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.println(" SISTEMA DE TELEMETRIA\n"); // Título do sistema
display.println(" PARA MONITORAMENTO E\n "); // Continuação
display.println(" SEGURANCA EM\n "); // Continuação
display.println(" EQUIPAMENTOS DE\n "); // Continuação
display.println(" MOVIMENTACAO\n "); // Continuação
delay(8000); // Aguarda 8 segundos

display.fillScreen(ST77XX_BLACK); // Limpa tela
display.setTextColor(ST77XX_YELLOW); // Nova cor do texto
display.setTextSize(1); // Tamanho do texto
display.setCursor(10, 10); // Posiciona cursor

display.fillScreen(ST77XX_BLACK); // Limpa tela
display.setTextSize(1); // Tamanho do texto
display.setTextColor(ST77XX_GREEN); // Cor do texto
display.setCursor(30, 0); // Posiciona cursor
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.println(" ELETRONICA AUTOMOTIVA"); // Informação institucional
display.println(""); // Linha em branco
display.println(" FATEC TAUBATE "); // Informação institucional
delay(5000); // Aguarda 5 segundos

display.fillScreen(ST77XX_BLACK); // Limpa tela
display.setCursor(20, 0); // Posiciona cursor
display.setTextColor(ST77XX_CYAN); // Cor do texto
display.setTextSize(1); // Tamanho do texto
display.println(""); // Linha em branco
display.println(" INTEGRANTES "); // Título integrantes
display.println(" _______________________ "); // Linha separadora
display.println(""); // Linha em branco

76

display.setTextColor(ST77XX_WHITE); // Cor do texto
display.println(" GILMAR APARECIDO "); // Nome integrante
display.println(""); // Linha em branco
display.println(" JULIO CESAR VALIM "); // Nome integrante
display.println(""); // Linha em branco
display.println(" MARCO AURELIO ALVES "); // Nome integrante
display.println(""); // Linha em branco
display.println(" RAFAEL PIRES TOSETTO "); // Nome integrante
display.println(""); // Linha em branco
display.println(" RODRIGO CARDOSO MUNIZ "); // Nome integrante

delay(5000); // Aguarda 5 segundos

}

// ================= IDENTIFICAR OPERADOR =================
void identificarOperador() {

display.fillScreen(ST77XX_BLACK);
display.setCursor(10, 10);
display.setTextSize(1);
display.setTextColor(ST77XX_YELLOW);
display.println("ID OPERADOR (3 DIGITOS):");

display.setTextColor(ST77XX_WHITE);
int digitos[3] = {0, 0, 0};
int atual = 0;
int ultimoValor = -1;

unsigned long ultimoUpdate = millis();

while (atual < 3) {

if (digitos[atual] != ultimoValor) {
display.fillRect(0, 30, 128, 20, ST77XX_BLACK);
display.setCursor(0, 30);
for (int i = 0; i < 3; i++) {

if (i == atual) display.print("[");
display.print(digitos[i]);
if (i == atual) display.print("]");
else display.print(" ");

}
ultimoValor = digitos[atual];

}

if (digitalRead(botaoSim) == LOW) {
digitos[atual] = (digitos[atual] + 1) % 10;
beep(50);
delay(200);

} else if (digitalRead(botaoNao) == LOW) {
digitos[atual] = (digitos[atual] + 9) % 10;
beep(50);
delay(200);

77

} else if (digitalRead(botaoEnter) == LOW) {
atual++;
ultimoValor = -1;
beep(100);
delay(200);

}

// Pequena pausa para não sobrecarregar o processador
delay(10);

}

operadorID = digitos[0] * 100 + digitos[1] * 10 + digitos[2];
operadorAtual = "ID " + String(operadorID);

// Mostra confirmação por apenas 2 segundo
display.fillScreen(ST77XX_BLACK);
display.setCursor(10, 30);
display.setTextColor(ST77XX_GREEN);
display.print("OPERADOR ");
display.setTextColor(ST77XX_WHITE);
display.print(operadorID);
display.setTextColor(ST77XX_GREEN);
display.println(" CONFIRMADO");
delay(2000);

}

// ================ Mostra a pergunta atual do checklist ================
void mostrarPerguntaChecklist() {
display.fillScreen(ST77XX_BLACK); // Limpa tela
display.setTextColor(ST77XX_YELLOW); // Cor do texto
display.setCursor(10, 10); // Posiciona cursor
display.println("CHECKLIST:"); // Título
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.setTextColor(ST77XX_WHITE); // Cor do texto
display.println(perguntasChecklist[perguntaAtual]); // Mostra pergunta atual
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.setTextColor(ST77XX_YELLOW); // Cor do texto
display.println(" SIM NAO"); // Opções de resposta

}

// Processa as respostas do checklist
void processarChecklist() {
if (digitalRead(botaoSim) == LOW) {

respostasChecklist[perguntaAtual] = true; // Resposta SIM
avancarChecklist(); // Avança para próxima pergunta
beep(50); // Feedback sonoro

78

delay(200); // Debounce simples

}
else if (digitalRead(botaoNao) == LOW) {

respostasChecklist[perguntaAtual] = false; // Resposta NÃO
avancarChecklist(); // Avança para próxima pergunta
beep(50); // Feedback sonoro
delay(200); // Debounce simples

}
}

// Avança para próxima pergunta ou finaliza checklist
void avancarChecklist() {
perguntaAtual++; // Incrementa índice da pergunta

if (perguntaAtual < 20) {
mostrarPerguntaChecklist(); // Mostra próxima pergunta

} else {
// Checklist completo
checklistCompleto = true; // Atualiza variável na nuvem

display.fillScreen(ST77XX_BLACK); // Limpa tela
display.setCursor(0, 30); // Posiciona cursor
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.setTextColor(ST77XX_YELLOW); // Cor do texto
display.println(" CHECKLIST CONCLUIDO"); // Mensagem de conclusão
delay(3000); // Aguarda 3 segundos

digitalWrite(pinoRele, HIGH); // Libera empilhadeira (ativa relé)
beep(200); // Feedback sonoro

display.fillScreen(ST77XX_BLACK); // Limpa tela
display.setCursor(0, 20); // Posiciona cursor
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.println(""); // Linha em branco
display.setTextColor(ST77XX_CYAN); // Cor do texto
display.println(" EMPILHADEIRA"); // Mensagem de liberação
display.setCursor(0, 40); // Posiciona cursor
display.println(" LIBERADA"); // Mensagem de liberação
delay(3000); // Aguarda 3 segundos

}
}

// ================= FUNÇÕES DE CONEXÃO ====================
// Função para verificar e reconectar ao Wi-Fi e Arduino Cloud
void verificarConexaoWiFi() {

79

static unsigned long ultimaVerificacao = 0;
const unsigned long intervaloVerificacao = 10000;

if (millis() - ultimaVerificacao < intervaloVerificacao) {
return;

}
ultimaVerificacao = millis();

if (WiFi.status() != WL_CONNECTED) {

Serial.println("Wi-Fi desconectado. Tentando reconectar...");
reconectarWiFi();

}
}

// Função para reconectar ao Wi-Fi (não-bloqueante)
void reconectarWiFi() {
static unsigned long ultimaTentativa = 0;
const unsigned long intervaloTentativaWiFi = 30000; // 30 segundos entre tentativas

if (millis() - ultimaTentativa < intervaloTentativaWiFi) {
return;

}
ultimaTentativa = millis();

Serial.println("Reconectando ao Wi-Fi...");
WiFi.disconnect();
delay(100);
WiFi.reconnect();

}

// Função para verificar conexão Cloud (não-bloqueante)
void verificarConexaoCloud() {
static unsigned long ultimaVerificacao = 0;
const unsigned long intervaloVerificacao = 15000;

if (millis() - ultimaVerificacao < intervaloVerificacao) {

return;
}
ultimaVerificacao = millis();

// Só tenta reconectar Cloud se Wi-Fi estiver conectado
if (WiFi.status() == WL_CONNECTED && !ArduinoCloud.connected()) {

Serial.println("Reconectando ao Arduino Cloud...");
ArduinoCloud.disconnect();
delay(100);
ArduinoCloud.begin(ArduinoIoTPreferredConnection);

}
}

//=================== FUNÇÕES DE SENSORES ====================

80

// Monitora todos os sensores e aciona alertas se necessário
void monitorarSensores() {
// 1) Lê sensores para variáveis locais
float tempLocal = lerTemperatura();
float inclLocal = lerInclinacao();
float velLocal = obterVelocidade();
float battLocal = lerTensaoBateria();

ui_tlm35 = tempLocal;
ui_incl = inclLocal;
ui_vel = velLocal;
ui_vbat = battLocal;

// 2) Se conectado, empurra valores LOCAIS para a Cloud
if (ArduinoCloud.connected()) {

temperatura = ui_tlm35;
inclinacao = ui_incl;
velocidade = ui_vel;
tensaoBateria = ui_vbat;

}

// 3) Lógica de alertas com base nos valores LOCAIS
if (fabs(ui_vbat) < BATERIA_MIN || fabs(ui_vbat) > BATERIA_MAX) {

alertaBuzzer(2);
mostrarAlerta(" Bateria\n", ui_vbat);

}
else if (ui_tlm35 > TEMP_MAX) {

alertaBuzzer(4);
mostrarAlerta(" Temperatura\n", ui_tlm35);

}
else if (fabs(ui_incl) > INCLINACAO_MAX || fabs(ui_incl) < INCLINACAO_MIN) {

alertaBuzzer(3);
mostrarAlerta(" Inclinacao\n", ui_incl);

}
else if (ui_vel > VELOC_MAX) {

alertaBuzzer(5);
mostrarAlerta(" Velocidade\n", ui_vel);

}
else {

tempRTC = rtc.getTemperature();
mostrarStatusNormal(tempRTC);

}
}

// ============= FUNÇÃO DE CONEXÃO NÃO-BLOQUEANTE ==========
void inicializarCloudNaoBloqueante() {

Serial.println("Iniciando conexão Arduino Cloud...");
initProperties();

// Configuração para debug

81

setDebugMessageLevel(2);
ArduinoCloud.printDebugInfo();

// Inicializa Cloud de forma não-bloqueante
ArduinoCloud.begin(ArduinoIoTPreferredConnection);

// Não espera bloqueando - a verificação será feita no loop
Serial.println("Inicialização Cloud iniciada (não-bloqueante)");

}

// Tela dedicada para alertar sobre a presença de pessoas próximas
void mostrarAlertaPresenca() {
display.fillScreen(ST77XX_BLACK); // Limpa tela
display.setTextColor(ST77XX_RED); // Cor do texto
display.setTextSize(1); // Tamanho do texto
display.setCursor(0, 0); // Posiciona cursor
display.println(""); // Linha em branco
display.println(" ALERTA DE PRESENCA "); // Título do alerta

// Desenha triângulo de alerta (contorno)
display.drawTriangle(cx-halfBase, cy+triHeight,

cx+halfBase, cy+triHeight,
cx, cy-triHeight,
ST77XX_WHITE); // Desenha triângulo branco

// Desenha ponto de exclamação dentro do triângulo
display.drawLine(cx, (cy-triHeight)+5,

cx, (cy+triHeight)-8,
ST77XX_WHITE); // Desenha linha vertical

display.fillRect(cx-1, (cy+triHeight)-5,
3, 3,
ST77XX_WHITE); // Desenha ponto inferior

display.setCursor(0, 75); // Posiciona cursor
display.setTextColor(ST77XX_YELLOW); // Cor do texto
display.println(" PESSOAS PROXIMAS AO "); // Mensagem de alerta
display.println(" EQUIPAMENTO"); // Continuação
display.setTextColor(ST77XX_WHITE); // Cor do texto
display.println(""); // Linha em branco
display.println(" Verifique a area com"); // Instrução
display.println(" cautela"); // Instrução

alertaBuzzer(10); // Alerta sonoro prolongado

delay(7000); // Mostra por 7 segundos

// Reset do layout para forçar redesenho ao voltar ao status normal
statusLayoutPronto = false;

}

82

// ========== FUNÇÃO: Mostrar status normal sem cintilação ============
// Chama SEMPRE no loop; ela só redesenha o que mudou
void mostrarStatusNormal(float tempRTC_in) {
if (!statusLayoutPronto) {

desenharLayoutStatus();
}

uint32_t now = millis();

// ---------- Data/Hora (1 Hz) ----------
if ((int32_t)(now - tHora) >= 0) {

// Monta "DD/MM/AA HH:MM"
int dia = rtc.getDate();
int mes = rtc.getMonth(century);
int ano2 = rtc.getYear(); // 0..99 (DS3231)
int hora = rtc.getHour(h12Flag, pmFlag);
int minuto = rtc.getMinute();

char horaData[20];
snprintf(horaData, sizeof(horaData),

"%02d/%02d/%02d %02d:%02d",
dia, mes, ano2, hora, minuto);

printIfChanged(X_VAL, Y_HORA, cacheHora, sizeof(cacheHora), horaData);
tHora = now + 1000;

}

// ---------- Operador (muda raramente) ----------
char opStr[16];
snprintf(opStr, sizeof(opStr), "%4d ", operadorID);
printIfChanged(X_VAL, Y_OPID, cacheOpId, sizeof(cacheOpId), opStr);

// ---------- Bateria (5 Hz + histerese 20 mV) ----------
if ((int32_t)(now - tBatt) >= 0) {

if (isnan(lastBatt) || fabsf(ui_vbat - lastBatt) > H_BATT) {
char s[16];
snprintf(s, sizeof(s), "%6.2f V ", ui_vbat);
printIfChanged(X_VAL, Y_BATT, cacheBatt, sizeof(cacheBatt), s);
lastBatt = ui_vbat;

}
tBatt = now + 200;

}

// ---------- Temperaturas (5 Hz + histerese 0.1 °C) ----------
if ((int32_t)(now - tTemp) >= 0) {

if (isnan(lastLM) || fabsf(ui_tlm35 - lastLM) > H_TEMP) {
char s[16];
snprintf(s, sizeof(s), "%5.1f C ", ui_tlm35);
printIfChanged(X_VAL, Y_TLM35, cacheTLM35, sizeof(cacheTLM35), s);
lastLM = ui_tlm35;

83

}
if (isnan(lastRTC) || fabsf(tempRTC_in - lastRTC) > H_TEMP) {

char s2[16];
snprintf(s2, sizeof(s2), "%5.1f C ", tempRTC_in);
printIfChanged(X_VAL, Y_TRTC, cacheTRTC, sizeof(cacheTRTC), s2);
lastRTC = tempRTC_in;

}
tTemp = now + 200;

}

// ---------- Inclinacao (10 Hz + histerese 0.2 °) ----------
if ((int32_t)(now - tIncl) >= 0) {

if (isnan(lastInc) || fabsf(ui_incl - lastInc) > H_INCL) {
char s[16];
snprintf(s, sizeof(s), "%5.1f deg ", ui_incl);
printIfChanged(X_VAL, Y_INCL, cacheIncl, sizeof(cacheIncl), s);
lastInc = ui_incl;

}
tIncl = now + 100;

}

// ---------- Velocidade (10 Hz + histerese 0.1 km/h) ----------
if ((int32_t)(now - tVel) >= 0) {

if (isnan(lastVel) || fabsf(ui_vel - lastVel) > H_VEL) {
char s[16];
snprintf(s, sizeof(s), "%5.1f km/h ", ui_vel);
printIfChanged(X_VAL, Y_VEL, cacheVel, sizeof(cacheVel), s);
lastVel = ui_vel;

}
tVel = now + 100;

}
}

// ========== FUNÇÃO: Registrar dados em CSV ============
// Salva dados no cartão SD em formato CSV para análise posterior.
void registrarNoSD() {
if (millis() - tempoUltimoLog < intervaloLog) return; // controla taxa de log
tempoUltimoLog = millis();

// ---- Data e hora ----
int dia = rtc.getDate();
int mes = rtc.getMonth(century);
int ano = 2000 + rtc.getYear();
int hora = rtc.getHour(h12Flag, pmFlag);
int minuto = rtc.getMinute();

char horaStr[6];
sprintf(horaStr, "%02d:%02d", hora, minuto);

// ---- Nome do arquivo (um por dia) ----

84

char caminho[32];
sprintf(caminho, "/log_%04d%02d%02d.csv", ano, mes, dia);
nomeArquivoLog = String(caminho);

// ---- Cria cabeçalho se ainda não existir ----
if (!SD.exists(caminho)) {

File novo = SD.open(caminho, FILE_WRITE);
if (novo) {

novo.println("Data;Hora;Operador;TempLM35;TempRTC;Bateria;Inclinacao;Velocida
de;Presenca;Checklist");

novo.close();
} else {
// Não conseguiu abrir: aborta esta rodada de log
return;

}
}

// ---- Abre para append ----
File file = SD.open(caminho, FILE_APPEND);
if (!file) return;

// Checklist: mantém a lógica de imprimir uma única vez (se quiser sempre, remova
essa parte)
String checklistStr = "";
if (!checklistImpresso && checklistCompleto) {
for (int i = 0; i < 20; i++) {

checklistStr += respostasChecklist[i] ? "1" : "0";
if (i < 19) checklistStr += ",";

}
checklistImpresso = true;

}

// Monta linha usando **variáveis locais** (ui_*) para não depender da Cloud
String linha;
linha.reserve(160);
linha = String(dia) + "/" + String(mes) + "/" + String(ano) + ";";
linha += String(horaStr) + ";";
linha += String(operadorID) + ";"; // grava operador em TODAS as linhas
linha += String(ui_tlm35, 1) + ";"; // TempLM35 (local)
linha += String(tempRTC, 1) + ";"; // TempRTC (local)
linha += String(ui_vbat, 2) + ";"; // Bateria (local)
linha += String(ui_incl, 1) + ";"; // Inclinacao (local)
linha += String(ui_vel, 1) + ";"; // Velocidade (local)
linha += String(contadorPresencas) + ";"; // Presenca (contador)
linha += checklistStr; // Checklist (uma vez) ou vazio

file.println(linha);
file.close();

}

85

// ========== INTERRUPÇÃO: Hall Sensor ============
// Função chamada automaticamente a cada pulso do sensor Hall
void IRAM_ATTR detectarPulsoHall() {
uint32_t t = micros();
static uint32_t last = 0;
if (t - last < HALL_GUARD_US) return; // guarda de tempo para evitar glitches
hallPulseCount++;
lastPulseMicros = t;
last = t;

}

// ========== INICIALIZAÇÃO: Hall Sensor ============
void inicializarSensorHall() {
pinMode(pinoHall, INPUT); // Configura pino como entrada
attachInterrupt(digitalPinToInterrupt(pinoHall), detectarPulsoHall, FALLING);

// Ativa interrupção na borda de descida
}

// ========== FUNÇÃO: Obter velocidade ============
float obterVelocidade() {
static uint32_t t0 = 0;
static uint32_t count0 = 0;
static float vFilt = NAN;

uint32_t now = micros();
if (now - t0 < VEL_WINDOW_US) {

// Dentro da janela, retorna último valor filtrado
return velocidadeAtual;

}

// Captura atômica dos contadores
noInterrupts();
uint32_t count = hallPulseCount;
uint32_t lastPulse = lastPulseMicros;
interrupts();

uint32_t dp = count - count0; // pulsos na janela
float dt = (now - t0) / 1e6f; // segundos na janela
count0 = count;
t0 = now;

// Converte contagem -> km/h
float revs = (float)dp / (float)PULSOS_POR_VOLTA; // voltas na janela
float mps = (revs * (2.0f * PI * RAIO_RODA)) / dt; // m/s
float kmh = mps * 3.6f;

// Se "parado" por muito tempo, zera
if (now - lastPulse > STOP_TIMEOUT_US) kmh = 0.0f;

86

// Filtro de suavização (EWMA)
if (isnan(vFilt)) vFilt = kmh;
else vFilt = (1.0f - ALPHA_VEL) * vFilt + ALPHA_VEL * kmh;

velocidadeAtual = vFilt;
return velocidadeAtual;

}

// ========== FUNÇÃO: Ler tensão da bateria ============
float lerTensaoBateria() {
// Leitura com média aparada (32 amostras, descarta 4 de cada extremo)
float leitura = adcReadTrimmedMean(pinoBateria, 32, 4);

// Conversão para tensão no pino (0-3.3V)
float tensaoPino = (leitura * 3.3f) / 4095.0f;

// Conversão para tensão real da bateria
float tensaoBateria = tensaoPino * VDIV_BATT;

// Filtro EWMA (Média Móvel Ponderada Exponencialmente)
static float tensaoFiltrada = NAN;
if (isnan(tensaoFiltrada)) {

tensaoFiltrada = tensaoBateria;
} else {

tensaoFiltrada = (1.0f - ALPHA_VBAT) * tensaoFiltrada + ALPHA_VBAT *
tensaoBateria;
}

return tensaoFiltrada;

}

// ========== FUNÇÃO: Ler temperatura LM35 ============
float lerTemperatura() {
// Leitura com média aparada (32 amostras, descarta 4 de cada extremo)
float leitura = adcReadTrimmedMean(pinoLM35, 32, 4);

// Conversão para milivolts (0-1100mV) - ESCALA CORRIGIDA para 0dB
float milivolts = (leitura * 1100.0f) / 4095.0f;

// Conversão para temperatura (10mV/°C)
float temperatura = milivolts * 0.1f;

// Ajuste de calibração (ganho e offset)
temperatura = (temperatura * T_GAIN) + T_OFFS;

// Filtro EWMA (Média Móvel Ponderada Exponencialmente)
static float temperaturaFiltrada = NAN;
if (isnan(temperaturaFiltrada)) {

temperaturaFiltrada = temperatura;
} else {

87

temperaturaFiltrada = (1.0f - ALPHA_TEMP) * temperaturaFiltrada +

ALPHA_TEMP * temperatura;
}

return temperaturaFiltrada;
}

// ========== FUNÇÃO: Ler inclinação com MPU6050 ============
float lerInclinacao() {
if (!mpuOK) return 0.0f; // se falhou, retorna 0 (ou último valor, se preferir)
sensors_event_t a, g, temp;
mpu.getEvent(&a, &g, &temp);
float incX = atan2(a.acceleration.x,

sqrt(a.acceleration.y*a.acceleration.y +
a.acceleration.z*a.acceleration.z)) * 180.0/PI;
float incY = atan2(a.acceleration.y,

sqrt(a.acceleration.x*a.acceleration.x +
a.acceleration.z*a.acceleration.z)) * 180.0/PI;
return (fabs(incX) > fabs(incY)) ? incX : incY;

}

// ========== FUNÇÃO: Mostrar alerta no display ============
void mostrarAlerta(String tipoAlerta, float valor) {
display.fillScreen(ST77XX_BLACK); // Limpa tela
display.setTextSize(1); // Define tamanho pequeno
display.setTextColor(ST77XX_RED); // Texto vermelho

display.setCursor(0, 0); // Cursor inicial
display.println(""); // Linha em branco
display.println(" ALERTA CRITICO!\n\n\n\n"); // Mensagem de alerta

display.setTextColor(ST77XX_WHITE); // Texto branco
display.print(tipoAlerta); // Exibe tipo do alerta
display.println("");
display.print(" Valor: "); // Texto fixo
display.print(valor); // Mostra valor numérico

// Adiciona unidade de acordo com o alerta
String tipo = tipoAlerta;
tipo.trim();
if (tipo == "Temperatura") {

display.println(" C");
} else if (tipo == "Bateria") {

display.println(" V");
} else if (tipo == "Inclinacao") {

display.println(" Grau");
} else if (tipo == "Velocidade") {

display.println(" km/h");
}

88

display.setTextColor(ST77XX_YELLOW); // Texto amarelo
display.println("");
display.println("");
display.println(" Verifique imediatamente!"); // Instrução

delay(5000); // Mantém alerta visível por 5s

// Reset do layout para forçar redesenho ao voltar ao status normal
statusLayoutPronto = false;

}

// ========== FUNÇÃO: Verificar combinação de botões ============
void verificarCombinacaoBotoes() {
static unsigned long tempoPressionado = 0;
static bool botonesPressionados = false;

if (digitalRead(botaoSim) == LOW && digitalRead(botaoNao) == LOW) {

if (!botonesPressionados) {
tempoPressionado = millis();
botonesPressionados = true;

}

// Se pressionados por mais de 2 segundos - Debug
if (millis() - tempoPressionado > 2000 && millis() - tempoPressionado < 3000) {
mostrarDebugSensores();

}

// Se pressionados por mais de 3 segundos - Ajuste de data/hora
if (millis() - tempoPressionado > 3000) {
beep(200);
ajustarDataHora();
botonesPressionados = false;

}
} else {

botonesPressionados = false;
}

}

// ========== FUNÇÃO: Ajustar data e hora no RTC ============
void ajustarDataHora() {
modoAjusteHorario = true; // Ativa modo ajuste
etapaAjuste = 0; // Inicia na primeira etapa

// Lê valores atuais
int ano = 2000 + rtc.getYear();
int mes = rtc.getMonth(century);
int dia = rtc.getDate();
int hora = rtc.getHour(h12Flag, pmFlag);
int minuto = rtc.getMinute();

89

int etapaAnterior = -1; // Para forçar atualização
int maxDias = 31; // Declara maxDias fora do switch

while (modoAjusteHorario) {
if (etapaAjuste != etapaAnterior) { // Atualiza tela apenas quando mudar etapa
display.fillScreen(ST77XX_BLACK);
display.setCursor(2, 3);
display.println("AJUSTE DATA/HORA");
display.setTextColor(ST77XX_CYAN);
display.println(" ----------------------- ");
display.println("");

display.setTextColor(ST77XX_YELLOW);
switch (etapaAjuste) { // Mostra valor a ser ajustado
case 0: display.print("Ano: "); display.println(ano); break;
case 1: display.print("Mes: "); display.println(mes); break;
case 2: display.print("Dia: "); display.println(dia); break;
case 3: display.print("Hora: "); display.println(hora); break;
case 4: display.print("Minuto: "); display.println(minuto); break;

}

etapaAnterior = etapaAjuste; // Atualiza etapa anterior
}

// ---- Botão SIM: incrementa valor ----
if (digitalRead(botaoSim) == LOW) {
switch (etapaAjuste) {

case 0: ano++; break;
case 1: mes = (mes % 12) + 1; break;
case 2:

// Limite de dias conforme o mês
maxDias = 31;
if (mes == 2) maxDias = (ano % 4 == 0) ? 29 : 28;
else if (mes == 4 || mes == 6 || mes == 9 || mes == 11) maxDias = 30;
dia = (dia % maxDias) + 1;
break;

case 3: hora = (hora + 1) % 24; break;
case 4: minuto = (minuto + 1) % 60; break;

}
etapaAnterior = -1;
beep(50); delay(200);

}
// ---- Botão NÃO: decrementa valor ----
else if (digitalRead(botaoNao) == LOW) {
switch (etapaAjuste) {

case 0: ano--; break;
case 1: mes = (mes + 10) % 12 + 1; break;
case 2:

// Limite de dias conforme o mês
maxDias = 31;

90

if (mes == 2) maxDias = (ano % 4 == 0) ? 29 : 28;
else if (mes == 4 || mes == 6 || mes == 9 || mes == 11) maxDias = 30;
dia = (dia + maxDias - 1) % maxDias + 1;
break;

case 3: hora = (hora + 23) % 24; break;
case 4: minuto = (minuto + 59) % 60; break;

}
etapaAnterior = -1;
beep(50); delay(200);

}
// ---- Botão ENTER: confirma etapa ----
else if (digitalRead(botaoEnter) == LOW) {
etapaAjuste++;
beep(100); delay(300);
if (etapaAjuste > 4) { // Se concluiu ajuste
rtc.setYear(ano - 2000);
rtc.setMonth(mes);
rtc.setDate(dia);
rtc.setHour(hora);
rtc.setMinute(minuto);
modoAjusteHorario = false; // Sai do loop

}
etapaAnterior = -1;

}
}

}

// ========== FUNÇÃO: Configurar ADC do ESP32 ============
void setupADC() {
// Configura a atenuação para os pinos do ADC

analogSetPinAttenuation(pinoLM35, ADC_0db); // Até ~1.1V: ideal para LM35
analogSetPinAttenuation(pinoBateria, ADC_11db); // Até ~3.3V: mantém para
bateria

// Configura a resolução para 12 bits (0-4095)
analogReadResolution(12);

}

// ========== FUNÇÃO: Leitura com média aparada ============
// Lê N amostras do ADC, descarta as K menores e K maiores e faz média
float adcReadTrimmedMean(int pin, uint8_t N, uint8_t K) {
if (K * 2 >= N) K = N / 4; // Previne configuração inválida

// 1) Leitura dummy para estabilizar o mux/capacitor de amostragem
(void)analogRead(pin);
delayMicroseconds(100);

// 2) Coleta das amostras
uint16_t amostras[64]; // Suporta até 64 amostras
for (uint8_t i = 0; i < N; i++) {

91

amostras[i] = analogRead(pin);
delayMicroseconds(200); // Pequeno intervalo entre amostras

}

// 3) Ordenação por inserção (eficiente para poucos elementos)
for (uint8_t i = 1; i < N; i++) {

uint16_t chave = amostras[i];
int8_t j = i - 1;
while (j >= 0 && amostras[j] > chave) {
amostras[j + 1] = amostras[j];
j--;

}
amostras[j + 1] = chave;

}

// 4) Cálculo da média aparada (descartando K extremos de cada lado)
uint32_t soma = 0;
for (uint8_t i = K; i < N - K; i++) {

soma += amostras[i];
}

return (float)soma / (N - 2 * K); // Retorna a média
}

// ========== FUNÇÃO: Desenhar layout fixo (apenas uma vez) ============
static void desenharLayoutStatus() {
display.fillScreen(ST77XX_BLACK);
display.setTextWrap(false);
display.setTextSize(1);

ajustarColunas(); // <<< calcula X_VAL conforme a largura real
resetStatusCaches();// <<< força primeira pintura de todos os campos

// Título
display.setTextColor(ST77XX_CYAN, ST77XX_BLACK);
display.setCursor(X_LABEL, Y_TIT);
display.print("STATUS NORMAL");
display.drawFastHLine(0, Y_TIT + 10, display.width(), ST77XX_CYAN);

// Rótulos
display.setTextColor(ST77XX_YELLOW, ST77XX_BLACK);
display.setCursor(X_LABEL, Y_HORA); display.print("Data/Hora:");
display.setCursor(X_LABEL, Y_OPID); display.print("Operador ID:");
display.setCursor(X_LABEL, Y_BATT); display.print("Bateria:");
display.setCursor(X_LABEL, Y_TLM35); display.print("Temp Motor:");
display.setCursor(X_LABEL, Y_TRTC); display.print("Temp Case:");
display.setCursor(X_LABEL, Y_INCL); display.print("Inclinacao:");
display.setCursor(X_LABEL, Y_VEL); display.print("Velocidade:");

// Linhas separadoras

92

int W = display.width();
display.drawFastHLine(0, Y_OPID - 3, W, ST77XX_CYAN);
display.drawFastHLine(0, Y_BATT - 3, W, ST77XX_CYAN);
display.drawFastHLine(0, Y_TLM35 - 3, W, ST77XX_CYAN);
display.drawFastHLine(0, Y_TRTC - 3, W, ST77XX_CYAN);
display.drawFastHLine(0, Y_INCL - 3, W, ST77XX_CYAN);
display.drawFastHLine(0, Y_VEL - 3, W, ST77XX_CYAN);

statusLayoutPronto = true;

// Inicia janelas de atualização
uint32_t now = millis();
tHora = tBatt = tTemp = tIncl = tVel = now;

}

// ========== FUNÇÃO: Debug de sensores ============
void mostrarDebugSensores() {
display.fillScreen(ST77XX_BLACK);
display.setTextColor(ST77XX_YELLOW, ST77XX_BLACK);
display.setCursor(0,0);
display.println("DEBUG SENSORES");
uint16_t rawBat = (uint16_t)adcReadTrimmedMean(pinoBateria, 16, 2);
uint16_t rawLM = (uint16_t)adcReadTrimmedMean(pinoLM35, 16, 2);
display.setTextColor(ST77XX_WHITE, ST77XX_BLACK);
display.printf("ADC Bat raw: %u\n", rawBat);
display.printf("ADC LM35 raw:%u\n", rawLM);
display.printf("VBat UI: %.2f V\n", ui_vbat);
display.printf("LM35 UI: %.1f C\n", ui_tlm35);
display.printf("Incl UI: %.1f deg\n", ui_incl);
display.printf("MPU OK: %s\n", mpuOK ? "sim" : "nao");
delay(2000);
statusLayoutPronto = false;

}

//======================= SETUP ===============================
// A função setup() roda apenas uma vez quando o ESP32 é ligado ou resetado.
void setup() {
Serial.begin(115200);
Wire.begin(PIN_SDA, PIN_SCL);
tempRTC = rtc.getTemperature();
EEPROM.begin(512);
delay(1500);

// ---- Configuração dos pinos ----
pinMode(botaoEnter, INPUT_PULLUP);
pinMode(pinoBuzzer, OUTPUT);
pinMode(pinoRele, OUTPUT);
pinMode(botaoSim, INPUT_PULLUP);
pinMode(botaoNao, INPUT_PULLUP);
digitalWrite(pinoRele, LOW);

93

pinMode(pinoPresenca, INPUT);
digitalWrite(pinoPresenca, LOW);

// Configuração do ADC
setupADC();

// ---- Inicializações de módulos ----
inicializarDisplay();
inicializarSenha();
inicializarSensorHall();

// ---- Inicialização do cartão SD ----
if (!SD.begin(SD_CS)) {
display.fillScreen(ST77XX_RED);
display.setCursor(5, 20);

display.setTextColor(ST77XX_WHITE);
display.println("ERRO SD CARD");
// Não travar completamente - apenas continuar sem SD
delay(2000);

}

// ---- Inicialização do sensor MPU6050 ----
mpuOK = false;
if (!mpu.begin(0x68)) {

if (!mpu.begin(0x69)) {
display.fillScreen(ST77XX_RED);
display.setCursor(5, 20);
display.setTextColor(ST77XX_WHITE);
display.println("ERRO MPU6050");
delay(2000); // Continua sem inclinacao

} else {
mpuOK = true;

}
} else {
mpuOK = true;

}

if (mpuOK) {
mpu.setAccelerometerRange(MPU6050_RANGE_8_G);
mpu.setGyroRange(MPU6050_RANGE_500_DEG);
mpu.setFilterBandwidth(MPU6050_BAND_21_HZ);

}

// ---- Autenticação do operador ----
mostrarTelaSenha();
while(!senhaValidada) {
processarSenha();

delay(100);
}

94

// ---- Exibição inicial ----
mostrarMensagemInicial();
identificarOperador();

// Configuração Wi-Fi não-bloqueante
WiFi.setAutoReconnect(true);
WiFi.persistent(true);

// ---- Inicialização Arduino Cloud NÃO-BLOQUEANTE ----
inicializarCloudNaoBloqueante();

// ---- Início do checklist ----
sistemaAtivo = true;
perguntaAtual = 0;
mostrarPerguntaChecklist();

}

// ============= MODIFICAÇÃO NO LOOP PRINCIPAL ============
// A função loop() roda continuamente enquanto o ESP32 está ligado.
void loop() {
if (sistemaAtivo) {

verificarCombinacaoBotoes();

if (perguntaAtual < 20) {
processarChecklist();

} else {
checklistCompleto = true;

if (digitalRead(pinoRele) == HIGH) {
// Verificações de conexão (não-bloqueantes)
verificarConexaoWiFi();
verificarConexaoCloud();

// Atualização rápida da Cloud
ArduinoCloud.update();

// Monitoramento principal (funciona offline)
monitorarSensores();
registrarNoSD();

// Detecção de presença
if (digitalRead(pinoPresenca) == HIGH) {

contadorPresencas++;
mostrarAlertaPresenca();

}

// Reset do contador de presença
if (digitalRead(botaoEnter) == LOW) {

delay(200);
while (digitalRead(botaoEnter) == LOW);

95

contadorPresencas = 0;

}
}

}
}
// Pequeno delay para não sobrecarregar o processador
delay(10);

}

