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RESUMO 
 
 
O presente trabalho tem como objetivo usar técnicas de aprendizado de máquina para 
classificar executáveis maliciosos usando o Dataset EMBER. Com o aumento e 
evolução constante das ameaças digitais, destacando-se o ransomware, a 
necessidade da aplicação de sistemas e técnicas de segurança adaptáveis torna-se 
imprescindível na proteção de sistemas e informações relevantes. Esse estudo, 
fazendo uso do Dataset Elastic Malware Benchmark for Empowering Researchers 
(EMBER), busca a aplicar o machine learning para testar um modelo capaz de 
distinguir entre arquivos benignos e maliciosos. A metodologia utilizada consistiu na 
preparação e configuração do ambiente de teste e do Dataset EMBER, que permitiu-
se organizar e preparar os dados extraídos dos executáveis, etapa importante para a 
realização dos testes posteriores. Para a classificação dos executáveis, foi utilizado o 
algoritmo Light Gradient Boosting Machine (LightGBM), conhecido por ser eficiente e 
adequado no treinamento com um volume grande de dados, que permitiu o 
treinamento de um modelo seguindo as recomendações e dados fornecidos pelo 
próprio benchmark EMBER, incluindo amostras de ransomware para avaliar seu 
comportamento frente a tipos diversificados de malwares. Feito os testes com 
executáveis de ransomware e arquivos inofensivos, o modelo mostrou-se adequado 
para a função, confirmando sua capacidade de identificar realmente maliciosos e o 
validando como uma ferramenta promissora para a detecção proativa de ameaças, 
porém ele exibiu certas limitações na classificação de ransomwares mais recentes e 
modernos, algo que deve ser levado em consideração. A pesquisa contribui para o 
campo da segurança da informação ao validar uma metodologia moderna para a 
detecção de malware, oferecendo insights sobre a utilização de datasets como o 
EMBER para o desenvolvimento de sistemas de segurança mais resilientes. Logo, 
conclui-se que a aplicação do aprendizado de máquina na análise de executáveis 
pode alterar a forma como as ameaças são detectadas, trazendo implicações 
significativas para a proteção de sistemas e o combate a danos causados por códigos 
maliciosos. 

 
 
Palavras-Chave: Dataset EMBER, ransomware, aprendizado de máquina, 
classificação de malware, LightGBM. 
  



 

 

ABSTRACT 
 
This work aims to use machine learning techniques to classify malicious executables 
using the EMBER dataset. With the increasing and constant evolution of digital threats, 
particularly ransomware, the need for the application of adaptive security systems and 
techniques becomes essential in protecting systems and relevant information. This 
study, using the Elastic Malware Benchmark for Empowering Researchers (EMBER) 
dataset, seeks to apply machine learning to test a model capable of distinguishing 
between benign and malicious files. The methodology used consisted of preparing and 
configuring the test environment and the EMBER dataset, which allowed for the 
organization and preparation of the data extracted from the executables, an important 
step for conducting subsequent tests. For the classification of executables, the Light 
Gradient Boosting Machine (LightGBM) algorithm was used, known for being efficient 
and suitable for training with a large volume of data, which allowed the training of a 
model following the recommendations and data provided by the EMBER benchmark 
itself, including ransomware samples to evaluate its behavior against diverse types of 
malware. After testing with ransomware executables and harmless files, the model 
proved suitable for the function, confirming its ability to identify truly malicious files and 
validating it as a promising tool for proactive threat detection; however, it exhibited 
certain limitations in classifying more recent and modern ransomware, something that 
should be taken into consideration. The research contributes to the field of information 
security by validating a modern methodology for malware detection, offering insights 
into the use of datasets such as EMBER for the development of more resilient security 
systems. Therefore, it is concluded that the application of machine learning in the 
analysis of executables can change the way threats are detected, bringing significant 
implications for the protection of systems and the fight against damage caused by 
malicious code. 
 
Keywords: EMBER Dataset, ransomware, machine learning, malware classification, 
LightGBM. 
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1 INTRODUÇÃO 

 A segurança da informação é uma área de importância e complexidade 

crescentes no cenário tecnológico atual. Com a vida e os processos sendo 

digitalizados cada vez mais, o desafio de proteger os dados provenientes dessa 

digitalização aumenta de forma constante. Com isso em mente, o malware (software 

malicioso) é visto como a maior e mais persistente ameaça, devido as suas novas 

variantes que surgem todos os dias e as técnicas avançadas, como polimorfismo e 

ofuscação, empregadas na confecção deles. Logo, têm-se uma corrida que exige a 

criação de soluções mais adaptativas e robustas para a identificação desses novos 

arquivos executáveis maliciosos que surgem a cada dia. 

 Com o aumento de malwares polimórficos e a criação de diversas variações 

daqueles já existentes, a detecção baseada somente em assinaturas torna-se 

ineficiente. O campo de aprendizado de máquina ou machine learning emergiu com 

uma alternativa promissora, permitindo que se empregue modelos pré-treinados que 

podem aprender padrões complexos e sutis a partir de grandes volumes de dados e 

amostras de malwares, na proteção de sistemas e informações. Ou seja, ao invés de 

se depender apenas de regras e assinaturas pré-definidas, os modelos, com sua 

capacidade de aprendizagem e previsão, conseguem aprender novos padrões e 

classificar essas ameaças de maneira automatizada, incluindo aquelas ainda 

desconhecidas para eles. Essa abordagem vai mais a fundo na análise dos arquivos 

maliciosos, não dependendo apenas de assinaturas e verificações de hashes. 

 Esse trabalho se foca nesse cenário, na aplicação de técnicas de aprendizado 

de máquina para automatizar e aprimorar a capacidade de classificação de ameaças. 

Especificamente, utiliza-se o Dataset EMBER do ano de 2018, um conjunto de dados 

de referência maduro e amplamente aceito pela comunidade de pesquisa em 

segurança, que fornece uma base rica e diversificada de amostras de executáveis, 

tanto maliciosos quanto benignos, para treinamento e avaliação de modelos, sendo 

inclusive de código aberto e gratuito para uso. 

 

1.1  PROBLEMA DE PESQUISA 

Diante da necessidade de métodos de detecção mais eficazes e adaptáveis, o 

problema de pesquisa que norteia esse trabalho é: 
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Como aplicar técnicas de aprendizado de máquina para identificar e classificar 

executáveis maliciosos de forma eficaz, utilizando o Dataset EMBER como base de 

treinamento e teste? 

1.2  JUSTIFICATIVA 

 A relevância do estudo realizado está na necessidade de se adaptar a evolução 

constante das ameaças digitais. A sofisticação dos ataques e a velocidades com que 

novas variantes são produzidas, além das técnicas de polimorfismo e ofuscação 

empregadas, tornam a classificação de malwares algo cada vez mais desafiador. O 

uso do machine learning, junto com um benchmark de qualidade como o Dataset 

EMBER, representa uma abordagem promissora no desenvolvimento de sistemas de 

classificação automatizados, capazes de se adaptar e aprender constantemente. A 

contribuição desse trabalho é demonstrar a eficácia de um modelo de classificação 

baseado em aprendizado de máquina na classificação de executáveis maliciosos, 

além de fornecer insights sobre a utilização de datasets na segurança de sistemas. 

 

1.3  OBJETIVOS 

1.3.1  OBJETIVO GERAL 

O objetivo geral desse trabalho é: 

Aplicar técnicas de aprendizado de máquina na classificação de executáveis 

maliciosos utilizando o Dataset EMBER. 

1.3.2  OBJETIVOS ESPECÍFICOS 

Para alcançar o objetivo geral, os seguintes objetivos específicos foram 

definidos: 

1. Preparar o ambiente de desenvolvimento e configurar o Dataset EMBER 

para o treinamento do modelo de aprendizado de máquina voltado à classificação de 

executáveis. 

2. Treinar um modelo de classificação de executáveis maliciosos com base nas 

informações e parâmetros recomendados para o Dataset EMBER. 

3. Testar o modelo treinado utilizando um arquivo malicioso e um arquivo 

benigno, avaliando sua capacidade de classificação e desempenho. 
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1.4  ESTRUTURA DO TRABALHO 

Esse Trabalho de Conclusão de Curso está organizado em cinco capítulos, 

organizados de forma a conduzir o leitor desde o embasamento teórico até a 

apresentação dos resultados práticos. 

O capítulo 2, referencial teórico, apresenta os fundamentos teóricos 

necessários para a compreensão do tema, abordando conceitos essenciais de 

segurança da informação, o panorama das ameaças de malware, a arquitetura de 

arquivos executáveis e os princípios do aprendizado de máquina aplicados na 

detecção de ameaças, além de uma descrição detalhada do Dataset EMBER. 

O capítulo 3, metodologia de desenvolvimento, descreverá o caminho 

percorrido para a realização da pesquisa, detalhando o processo de preparação do 

ambiente, a obtenção e pré-processamento dos dados, a escolha e configuração do 

algoritmo de machine learning e os procedimentos de treinamento e teste do modelo 

realizados. 

O capítulo 4, resultados e análise, apresenta e discute os achados da pesquisa 

exibindo as métricas de desempenho do modelo treinado, como acurácia, precisão, 

recall e AUC, além de uma análise crítica dos resultados obtidos na classificação das 

amostras de teste. 

Finalmente, o capítulo 5, resultados e considerações finais, irá retomar o 

problema e os objetivos propostos, apresentando as conclusões do estudo e 

discutindo as limitações encontradas no decorrer do trabalho e sugeridas direções 

para futuras pesquisas na área de classificação de executáveis maliciosos utilizando 

aprendizado de máquina. 
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2  REFERENCIAL TEÓRICO  

Antes de se debater sobre a IA (Inteligência artificial), é necessário entender 

bem suas origens, antecessores e criadores, além dos usos que essas tecnologias 

tiveram no decorrer da história, com o intuito de se contextualizar melhor e 

compreender como tudo se desenvolveu até os dias atuais. Tais assuntos serão 

tratados nos subcapítulos abaixo, começando pelos computadores. 

 

2.1 A HISTÓRIA DOS COMPUTADORES 

2.1.1 A ORIGEM DO TERMO “COMPUTADOR” E “COMPUTAR” 

 Inicialmente, quando se refere ao termo “computador” a primeira imagem que 

se vem à mente é a de uma incrível máquina amplamente usada nos últimos tempos 

com finalidades profissionais, pessoais e de entretenimento. No entanto, pouco se 

pensa sobre como essa tecnologia chegou a esse ponto e menos ainda sobre a 

origem do seu nome. 

 A palavra “computador” é um nome errôneo dado a máquinas digitais que agora 

residem nas mesas da maioria das pessoas, já que, até meados da Guerra Fria, o 

termo se referia a uma ocupação muito necessária, é o que diz Kelly et al. (2013, p. 

19). As chamadas “computadores humanos” eram pessoas responsáveis pela 

realização de cálculos matemáticos complexos e pelo armazenamento e manipulação 

de informações, exatamente o que é feito por máquinas atualmente (Kelly et al., 2013, 

p. 19).  

Um exemplo histórico desse trabalho se dá no Reino Unido que, no início da 

Segunda Guerra Mundial, com um contrato com o Ministério da Guerra, Leslie John 

Comrie, pioneiro em computação mecânica da época, usou uma equipe de dezesseis 

“computadores humanos” para calcular e produzir tabelas de artilharia que eram 

usadas pelos soldados para mirar os canhões (Kelly et al., 2013, p. 74). Outro 

momento, na década de sessenta, em meio a corrida espacial, esses profissionais, a 

maioria mulheres afrodescendentes, eram muito empregados nos cálculos de 

trajetória orbital de voos espaciais na NACA (National Advisory Committee for 

Aeronautics) que, mais tarde, se tornou a NASA (National Aeronautics and Space 

Administration), o que é demonstrado por Shetterly, (2016, p. 23).  
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 Com o fim da guerra e, consequentemente, com o desenvolvimento de diversas 

máquinas eletrônicas capazes de fazer o trabalho de computar diversas vezes mais 

rápido e com melhor eficiência do que humanos, esses trabalhadores foram deixados 

de lado (Kelly et al., 2013, p. 74). Assim sendo, o termo “computador” deixou de se 

referir a trabalhadores cuja função era desempenhar cálculos complexos e foi 

atribuído a máquinas eletrônicas que realizavam o mesmo trabalho, porém de forma 

mais eficiente, rápida e barata (Crevier, 1993, p.28). Agora, no próximo parágrafo, 

será abordado o termo “computar”. 

 Independente de um computador ser digital, baseia-se em circuitos e estruturas 

eletrônicas para funcionar, ou analógico, que faz uso de partes mecânicas para 

operar, suas funções básicas permanecem as mesmas: obter informações, interpretá-

las e gerar um resultado (Woiler, 1970). É evidente que, na informática, essas são 

exatamente as etapas que um computador percorre para cumprir seu papel na 

agilização e precisão das mais diversas atividades. Portanto, “computar” significa 

obter uma entrada, processá-la e produzir uma saída (Woiler, 1970). A origem do 

termo vem do latim computo que significa “fazer o cômputo de”, “contar”, “calcular”, 

“orçar” ou, no contexto da informática, “processar” (Dicionário Priberam, 2025). Agora, 

com essas informações em mente, será abordado os principais computadores e 

dispositivos de cálculo criados durante a história, no intuito de fornecer uma clara linha 

do tempo de fatos que levaram essas máquinas a se tornarem o que se vê hoje. 

 

2.1.2 OS PRIMEIROS COMPUTADORES, PROGRAMAS E DISPOSITIVOS DE 

CÁLCULO 

É de conhecimento geral que, no decorrer da história, foram desenvolvidos 

muitos dispositivos tecnológicos cujo objetivo era automatizar cálculos. Kelly et al. 

(2013, p. 12) cita que máquinas de cálculo de mesa já eram estudadas e 

desenvolvidas por Blaise Pascal e Gottfried Leibniz, indicando que no século XVII 

essa tecnologia já era cobiçada por grandes mentes. Kelly et al. (2013, p. 45) também 

menciona alguns outros dispositivos históricos como o tear de Joseph-Marie 

Jacquard, desenvolvido no início do século XIX, que revolucionou a indústria têxtil por 

usar cartões perfurados para o armazenamento de instruções para padrões de 

tecelagem e o Aritmômetro de Thomas de Colmar de Alsácia, feita em 1820, sendo a 

primeira máquina comercialmente produzida que permitia realização das quatro 
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operações matemáticas básicas: adição, subtração, multiplicação e divisão. A seguir, 

uma imagem da calculadora mecânica de Pascal, criada por volta de 1642, e o tear 

de Jacquard, feito em 1804. 

Além disso, Russell e Norvig (2009, p. 33) abordam alguns dos exemplos mais 

conhecidos como a Máquina Diferencial e a Máquina Analítica de Charles Babbage, 

ambas criadas na década de 1830, cujo objetivo era o cálculo de tabelas matemáticas. 

A segunda foi programada por Ada Lovelace, colega de Babbage e considerada a 

primeira programadora do mundo, que especulou que um dia a máquina poderia 

compor música ou jogar xadrez, o que mostra que ela já compreendia a dimensão em 

que a inteligência das máquinas poderia chegar (Russell; Norvig, 2009, p. 33).  

Agora, já na segunda metade do século XIX, embora nem todas sejam 

exatamente máquinas de cálculo matemático, Dyson (2012, p. 88), juntamente com 

Suleyman e Bhaskar (2023, p. 43), Kelly (2013, p. 13) e Crevier (1993, p. 27), citam 

outros dispositivos que agilizaram e automatizaram processos, como a máquina de 

escrever comercialmente bem-sucedida da Remington, em 1874, o telefone, 

introduzido por Alexander Graham Bell, em 1876, algo que, para a época, foi um 

marco na agilização das comunicações, as primeiras estações elétricas em Londres 

e Nova York, por volta de 1882 e a máquina de tabulação de Herman Hollerith, em 

1890, que processava dados para o censo dos Estados Unidos usando cartões 

perfurados, uma grande inovação para e época. 

 Já trazendo para o século passado, no ano de início da Primeira Guerra 

Mundial, em 1914, Schmidhuber (2022, p. 23) menciona o El Ajedrecista, uma 

máquina funcional, construída pelo espanhol Leonardo Torres y Quevedo, capaz de 

jogar xadrez, a qual é considerada até mesmo o marco inicial da IA. A Segunda Guerra 

Mundial, apesar dos horrores desse momento sombrio da história, foi o período em 

que mais houve avanços na computação, algo que é indicado por vários autores como 

Kelly (2013, p. 75) que menciona a construção do Harvard Mark I da IBM (International 

Business Machines), iniciada em 1937 e finalizada em 1943, revelando a 

convergência, mesmo a partir daquela época, de máquinas de cálculo e escritório.  

Agora, focando nos computadores criados no período da Segunda Guerra 

Mundial, Crevier (1993, p. 312) fala do Zuse-2, o primeiro computador eletromecânico 

construído pelo alemão Konrad Zuse, em 1939. Russell e Norvig (2009, p. 33) 

mencionam a série Heath Robinson, em 1940, construídos pela equipe de Alan Turing 

na Grã-Bretanha cujo uso era decifrar mensagens alemãs e a Bombe, também 
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conhecida como Máquina de Turing, finalizada em 1940, cujo papel foi vital no 

desenrolar da guerra devido sua capacidade de quebrar as cifras geradas pela 

Enigma alemã. Russell e Norvig (2009, p. 34-35) também citam o ABC (Atanasoff-

Berry Computer), iniciado em 1940 e finalizado em 1942, sendo o primeiro computador 

eletrônico, construído por John Atanasoff e Clifford Berry, o Zuse-3, em 1941, a 

evolução do Zuse-2 de Konrad Zuse, onde se introduziu os números de ponto flutuante 

e a primeira linguagem de programação de alto nível chamada Plankakül e o 

Colossus, em 1943, máquina baseada em válvulas de vácuo, também feita pela 

equipe de Turing cujo uso era a quebra das cifras geradas pela Lorenz alemã. Por fim, 

Schmidhuber (2022, p. 24) aborda o desenvolvimento do ENIAC (Electronic Numerical 

Integrator and Computer), no final da guerra, em 1945, desenvolvido na Universidade 

da Pensilvânia, considerado o primeiro computador digital programável multiuso cujo 

objetivo inicial era o cálculo de tabelas de artilharia para o exército dos Estados 

Unidos. 

Dito isso, próximo subtópico, será discutido o termo inteligência artificial, 

juntamente com os seus conceitos e história. 

 

2.2  INTELIGÊNCIA ARTIFICIAL 

Agora que já se tem em mente alguns dos principais eventos e antecessores 

da inteligência artificial, pode-se partir para os primeiros projetos, estudos e ideias 

que posteriormente levaram a criação do campo de estudo dessa incrível tecnologia. 

No ano de 1943, em meio ao conflito entre as potências mundiais, o 

neurofisiologista Warren McCulloch e o matemático Walter Pitts, escreveram um 

artigo revolucionário intitulado “A Logical Calculus of the Ideas Immanent in Nervous 

Activity” (Um Cálculo Lógico de Ideias Imanente na Atividade Nervosa) (Santos, 

2023), onde propuseram um modelo matemático de redes neurais, assim como as 

bases para o desenvolvimento da inteligência artificial.  

Já em 1950, Alan Turing, o famoso matemático britânico e criador da “The 

Bombe”, abordada anteriormente, publica o artigo intitulado "Computing Machinery 

and Intelligence" (Máquinas de Computação e Inteligência), que estabelece 

questionamentos acerca da capacidade das máquinas de pensarem e agirem como 

humanos e seu método, atualmente conhecido como “Teste de Turing” ou “Jogo da 

Imitação”, que permite calcular a capacidade delas de imitarem o comportamento 
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humano (Santos, 2023). Isso se tornou um pilar central no estudo e desenvolvimento 

da inteligência artificial até os dias atuais (Mucci, 2024). 

Pouco tempo depois, em 1951, Marvin Minsky e Dean Edmunds, apoiados 

pelo matemático e físico John von Neumann, criaram a primeira rede neural artificial, 

chamada SNARC (Calculadora de Reforço Analógico Neural Estocástico) (Mucci, 

2024), que por meio de três mil válvulas eletrônicas, simulava quarenta unidades 

semelhantes a neurônios. Ela foi uma tentativa inicial de modelar os processos de 

aprendizado no cérebro humano. Com essas informações em mente, a partir do 

próximo parágrafo, será tratado a criação oficial do termo “inteligência artificial”, 

juntamente com seu significado. 

Mesmo com toda a contribuição e invenções citadas até o momento, o termo 

“inteligência artificial” ainda não existia formalmente e, sim, apenas como uma 

expressão para definir uma ideia. Foi somente no ano de 1956, na Conferência de 

Dartmouth, que, John McCarthy, considerado o pai da inteligência artificial, 

juntamente com Marvin Minsky, Claude Shannon, Nathaniel Rochester e outras 

figuras importantes, fundaram o termo “inteligência artificial” (Abeliuk; Gutiérrez, 

2021), a formalizando de vez como um novo campo de estudo científico. Somente a 

partir daí, essa expressão começou de fato a ganhar popularidade, sendo um marco 

inicial para a tecnologia em questão. 

Agora que o termo para essa invenção já existe, deve-se também atribuir os 

conceitos que definem uma inteligência artificial. Segundo o dicionário Oxford 

Languages, o termo “inteligência” significa “faculdade de conhecer, compreender e 

aprender” e “artificial” define-se por “produzido pela mão do homem, não pela 

natureza; postiço”. Portanto, “inteligência artificial”, juntando a definição de cada 

palavra separadamente, seria algo como uma simulação da capacidade de 

aprendizado e conhecimento do ser humano em algo criado por ele mesmo. Agora, 

com isso tudo definido, serão abordados os subcampos da IA: aprendizado de 

máquina, redes neurais e aprendizado profundo. Com isso, no subcapítulo a seguir, 

será abordado a respeito do aprendizado de máquina. 

 

2.2.1   APRENDIZADO DE MÁQUINA  

 Agora, que já se sabe um pouco sobre a IA, deve-se ter conhecimento de 

alguns dos seus subcampos, como o machine learning ou aprendizado de máquina. 
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Esse termo é uma área da ciência de programação dos computadores para que eles 

possam aprender com dados, utilizando algoritmos que aprimoram seu desempenho 

e precisão com base em experiência, sem que precisem ser explicitamente 

programados, é o que diz Géron (2019, p. 30).  

Logo, observa-se a importância desse campo, afinal, um programador, na 

construção de um sistema de antispam de e-mails, por exemplo, precisaria observar 

as palavras mais comuns contidas neles e então criar uma série de regras a um 

algoritmo, para que então ele possa filtrá-los, cenário citado por Russell e Norvig 

(2009, p. 884). O problema existente nesse sistema é que, caso ele não seja 

continuamente atualizado pelo programador com novos dados, ele se tornará 

ineficiente em seu trabalho, pois os autores dos spams, rapidamente, adaptariam seus 

e-mails, seja usando palavras-chave diferentes ou alterando diversas palavras por 

seus sinônimos, assim contornando o algoritmo (Géron, 2019, p. 32).  

Com isso em mente, é aqui que entra o machine learning: ao se coletar um 

grande volume de dados, nesse caso, e-mails já verificados como spam por humanos, 

rotulá-los, assim treinando um modelo, e disponibilizá-los para o software, ele, com 

base nisso, saberá quais e-mails são spam ou não. Géron (2019, p. 33) explica que, 

no aprendizado de máquina, o algoritmo se foca em encontrar padrões nos dados e 

não em seguir regras, assim permitindo que, mesmo que chegue um dado ainda 

desconhecido, ele, com base nas informações já adquiridas, possa fazer uma previsão 

sobre esse dado. No exemplo citado, ele poderia prever se um e-mail, mesmo não 

sendo conhecido, é spam ou não com base no volume de dados já possuído. Esse é 

o objetivo central e a particularidade do machine learning. 

Bishop (2006, p. 22), juntamente com Goodfellow, Bengio e Courville (2016, p. 

130), revelam que o principal desafio do aprendizado de máquina é criar algoritmos 

que funcionem bem tanto com os dados com os quais foram treinados, mas também 

com novas informações, nunca vistas pela máquina, capacidade chamada de 

generalização, que é desenvolvida ao se encontrar padrões nos dados. Existem três 

principais tipos de aprendizado de máquina, que serão tratados nos parágrafos 

seguintes.  

 Aprendizado supervisionado: Géron (2019, p. 74), Goodfellow, Bengio e 

Courville (2016, p. 125) dizem que esse é o tipo mais comum. Resume-se a alimentar 

o algoritmo com dados de treinamento com exemplos de pares de entrada e saída, 

onde cada saída é rotulada por um humano, cujo objetivo é mapear as entradas às 
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saídas corretas. As duas tarefas mais comuns supervisionadas são classificar e prever 

valores numéricos. 

 Aprendizado não supervisionado: Géron (2019, p. 409) e Bishop (2006, p. 23) 

explicam que nesse método os dados de treinamento são compostos por um conjunto 

de entradas sem quaisquer valores de saída correspondentes, com o objetivo de 

descobrir padrões e estruturas nos próprios dados e, com isso, formar agrupamentos, 

distribuir e projetar os dados para posterior visualização. 

 Aprendizado por reforço: Géron (2019, p. 37), Bishop (2006, p. 23) e 

Goodfellow, Bengio e Courville (2016, p. 126) citam que essa é uma abordagem muito 

utilizada para treinamento de bots para as mais diversas atividades. Resume-se a 

ensinar um agente de software a se comportar em um cenário realizando ações e 

observando resultados. Esse programa recebe punições ou recompensas, uma 

espécie de feedback, com base no resultado que ele gera, assim o ensinando uma 

política de atividades que maximizem sua recompensa total ao longo do tempo. 

Portanto, os maiores benefícios do uso do aprendizado de máquina é a 

resolução de problemas que seriam intratáveis pela programação tradicional e a 

adaptação a novos ambientes e ameaças, coisas que são, de certa forma, a fundação 

da IA, afinal a característica central da inteligência é a capacidade de aprender, algo 

enfatizado por Russell e Norvig (2009, p. 21). Agora, no próximo subcapítulo, serão 

abordadas as redes neurais, outro subtópico da inteligência artificial. 

 

2.2.2   REDES NEURAIS 

Outro subcampo da IA são as Redes Neurais Artificiais (RNA), que são modelos 

de aprendizado de máquina inspirados nos neurônios biológicos em nossos cérebros, 

daí o nome “redes neurais” (Géron, 2019, p. 463). Eles são feitos para realizar 

atividades que exigiram inteligência humana, como reconhecimento de padrões, 

previsão e classificação, cuja ideia principal é fazer muitas unidades computacionais, 

chamadas, nesse caso, de neurônios, trabalharem juntas para resolver tarefas 

complexas e exibir um comportamento inteligente quando interconectadas em uma 

rede (Goodfellow; Bengio; Courville, 2016, p. 39). 

 Assim como em um computador, o ciclo de vida de informações em uma rede 

neural segue o mesmo padrão: entrada, processamento e saída. Na inserção de 

dados (que são recebidos pela chamada camada de entrada, uma das camadas de 
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neurônios que constituem a rede neural, que por sua vez pode ser composta por uma 

ou mais camadas) deve-se transformá-los, antes de tudo, em números, normalmente 

na forma de vetores ou matrizes, é o que dizem Géron (2019, p.12) e Mitchell (2019, 

p. 33). Dependendo do formato desses dados, podendo ser imagem, texto ou dados 

tabulares, pode ser usado uma transformação usando cálculos diferentes, mas o 

objetivo é sempre o mesmo nessa etapa: obter uma representação numérica dessas 

informações (Bishop, 2006, p. 158). A camada de entrada não realiza nenhuma 

computação, ela apenas passa os dados brutos para a camada oculta da rede. 

 Agora, após a entrada ser feita com sucesso, essas informações passam por 

uma ou mais camadas ocultas (Hidden layers) que é onde serão, de fato, 

processadas. Mitchell (2019, p. 44) aborda que o objetivo principal nessa parte é 

transformá-las em representações mais abstratas e, consequentemente, úteis para a 

tarefa final, como classificação ou regressão. O processamento nas camadas ocultas 

pode ser dividido em duas etapas principais, com a primeira sendo a combinação 

linear, ou soma ponderada, em que, segundo Géron (2019, p. 472) e Bishop (2006, p. 

247), cada neurônio (ou unidade de processamento) recebe as saídas de todos os 

neurônios da camada anterior e, considerando o peso (weight) associado a cada uma 

dessas conexões, que indica a força ou importância daquela conexão, o neurônio 

calcula uma soma ponderada de suas entradas, adicionando também um valor de viés 

(bias) a esse cálculo.  

Utilizando uma função de ativação, que é um cálculo matemático que auxilia o 

neurônio a aprender um padrão complexo, a segunda etapa de processamento faz 

uso dessa função do tipo não linear, que, após a etapa anterior, que ao ser aplicada 

pelo neurônio, o resultado obtido é usado para produzir sua saída final (Bishop, 2006, 

p. 248). A não linearidade é crucial nessa etapa, senão a rede neural constituída de 

múltiplas camadas seria equivalente a uma rede neural de única camada, limitando 

severamente sua capacidade de aprender padrões complexos (Géron, 2019, p. 483). 

 Após o processamento realizado, a camada de saída, que é a última da rede, 

recebe as saídas da última camada oculta e as transforma no formato final desejado 

(Goodfellow; Bengio; Courville, 2016, p. 384). Dependendo do tipo de atividade sendo 

executada, a saída produzida será diferente, por exemplo, se a tarefa é prever um 

valor contínuo, a camada de saída é composta por um único neurônio com uma função 

de ativação do tipo linear, cuja saída é a previsão numérica final (Géron, 2019, p. 485). 
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Para classificações, começando pela binária, para identificar se uma entrada é 

ou não spam, por exemplo, a camada de saída também será constituída por somente 

um neurônio, que desta vez usará uma função de ativação sigmoide, comprimindo a 

saída em um valor entre zero e um, interpretado como a probabilidade de ser positivo 

ou negativo. Géron (2019, p. 488) explica que, para classificação multiclasse, o 

segundo tipo, se consiste em classificar a entrada em um certo número de classes 

exclusivas, usando um número igual de classes e neurônios, cada um representando 

uma classe, que constituirão a camada de saída. Géron (2019, p. 489) também 

salienta que a função de ativação softmax é aplicada a toda a camada para garantir 

que as saídas de todos os neurônios sejam valores entre zero e um e que juntos 

somem um. Ao analisar cada uma delas, pode-se descobrir a probabilidade de a 

entrada pertencer àquela classe ou não. Agora, no subtópico abaixo, será abordado 

o deep learning. 

 

2.2.3   APRENDIZADO PROFUNDO 

O deep learning ou aprendizado profundo, é um subcampo do machine learning 

que usa modelos computacionais das redes neurais, mais precisamente as Deep 

Neural Networks ou Redes Neurais Profundas, que são redes neurais constituídas por 

muitas camadas de neurônios, permitindo um aprendizado muito mais profundo, daí 

o seu nome (Friedman; Hastie; Tibshirani, 2009, p. 7). Ele é muito usado em domínios 

como reconhecimento de imagem e fala, tradução de idiomas, análise de dados de 

aceleradores de partículas, descoberta de medicamentos e análise de dados 

genômicos, justamente por serem áreas amplas que exigem um bom aprofundamento 

para que sejam dominadas, é o que dizem Suleyman e Bhaskar (2023, p. 158) e 

Lecun, Bengio e Hinton (2023, p. 2). 

 A ideia fundamental do deep learning é permitir que computadores aprendam 

a partir da experiência e entendam o mundo em termos de uma hierarquia de 

conceitos, onde cada um deles é definido em relação a outros mais simples 

(Goodfellow; Bengio; Courville, 2016, p. 24). Em vez de serem programadas com 

regras explícitas por humanos, como “gatos têm orelhas pontudas e bigodes”, as 

redes de aprendizado profundo aprendem automaticamente a partir de dados (Lecun; 

Bengio; Hinton, 2023, p. 2). Essa abordagem é um tipo de aprendizado de 

representação, onde, em cada camada, o modelo transforma a representação do nível 
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anterior em outra de nível superior sendo um pouco mais abstrata (Lecun; Bengio; 

Hinton, 2023, p. 3). As primeiras camadas aprendem a detectar características mais 

simples e de baixo nível enquanto as camadas mais profundas combinam esse 

aprendizado para assimilar conceitos mais complexos e abstratos, também explicado 

por Lecun, Bengio e Hinton (2023, p. 2). A principal característica do deep learning 

está no fato de que essas camadas não são projetadas por engenheiro humanos, mas 

sim aprendidas a partir dos dados com um procedimento de aprendizado de propósito 

geral, a diferenciando das técnicas de aprendizado de máquina convencionais 

(Suleyman; Bhaskar, 2023, p. 162).  

 Lecun, Bengio e Hinton (2023, p. 4) dizem que o funcionamento do aprendizado 

profundo é um processo iterativo, normalmente usando um algoritmo de otimização 

chamado stochastic gradient descent ou descida de gradiente estocástico. O processo 

pode ser divido nas seguintes etapas: antes de tudo, como no machine learning, é 

obtido uma entrada de grande quantidade de dados rotulados, sejam imagens, textos, 

áudios etc. Feito isso, inicia-se o treinamento de minimizar a função de custo (ou 

perda), que mede o erro entre a saída produzida pela rede e a saída desejada (o rótulo 

correto) (Lecun; Bengio; Hinton, 2023, p. 2). Agora, com a função de custo reduzida, 

começa o processo de forward propagation ou passagem direta, em que um lote de 

dados de treinamento é passado através da rede, em cada camada nela, desde a 

entrada até a saída. Usando todo o processo descrito anteriormente no tópico de 

redes neurais (cálculo de soma ponderada, aplicação da função de ativação etc.) a 

esses dados, é produzido, no final dessa etapa, a previsão da rede, o que é explicado 

por Goodfellow, Bengio e Courville (2016, p. 191) e Lecun, Bengio e Hinton (2023, p. 

3). 

 Terminando essa etapa, após a passagem direta, o erro é calculado. Em 

seguida, o algoritmo de retropropagação calcula o gradiente da função de erro em 

relação a cada peso e viés da rede (Géron, 2019, p. 480). Esse algoritmo, que é uma 

aplicação eficiente da regra da cadeia do cálculo, propaga o gradiente de erro da 

camada de saída até a camada de entrada, ou seja, “para trás”, o que determina a 

contribuição de cada parâmetro para o erro total (Lecun; Bengio; Hinton, 2023, p. 5). 

Por fim, com os resultados obtidos até agora, é realizado um ajuste de pesos, em que 

o gradiente calculado é usado por um algoritmo de otimização para ajustar os pesos 

e vieses da rede na direção que reduz o erro. Lecun, Bengio e Hinton (2023, p. 5) 

citam que esse processo é repetido milhões de vezes, usando lotes de dados 
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diferentes, até que o desempenho da rede em um conjunto de validação pare de 

melhorar, o que mostra que chegou em seu ponto de precisão máximo. Com isso, 

encerra-se o tópico de aprendizado profundo, assim como o de inteligência artificial. 

No subtópico seguinte, será discutido o cenário atual da IA no mundo. 

 

2.2.4 CENÁRIO ATUAL DA INTELIGÊNCIA ARTIFICIAL 

A inteligência artificial se tornou um pilar fundamental no nosso século e com o 

passar do tempo ela deixou de ser uma tecnologia em desenvolvimento e se tornou 

uma ferramenta utilizada no cotidiano (Thunderbit, 2025). 

Em 2025, 78% das organizações relataram que usam a IA, com um aumento 

de 55% em relação ao ano anterior, seu uso acabou impactando diversos setores da 

sociedade (Ramos, 2024). Na saúde, por exemplo, algoritmos de aprendizado de 

máquina são usados para diagnósticos mais precisos e aceleram as descobertas de 

medicamentos. Um estudo da IBM Watson Health demonstrou que sistemas de IA 

podem identificar anomalias em imagens médicas com até 95% de precisão, 

superando, em alguns casos, a acurácia de médicos humanos (IBM, 2025). Em outros 

setores como na educação, plataformas personalizam e facilitam o aprendizado, no 

mercado veículos autônomos geram rotas e se controlam sem auxílio, plataformas 

como o YouTube e Netflix aprendem os gostos do cliente para deduzir e recomendar 

anúncios e vídeos personalizados, e na indústria financeira, detecta fraudes e otimiza 

investimentos. 

Em 2025, o mercado global de IA está em expansão exponencial. É estimado 

que o valor do mercado está na faixa de US$ 391 bilhões, com projeções de 

crescimento de cerca de US$ 1,81 trilhão até 2030, com uma taxa de crescimento 

anual composta (CAGR) de 37,3% (Founders Forum Group, 2025). A inteligência 

artificial generativa sozinha atingiu 33,9 bilhões em 2024 e deve atingir cerca de US$ 

356,10 dólares até 2030, um aumento de sessenta vezes em relação a 2020 

(Demetrio, [s.d.]). No subcapítulo seguinte será iniciado o assunto sobre executáveis 

maliciosos, onde será explicado o que são, seus tipos, como funcionam e suas 

origens. 
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2.3  EXECUTÁVEIS PE 

Daniel Donda ([s.d.]), especialista em cibersegurança conhecido, define 

Portable Executable (PE), como o formato padrão do Windows x86 e x64 para 

executáveis portáteis, equivalente ao formato Executable Link File (ELF) no sistema 

operacional Linux. Ele é o sucessor do antigo formato Common Object File Format 

(COFF) usado em sistemas Windows NT. 

Um executável PE é uma estrutura de dados que oferece ao loader do sistema 

operacional todas as informações necessárias para que o código do executável seja 

encapsulado, carregado na memória e executado. As estruturas dos arquivos PE 

possuem os seguintes componentes principais, descritos nas Tabelas 1, 2 e 3: 

 

 

Tabela 1 – Estrutura do arquivo PE 

Estrutura Descrição 

DOS Header Primeiros 64 bytes, identificam o arquivo como executável. 

DOS Stub Exibe uma mensagem de erro se executado em modo DOS. 

PE File Header 

Inclui SIGNATURE, IMAGE_FILE_HEADER e 

IMAGE_OPTIONAL_HEADER, definindo a aparência do restante do 

arquivo. 

Image Optional 

Header 

Apesar do nome, este não é apenas um cabeçalho opcional, ele 

contém informações críticas que estão além das informações 

básicas contidas na estrutura. 

Fonte: Próprios autores 

  

 Na Tabela 1, pode-se observar a estrutura do arquivo PE, algo importante para 

entender melhor como ele funciona e quais campos ele possui, afinal isso é parte das 

informações contidas no Dataset EMBER que permite a classificação de um 

executável de maneira correta. A seguir, encontra-se a Tabela 2, contendo o section 

table e seus campos: 
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Tabela 2 – Section table e seus campos 

Estrutura Descrição 

Section Table São seções do arquivo 

Name Nome da seção 

VirtualSize Tamanho em memória 

SizeOfRawData Tamanho no disco 

PointerToRawData Deslocamento dos dados 

Characteristics Atributos da seção 

Fonte: Próprios autores 

 

A Tabela 2 exibe as informações contidas em uma tabela de seções de um 

arquivo PE, ela descreve as seções do programa para que o Windows possa 

compreendê-lo corretamente para assim poder fazer bom uso dele. Abaixo, na Tabela 

3, será abordado as descrições dessas seções: 

 

Tabela 3 - Sections e suas descrições 

Seção Descrição 

.text 
Código executável, com o ponto de entrada 

do programa. 

.data Dados inicializados, como strings. 

.rdata ou .idata 
Tabela de importação com APIs do 

Windows e DLLs. 

.reloc Informações de realocação. 

.rsrc Recursos como imagens de interface. 

.debug Informações de depuração. 

Fonte: Próprios autores 

 

 A Tabela 3 é autoexplicativa, ela exibe as principais seções contidas no arquivo 

PE juntamente com a descrição deles. A seguir, no próximo subtópico, será tratado o 

tema dos executáveis maliciosos.  
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2.4  EXECUTÁVEIS MALICIOSOS 

 De acordo com a Microsoft Corporation (2025), executáveis maliciosos ou 

malwares, são softwares projetados especificamente com a intenção de causar danos, 

roubar informações ou comprometer a integridade de dispositivos e redes. Eles 

frequentemente se disfarçam como arquivos legítimos, como executáveis ou 

documentos, induzindo o usuário a ativá-los inadvertidamente. O impacto pode variar 

de roubo de dados pessoais a interrupções graves em infraestruturas críticas. Os 

malwares são classificados por seu comportamento e impacto, sendo os principais 

conforme descrito na Tabela 4: 
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Tabela 4 - Malwares 

Tipo de 

Malware 
Descrição 

Vírus 

Programas que se replicam infectando arquivos ou programas 

legítimos, ativando-se quando o arquivo é executado, como o 

Melissa e o ILOVEYOU. 

Worms 

Autorreplicantes que se espalham por redes sem precisar de um 

arquivo host, explorando vulnerabilidades, são conhecidos por 

consumir recursos e instalar backdoors como o Conficker (2008), 

que infectou milhões de computadores explorando falhas no 

Windows. 

Trojans 

Disfarçam-se de software útil para ganhar acesso não autorizado, 

permitindo controle remoto ou instalação de outros malwares, trojans 

como Zeus podem roubar credenciais bancárias via keylogging. 

Ransomware 

Criptografa arquivos do usuário e exige pagamento para liberação. É 

uma das ameaças mais lucrativas e eficientes para cibercriminosos 

como o WannaCry (2017), que afetou infraestruturas globais, 

incluindo hospitais. 

Spyware 

Monitora atividades do usuário capturando dados como senhas ou 

histórico de navegação. Spywares também são usados como 

ferramentas de vigilância, citando keyloggers em relatórios de 

cibersegurança. 

Rootkits 

Os rootkits escondem a presença do malware em um dispositivo 

pelo máximo de tempo possível para que roube informações e 

recursos de modo contínuo, às vezes, até por anos. 

Botnets 

São redes de dispositivos infectados para ataques DDoS, eles são 

controlados remotamente por invasores, frequentemente usado para 

ataques em larga escala. 

Fonte: Próprios autores 

 

O ciclo de um executável malicioso tipicamente envolve quatro estágios, 

explicados na Tabela 5: 
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Tabela 5 - Etapas da infecção 

Etapa Descrição 

Infecção 
Entra via vetores como e-mails phishing, downloads infectados 

ou exploits de vulnerabilidades em softwares desatualizados. 

Ativação 
Dispara por ação do usuário como abrir um anexo ou gatilhos 

automáticos. 

Propagação Replica-se para outros arquivos ou redes. 

Payload Executa o dano principal, como roubo de dados ou criptografia. 

Fonte: Próprios autores 

 

 Segundo o Rohr (2025), o primeiro vírus surgiu em 1986 infectando plataformas 

IBM PC utilizando mecanismos de ocultação, ele foi chamado de Cérebro Paquistanês 

e atacou a inicialização dos disquetes, o que permitiu que se propagasse em poucas 

semanas. Em seguida, nos anos 80, foi o Morris Worm, conhecido como o primeiro 

“verme” que se propagou em milhares de minicomputadores e estações de trabalho 

como VMS, BSD e SunOS. 

 Já na década de noventa foi o vírus Michelangelo, que infectou o setor de 

disquetes e o setor de MBR de discos rígidos. No ano de 1994 o primeiro ransomware 

foi denominado OneHalf embora nenhum resgate fosse exigido e não houvesse 

código de desativação, ascendeu a primeira série do setor de disco rígido. Se o FDISK 

/ MBR fosse usado, o setor MBR era deletado, incapacitando o sistema de iniciar. 

 Em 1997, o malware auto propagação começou a ser substituído por trojans, a 

tendência de roubar credenciais de conta AOL assumiu diferentes formas e 

pressagiava o fenômeno do phishing. Nos anos 2000 foi um worm de e-mail conhecido 

como ILOVEYOU, que atacou dezenas de milhões de PCs Windows. Ele chegava 

como um anexo que se passava por uma carta de amor que quando aberto, os 

cibercriminosos acessavam o sistema operacional, o armazenamento de dados 

secundários e os dados da vítima. 

 Em 2005, nos encontramos CommWarrior, o primeiro malware para telefone 

móvel capaz de se espalhar por meio de mensagens MMS e Bluetooth. Ele atacou a 

linha de smartphones Symbian Series 60. Em 2008, surge o código malicioso 

Conflicker, que transforma computadores infectados em parte de uma botnet. Esta 

ameaça se propagou por muito tempo e infectou milhares de usuários. Em 2010, um 
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verme chamado Stuxnet marcou uma nova era de malware moderno, os mesmos que 

atacam sistemas de controle industrial e são usados contra instalações nucleares 

iranianas.  

 Em 2012 surge a Medre, uma ameaça que rouba informações extraindo 

documentos AutoCAD. Atualmente, nos deparamos com ameaças como Hesperbot, 

trojan bancário avançado que ataca usuários mediante campanhas de estilo phishing, 

que imitam organizações confiáveis. Assim, quando os atacantes percebem que a 

vítima executou o malware, eles roubam as credenciais da pessoa. Também 

encontramos com Windigo, que em 2014 assumiu o controle de vinte e cinco mil 

servidores Unix em todo o mundo e enviou milhões de mensagens de spam por dia, 

a fim de sequestrar servidores, infectar computadores e roubar informações. 

 Com a evolução da internet os malwares tem se tornado cada vez mais 

complexos e imprevisíveis ao longo do tempo, se propagando com facilidade pela 

mídia. Di Jorge afirma “O Dia Mundial da Internet é uma data para ser comemorada, 

mas também para refletirmos como os códigos maliciosos têm evoluído e se tornado 

mais sofisticados ao longo do tempo”, “Além de mais estruturados, os seus métodos 

de propagação e infecção são mais elaborados, e têm como principal objetivo o 

retorno econômico para o cibercriminoso”, finaliza o executivo. No subtópico seguinte, 

será tratado o tema ransomware. 

 

2.4.1  RANSOMWARE 

 Ransomwares são uma forma específica de malware, eles são programas 

projetados para bloquear o acesso a dados ou sistemas de uma vítima, exigindo 

pagamento para restaurar o acesso. Nos primeiros ataques de ransomware eles 

simplesmente exigiam um resgate em troca de uma chave de criptografia para 

recuperar acesso aos dados, que seriam criptografados pelo criminoso. 

 Eles representam uma ameaça cibernética crescente, com impactos 

financeiros e operacionais significativos em indivíduos, empresas e governos. 

Diferente de outros malwares, o ransomware foca na extorsão direta, combinando 

criptografia de arquivos com ameaças de divulgação de dados roubados. 
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2.4.2  WANNACRY 

 Um grande incidente de segurança que atingiu organizações em todo o mundo 

foi o ataque de ransomware WannaCry. No dia doze de maio de 2017, o worm do 

ransomware WannaCry se propagou para mais de duzentas mil máquinas em mais 

de cento e cinquenta nações. FedEx, Honda, Nissan e o Serviço Nacional de Saúde 

(NHS) do Reino Unido são algumas das vítimas notáveis, sendo que este último teve 

que redirecionar algumas de suas ambulâncias para hospitais diferentes.  

 

2.4.3  SEGURANÇA DA INFORMAÇÃO  

 Neste cenário caótico, surge a segurança da informação (SI) para detecção, 

prevenção e mitigação de ameaças cibernéticas, ela compreende um conjunto de 

ações estratégias para proteger sistemas, programas, equipamentos e redes de 

invasões. 

 Conforme Bastos ([s.d.]), o intuito central da segurança da informação é 

identificar, registrar e combater as ameaças, garantindo assim a proteção de dados e 

sistemas valiosos de possíveis violações ou ataques.  

“Segurança da informação é a proteção de informações importantes contra acesso não 
autorizado, divulgação, uso, alteração ou interrupção. Ajuda a garantir que os dados 
organizacionais confidenciais estejam disponíveis para usuários autorizados, permaneçam 
confidenciais e mantenham sua integridade”. 

 

 A SI (Segurança da Informação) possui estratégias e práticas fundamentais 

baseadas em três pilares principais também conhecida pela sigla CID: 

confidencialidade, integridade e disponibilidade. Entretanto, com o desenvolvimento 

da tecnologia outros pilares foram surgindo, resultando na autenticidade, 

irretratabilidade e conformidade, totalizando em seis pilares principais. 

 Confidencialidade significa garantir que as informações sejam acessíveis 

somente por pessoas, processos ou sistemas autorizados. Disponibilidade significa 

assegurar que informações e sistemas estejam acessíveis e operacionais quando 

necessários, por usuários legítimos. Integridade significa garantir que as informações 

não sejam alteradas, corrompidas ou modificadas de forma não autorizada. 

Autenticidade significa comprovar que a informação, o usuário ou o sistema é genuíno 

e confiável. Irretratabilidade ou Não Repúdio, significa impedir que autor ou receptor 

neguem uma ação ou transação já realizada. Conformidade significa garantir que 
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todos os processos, sistemas e dados estejam em conformidade com ad leis, normas 

e regulamentos. 

 Os malwares representam uma ameaça significativa no cenário digital, com 

impactos que vão além do financeiro, afetando a privacidade e a confiança nas 

tecnologias. A segurança da informação, com suas práticas e tecnologias, é essencial 

para proteger sistemas e dados, garantindo a continuidade dos negócios e a proteção 

dos usuários. Investir em prevenção, educação e resposta rápida a incidentes é crucial 

para mitigar os riscos. À medida que as ameaças evoluem, as estratégias de 

segurança também devem se adaptar, incorporando inovações tecnológicas e 

políticas eficazes.  

No subtópico a seguir será introduzido o Dataset EMBER, usado na realização 

do experimento prático desse trabalho. 

 

2.5 EMBER DATASET 

 O Dataset EMBER é um conjunto de dados de código aberto e gratuito 

comumente utilizado como base a diversos treinamentos de machine learning para 

reconhecimento e classificação de malwares. Esse dataset é fruto de um conjunto de 

diversas amostras de arquivos executáveis PE (Roth, 2022). 

 A versão de 2018 do Dataset EMBER, que será usada neste trabalho, conta 

com mais de um milhão de amostras de executáveis PE digitalizados até o ano de 

2018. Dentre as amostras para treinamento que compõe o Dataset EMBER, é 

indicado na Tabela 6: 

 

Tabela 6 - Amostras para treinamento  

Tipo de Amostra Quantidade Aproximada Observação 

Maliciosas 300.000 Amostras maliciosas 

Benignas 300.000 Amostras benignas 

Não rotuladas 300.000 Amostras sem rótulo 

Fonte: Roth, 2018 

     A Tabela 7 se refere às amostras que compõem os testes:  
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Tabela 7 - Amostras para testes 

Classificação Quantidade de Amostras 

Malignas 100.000 

Benignas 100.000 

Fonte: Roth, 2018 

Além disso, a Tabela 8 exibe do que cada amostra no dataset é composta por:  

Tabela 8 - Estruturas das amostras 

Atributo Descrição 

Hash SHA256 do arquivo Identificador único da amostra 

Data da primeira aparição Data em que o arquivo surgiu 

Rótulo da classificação Indicação se é maligna ou benigna 

Features extraídas 
Conjunto de características coletadas da 

amostra 

Fonte: Phil Roth, 2018 

 

2.5.1 FUNCIONALIDADES DA BIBLIOTECA EMBER 

 A biblioteca EMBER utilizada no Python compõe diversas funcionalidades para 

a manipulação do dataset e manipulação do modelo de treinamento, entre elas pode-

se citar, na Tabela 9: 
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Tabela 9 - Funções do Dataset 

Função Descrição 

create_metadata(data_dir) 
Escreve os metadados em um arquivo CSV 

e retorna o dataframe dele. 

create_vectorized_features(data_dir, 

feature_version=2) 

Cria os features vectors de um arquivo de 

features e os escreve no disco. 

read_metadata(data_dir) 
Lê um arquivo de metadados já criado e 

retorna o dataframe. 

read_vectorized_features(data_dir, 

subset=None, feature_version=2) 

Lê as features vetorizadas e carrega como 

numpy arrays dentro da memória. 

predict_sample(lgbm_model, file_data, 

feature_version=2) 

Prevê um arquivo PE com base no modelo 

LightGBM. 

train_model(data_dir, params={}, 

feature_version=2) 

Treina o modelo LightGBM do Dataset 

EMBER a partir de vectorized features. 

Fonte: Próprios autores 

 

 As funcionalidades acima permitem automatizar e padronizar o processo de 

extração de dados e treinamento de modelos, reduzindo a complexidade técnica para 

pesquisadores e profissionais que desejam avaliar técnicas de detecção de malwares 

baseadas em aprendizado de máquina. Agora será abordada a metodologia de 

desenvolvimento utilizada no trabalho juntamente com o experimento prático 

realizado. 

 

 

 

 

 



38 

 

3 METODOLOGIA DE DESENVOLVIMENTO 

 Neste capítulo, são descritas as etapas da metodologia realizadas para a 

realização da parte prática, que consistiu na leitura de um dataset e no treinamento 

de um modelo de classificação de amostras de ransomware. O processo abrange 

desde a preparação do ambiente até a instalação de dependências e do módulo 

EMBER para o Python. 

 

3.1 FERRAMENTAS E TECNOLOGIAS UTILIZADAS 

 Para a elaboração deste trabalho, foram utilizados ambientes e módulos com 

o foco em favorecer o funcionamento e compatibilidade adequados do ambiente e dos 

códigos que foram empregados, já que, para isso, foram necessárias as versões 

corretas de determinados módulos para a execução das etapas. As principais 

tecnologias utilizadas são exibidas na Tabela 10: 
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Tabela 10 – Tecnologias utilizadas 

Ferramenta / 

Biblioteca / 

Sistema 

Descrição 

Python 3.6 

Para o funcionamento desta metodologia, foi estritamente 

necessário utilizar a versão correta do Python. Algumas de 

suas atualizações acabaram gerando incompatibilidades com 

algumas partes do código. 

Miniconda3 

Por conta de sua flexibilidade e fácil configuração de módulos 

em versões especificas, foi utilizado o Miniconda3. Sua 

flexibilidade permite a criação de um ambiente virtual com a 

versão do Python necessária para o trabalho. 

EMBER 

Um dos módulos principais, que incluiu funcionalidades para 

leitura de dados, extração de features e treinamento de 

modelos usando o Dataset EMBER, um dataset de código 

aberto e gratuito para uso em sua versão de 2018. 

LightGBM 
Biblioteca de aprendizado de máquina baseada em árvores de 

decisão, que foi usada para o treinamento e teste do modelo. 

SKLEARN 

Biblioteca de machine learning que oferece suporte à avaliação 

do modelo, divisão de dados em treino e teste, e outras funções 

auxiliares como métricas de desempenho. 

MATPLOITLIB 
Biblioteca utilizada para visualização de dados e geração de 

gráficos, incluindo a exibição da árvore de decisão treinada. 

Linux Mint no 

VirtualBox 

Para este trabalho foi utilizado o sistema operacional Linux 

Mint, na sua versão 22.2 XFCE, virtualizado no programa 

VirtualBox. O mesmo processo pode ser feito no Windows, 

porém com algumas diferenças que não foram abordadas 

nesse trabalho. 

Fonte: Próprios autores 
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3.2 REQUISITOS DE HARDWARE 

Para garantir o melhor funcionamento é preciso planejar adequadamente o 

hardware disponível. O treinamento de modelo com o EMBER pode consumir muitos 

recursos, especialmente na extração de características e treinamento do modelo. A 

Tabela 11 apresenta os requisitos de hardware aproximados: 
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Tabela 11 – Especificações de Hardware 

Componente 
Requisito 

Mínimo 

Recomendado 

para 

Desempenho 

Ideal 

Observações 

CPU 

4 núcleos 

(Intel i5 / 

Ryzen 5) 

8+ núcleos (Intel 

i7/i9, Ryzen 7/9, 

Xeon) 

O pré-processamento do 

EMBER é intensivo em CPU; 

mais núcleos reduzem o 

tempo de extração de 

features. 

GPU 

Opcional 

(para 

modelos 

baseados em 

árvore) 

GPU com 8GB+ 

VRAM (NVIDIA 

RTX 3060 ou 

superior) 

O EMBER normalmente é 

usado com 

LightGBM/XGBoost (CPU), 

mas redes neurais 

(PyTorch/TensorFlow) se 

beneficiam muito da GPU. 

Memória RAM 8 GB 16–32 GB 

O dataset completo (~1 milhão 

de amostras) pode consumir 

bastante RAM durante o 

treinamento e validação. 

Armazenamento 50 GB HDD 
100 GB SSD 

NVMe 

O Dataset EMBER 2018 

ocupa ~2–3 GB, mas o 

espaço extra é necessário 

para versões intermediárias e 

checkpoints. SSD acelera 

leitura/escrita. 

Sistema 

Operacional 

Windows 10 / 

Linux 

(Ubuntu 

20.04+) 

Linux (Ubuntu 

22.04 LTS ou 

superior) 

Linux oferece melhor 

compatibilidade com 

frameworks de machine 

learning e bibliotecas 

otimizadas. 

Fonte: Próprios autores 
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3.3 ANACONDA E JUPYTER NOTEBOOK 

 Neste trabalho, foram utilizados o Anaconda e o Jupyter Notebook (ambos do 

Miniconda3) por conta da flexibilidade provida por eles em relação a versão de 

módulos e da linguagem Python.  

 

3.4 CONFIGURAÇÃO DO AMBIENTE 

 Nesta seção foi abordada a configuração do ambiente para a realização da 

leitura do dataset e treinamento do modelo. Todos os passos a partir daqui foram 

seguidos com rigor, pois qualquer erro poderia comprometer toda a execução do 

processo.  

 

3.4.1   MINICONDA3 

 A primeira etapa consistiu no download e instalação do ambiente, que pôde ser 

feito pelo seguinte endereço: “https://www.anaconda.com/download/success”, 

conforme na Figura 1: 

 

Figura 1 - Site Anaconda 

 

 Fonte: Próprios autores a partir do site oficial do Anaconda 

https://www.anaconda.com/download/success
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 Foi realizado o download do programa e, feito isso, acessou-se a pasta onde 

ele foi salvo e feita a alteração de permissão necessária com o comando: “chmod 700 

<arquivo-baixado>” e, após isso, ele foi instalado, usando-se “./<arquivo-baixado>”. 

Ressalta-se que foi utilizado “<>” para sinalizar o arquivo, pois é possível haver 

diferenças nos nomes dos arquivos. Nesse exemplo, conforme a Figura 2, o nome do 

arquivo instalado foi “Miniconda3-latest-Linux-x86_64.sh”: 

Figura 2 - Permissão e instalação  

 Fonte: Próprios autores a partir do VirtualBox 

 Após se executar o script de instalação, foram apenas seguidas as instruções 

exibidas no terminal, que consistiam, no geral, em aceitar os termos de uso e definir 

o diretório de instalação. Agora será tratada a criação do ambiente virtual de forma 

detalhada. 

3.4.2 CRIANDO O AMBIENTE VIRTUAL 

 Logo após a instalação do Miniconda3, foi gerado um diretório na pasta usada 

para a instalação, a qual foi “/home/user/miniconda3”. Esse diretório continha todos 

os executáveis importantes para se executar o Anaconda. Para começar, foi conferido 

se o comando “conda” estava funcionando, com o uso de “miniconda3/bin/conda –

version”, indicado na Figura 3: 

Figura 3 - Conferindo a versão 

 Fonte: Próprios autores a partir do VirtualBox 
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 Ao se confirmar o funcionamento do comando “conda”, ele foi inicializado o 

para a interação com o shell, usando-se “miniconda3/bin/conda init”, processo exibido 

na Figura 4: 

Figura 4 – Inicialização 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte: Próprios autores fazendo uso do VirtualBox 

 

 A seguir, foi adicionado algumas linhas de configuração no arquivo 

“/home/user/.bashrc” e, para que essas modificações funcionassem, ele foi 

recarregado com o comando “source ~/.bashrc”, mostrado na Figura 5: 
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Figura 5 - Atualizando o .bashrc 

 Fonte: Próprios autores usando o VirtualBox 

 

 Ao atualizar-se o “~/.bashrc”, o ambiente padrão do Conda, de nome “base” é 

inicializado. Como a metodologia requer módulos em determinadas versões além do 

próprio Python, para que não houvesse conflitos entre as dependências a serem 

instaladas, os ambientes e seus módulos utilizados foram criados de forma isolada, 

assim evitando possíveis conflitos e problemas. 

 Realizada essa parte, foi executado o primeiro comando para sair do ambiente 

padrão do Conda e criar o ambiente: “conda deactivate”. 

Se os passos anteriores foram executados corretamente, os comandos que 

começavam com “miniconda3/bin/conda” foram descartados. No entanto, caso os 

termos de uso não tenham sido aceitos previamente, foi gerado um erro ao tentar criar 

o primeiro ambiente. Esse erro solicitava a aceitação dos termos de uso, que pôde ser 

feita com a execução do comando sugerido pelo próprio Anaconda. Tal situação é 

ilustrada na Figura 6: 
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Figura 6 – Termos de uso 

 Fonte: Próprios autores a partir do VirtualBox  

 

 Ao executar o comando para sair do ambiente base, foi possível confirmar a 

mudança observando o terminal antes e depois da execução. Durante a criação do 

primeiro ambiente sem a aceitação prévia dos termos, foi retornado um erro. Esse 

erro, no entanto, apresentou uma solução simples, bastando executar os comandos 

sugeridos pelo próprio Anaconda “conda tos accept --override-channels --channel 

https://repo.anaconda.com/pkgs/main“ e “conda tos accept --override-channels –

channel https://repo.anaconda.com/pkg/r” . 

 Logo após se aceitar os termos, foi usado novamente o comando para criar o 

ambiente, nesse momento a versão do Python que será instalada foi escolhida, um 

passo que é fundamental para o funcionamento do trabalho. Caso a versão do Python 

não seja passada no comando, ou caso se altere a versão, isso pode acabar 

comprometendo a execução do projeto. O ambiente foi criado usando: “conda create 

-n ember python=3.6 -y”. 

  O parâmetro “-n” especifica o nome do ambiente que será criado, enquanto o 

parâmetro “-y” instrui o instalador a confirmar automaticamente todas as solicitações 

durante o processo de instalação. A seguir iniciou-se a criação do ambiente virtual, 

conforme mostrado na Figura 7: 

 

 

 

 

https://repo.anaconda.com/pkgs/main
https://repo.anaconda.com/pkg/r
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Figura 7 - Criando o ambiente virtual 

Fonte: Próprios autores se usando o VirtualBox 

 

 Após a criação do ambiente, foi instalado tudo o que é necessário para o 

funcionamento. Em seguida, foi verificado se o ambiente havia sido criado 

corretamente por meio do comando: “conda env list”, processo exibido na Figura 8 e 

9: 

 

Figura 8 – Criando o ambiente virtual e conferindo 

Fonte: Próprios autores fazendo uso do VirtualBox  
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Figura 9 - Ativando o ambiente 

Fonte: Próprios autores com o uso do VirtualBox 

 

 Após a execução correta do comando, foi observado, por meio do terminal, que 

o ambiente EMBER havia sido ativado com sucesso. Agora será abordado a respeito 

do seu repositório oficial. 

 

3.4.3 REPOSITÓRIO EMBER 

 O módulo EMBER, que faz uso do Dataset EMBER, abordado anteriormente, 

juntamente com suas dependências, está disponível no repositório oficial da Elastic 

no GitHub, acessível por meio do seguinte endereço: “https://github.com/ 

elastic/ember”, conforme exibido na Figura 10. 

 

Figura 10 - Github EMBER 

Fonte: Próprios autores a partir da página oficial do EMBER  
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 Por meio do terminal, foi utilizado o comando “git” para clonar o repositório do 

EMBER. Caso o Git não estivesse previamente instalado, isso poderia ser feito com o 

comando: “sudo apt update && sudo apt install git”. 

 A partir deste ponto, como os comandos passaram a manipular arquivos e 

diretórios específicos, foi necessário ter atenção redobrada quanto aos caminhos 

utilizados. Para verificar o diretório atual, utilizou-se o comando: “pwd”. 

 Feito isso, foi conferido se o Git foi instalado com sucesso e em seguida 

clonado o repositório “git –help” e do EMBER, por meio do comando ”git clone 

https://github.com/elastic/ember.git“, indicado na Figura 11 e 12: 

 

Figura 11 - Conferindo o Git 

Fonte: Próprios autores a partir do VirtualBox 

 

 O procedimento se segue na Figura 12:  

 

 

 

 

https://github.com/elastic/ember.git
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Figura 12 - Clonando o repositório 

Fonte: Próprios autores a partir do VirtualBox 

  

 Agora, no próximo subtópico, será instalado o módulo do EMBER juntamente 

com suas dependências. 

 

3.4.4 INSTALANDO MÓDULO EMBER E DEPENDÊNCIAS 

 Nesta etapa, foi realizada a instalação do módulo EMBER para Python, 

juntamente com suas dependências. A correta execução desse procedimento foi 

fundamental, uma vez que a ausência de alguma dependência, ou a utilização de 

versões incompatíveis, comprometeria a execução do projeto. 

 Dentro do ambiente EMBER, verificou-se se o repositório havia sido clonado 

corretamente, utilizando o comando “ls -l“ e em seguida acessado o diretório do 

repositório com ”cd ember/”, conforme demonstrado na Figura 13: 

 

 



51 

 

Figura 13 – Diretório EMBER 

 Fonte: Próprios autores usando o VirtualBox 

 

 Foi então conferido o conteúdo do diretório com “ls -l”, exibido na Figura 14: 

 

Figura 14 – Conteúdo do diretório 

Fonte: Próprios autores usando-se o VirtualBox 
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 No diretório do EMBER, encontram-se três arquivos essenciais: 

“requirements_conda.txt”, “requirements_notebook.txt” e “setup.py”, sendo o último o 

principal responsável pela instalação do módulo EMBER, enquanto os dois arquivos 

restantes especificam as dependências necessárias. Estes arquivos de dependências 

incluem módulos essenciais para o treinamento do modelo e algoritmos de árvore de 

decisão, como LightGBM, Scikit-learn, Matplotlib, entre outros. A seguir, na Tabela 12, 

descritos alguns dos comandos utilizados para se instalar as dependências do 

ambiente e o módulo EMBER. 

 

Tabela 12 - Comandos utilizados na instalação do módulo EMBER e dependências 

Comando Descrição 

conda config --add channels 

conda-forge 

Adiciona o repositório Conda-forge como fonte de 

pacotes. Ele é uma comunidade que mantém pacotes 

atualizados e mais variados do que os disponíveis no 

canal padrão. 

conda install --file 

requirements_conda.txt 

Instala todos os módulos contidos no arquivo 

“requirements_conda.txt”. 

conda install --file 

requirements_notebook.txt 

Instala todos os módulos existentes no arquivo 

“requirements_notebook.txt”. 

python setup.py install Instala o projeto EMBER como um pacote Python. 

Fonte: Roth, 2022 

 

 Na Figura 15 e 16, é ilustrado o processo de instalação das dependências 

necessárias descritas anteriormente na Tabela 12, com o intuito de garantir o 

funcionamento correto do ambiente: 
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Figura 15 - Instalando dependências   

Fonte: Próprios autores fazendo uso do VirtualBox 

 

Figura 16 - Instalando as demais dependências  

Fonte: Próprios autores a partir do VirtualBox 

Após a instalação correta dos pacotes essenciais, foi instalado o módulo 

EMBER, processo exibido na Figura 17: 
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Figura 17 – Instalação do módulo EMBER 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte: Próprios autores no VirtualBox 

 Após a instalação dos arquivos de dependências e do pacote EMBER, foi 

instalada a interface de programação Jupyter Notebook por meio do comando ”conda 

install jupyter -y”, conforme a Figura 18: 

Figura 18 - Instalando o Jupyter Notebook 

Fonte: Próprios autores 
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 A seguir, será abordado sobre o dataset escolhido e utilizado na realização do 

trabalho, juntamente com outros detalhes sobre ele. 

 

3.4.5 DATASET UTILIZADO 

 Após instalado o pacote EMBER, além das dependências, foi feito o download 

do dataset localizado no próprio Github ”https://ember.elastic.co/ 

ember_dataset_2018_2.tar.bz2”. 

 O dataset usado neste trabalho é a segunda versão, de 2018, devido ao fato 

de ele ser de código aberto e gratuito para uso. Para garantir o correto funcionamento 

dos códigos desenvolvidos nos tópicos seguintes, o dataset foi mantido no diretório 

em que esses códigos estavam localizados. Agora será iniciada a extração de vetores 

numéricos. 

 

3.5 EXTRAINDO VETORES NÚMERICOS 

 A partir desse ponto, iniciou-se a utilização dos códigos desenvolvidos. Foi 

verificado que todos os procedimentos anteriores foram executados corretamente. 

Dentro do ambiente virtual, o Jupyter Notebook foi aberto dentro do diretório onde o 

para facilitar a execução dos scripts. Para isso, o comando foi executado no terminal 

no diretório onde o dataset havia sido baixado: “jupyter notebook”. 

 Após digitar o comando, foi aberto uma guia no navegador com o Jupyter 

Notebook, conforme mostrado na Figura 19: 

Figura 19 – Guia no navegador com Jupyter Notebook 

Fonte: Próprios autores 

https://ember.elastic.co/
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 Após aberto o Jupyter Notebook, foi selecionada a opção “Python 3” no menu 

“New”, criando-se um documento para a inserção dos códigos. Em seguida, verificou-

se se os procedimentos anteriores de configuração foram executados corretamente 

por meio do comando “!python –version”, usado para verificar a versão do Python, que 

nesse cenário foi a 3.6, conforme a Figura 20: 

 

Figura 20 - Testando versão e módulo EMBER 

 

Fonte: Próprios autores a partir da tela do Jupyter Notebook 

 

Agora, dentro de uma nova célula, foi extraído o dataset com o seguinte 

comando: “!tar -xvjf <dataset>”. Este processo levou algum tempo, devido ao tamanho 

considerável do dataset, conforme exibido na Figura 21: 

 

Figura 21 - Extraindo o dataset 

 

 

 

 

 

 

 

Fonte: Próprios autores na tela do Jupyter Notebook 
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 Após se extrair, foi executada a seguinte célula de código exibida na Figura 22: 

 

Figura 22 - Vetorização e Geração de Metadados 

Fonte: Próprios autores a partir do Jupyter Notebook 

 

Esse passo é obrigatório antes de treinar qualquer modelo, pois os dados 

precisam estar "vetorizados" (transformados de arquivos binários em vetores 

numéricos). Os diretórios usados dentro das funções devem ser os mesmos onde o 

dataset estava localizado. 

Figura 23 – Dataframe obtido após a vetorização 

Fonte: Próprios autores no Jupyter Notebook 

 



58 

 

 A Figura 23 representa o principal dataframe com um milhão de amostras que 

é exibida após a vetorização dos dados. Agora será abordado o carregamento de 

dados vetorizados e metadados no subtópico a seguir. 

 

3.6 CARREGAMENTO DOS DADOS VETORIZADOS E METADADOS 

 Nesta etapa, foram carregados os vetores de características “(X_train, X_test)” 

e os rótulos “(y_train, y_test)” previamente extraídos, além do dataframe de metadados 

contendo informações como hash, data de aparecimento, rótulo e tipo de malware, 

conforme exibido na Figura 24: 

 

Figura 24 - Carregamento dos Dados Vetorizados e Metadados 

Fonte: Próprios autores fazendo uso do Jupyter Notebook 

 

 Agora, com toda a preparação do ambiente concluída, será iniciado o 

treinamento de um modelo para teste. 

 

3.7 TREINANDO O MODELO 

 Para treinar o modelo preditivo, foi utilizado a função “train_model” do pacote 

EMBER, que implementa um classificador LightGBM. O conjunto de treinamento 

contém seiscentas mil amostras balanceadas entre arquivos maliciosos e benignos, 

com mais de duas mil características extraídas de cada arquivo PE. Isso pode ser 

visto na Figura 25:   

Figura 25 – Treinando o modelo 

Fonte: Próprios autores 



59 

 

 A função realizou o ajuste dos parâmetros internos do modelo, otimizando sua 

capacidade de identificar padrões que discriminam malwares. No próximo subtópico, 

será abordada a árvore de decisão gerada a partir do modelo treinado. 

 

3.8  ÁRVORE DE DECISÃO 

 Foi gerada uma árvore de decisão, ilustrada nas Figuras 26, 27 e 28, a partir 

do modelo treinado, que explica a maneira como ele faz sua escolha de maneira 

gráfica e permitindo melhor compreensão. Cada nó da árvore de decisão representa 

uma “regra” ou “teste” que o modelo faz sobre os dados. Esses nós mostram várias 

informações importantes, cujas informações são explicadas na Tabela 13: 
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Tabela 13 - Informações dos campos da árvore de decisão 

Campo Significado Exemplo na árvore 

feature 

Qual característica foi usada para 

dividir os dados, representa 

característica (ou atributo do dado). 

Cada número (feature_637) é uma 

coluna da sua matriz “X_train”. 

Então, “feature_637” é a 637ª coluna 

do vetor de características (dos 

milhares gerados pelo EMBER). 

feature_637 <= -0.5 

gini 

Impureza do nó (mistura de classes), 

ou seja, o quão misturadas estão as 

classes dentro dele. Gini = 0 → nó puro 

(todas as amostras são da mesma 

classe). 

Gini alto (ex: 0.65) → o nó tem mistura 

de classes (malware e benignos 

juntos). 

gini = 0.656 

samples 
É o número de amostras (linhas) do 
dataset que chegaram até esse nó 

durante o treinamento. 

samples = 800000 

value 
Quantas amostras de cada classe 

estão no nó. class_names = 
["unlabeled", "benign", "malware"] 

[200000, 300000, 300000] 

class Classe predominante no nó (resultado).  
decisão final do nó 

benign 

Fonte: Próprios autores 
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Figura 26 – Sub-árvore de decisão gerada contendo o primeiro nó e sua primeira decisão 

 

Fonte: Próprios autores a partir do código presente no Jupyter Notebook 

 

  A Figura 26 contém o primeiro nó, de onde se inicia a decisão do modelo, e a primeira 

decisão que ele deve tomar. A seguir, será exibido o restante das decisões e seus nós em 

forma de sub-árvores, com a Figura 27 se iniciando a partir da primeira decisão considerando 

o arquivo malicioso e a Figura 28 o considerando benigno. 

 

 

Figura 27 – Sub-árvore de decisão gerada considerando o arquivo malicioso 

 

Fonte: Próprios autores a partir do código presente no Jupyter Notebook 
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Figura 28 – Sub-árvore de decisão gerada considerando o arquivo benigno 

 

Fonte: Próprios autores a partir do código presente no Jupyter Notebook 

 

 Agora será finalmente iniciada a classificação de executáveis fazendo uso do 

modelo treinado para isso. 

 

3.9 CLASSIFICANDO EXECUTÁVEIS 

 Para realizar a predição em um arquivo binário individual, foi carregado o 

modelo LightGBM previamente treinado pelo EMBER e aplicando função 

“predict_sample” que processou o conteúdo bruto do arquivo executável. Isso pode 

ser observado na Figura 29: 

 

Figura 29 – Classificação do executável 

Fonte: Próprios autores usando o Jupyter Notebook 

 

 O executável usado foi o “putty.exe”, um cliente SSH bem conhecido e 

claramente benigno. O resultado apresentado foi uma pontuação que representa a 
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probabilidade de o arquivo ser malicioso, onde valores próximos a zero indicam alta 

probabilidade de benignidade, e valores próximos a um indicam maior suspeita de 

malware. Agora será feita a mesma análise, porém em um ransomware real. No 

próximo subtópico será abordada a amostra de malware escolhida para o 

experimento. 

 

3.10 AMOSTRA DE RANSOWARE 

 Para a amostra de ransomware, foi utilizado o WannaCry, muito conhecido 

pelos ataques realizados no passado fazendo uso dele. Após carregar-se o modelo 

em “ember_model_2018.txt” realizou-se a predição do malware. A saída representou 

um número muito próximo de um, indicando que ele foi detectado como altamente 

malicioso, eventos exibidos na Figura 30: 

 

Figura 30 – Predição do Ransomware WannaCry 

Fonte: Próprios autores 

 

 Agora, no tópico a seguir, será feita a análise de resultados obtidos. 
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4 ANÁLISE DE RESULTADOS 

 Nesta seção, foram expostos e analisados os resultados derivados da 

utilização do modelo EMBER na identificação de arquivos maliciosos. Examinando as 

métricas gerais de classificação, e elementos específicos, a finalidade foi analisar a 

capacidade do modelo em diversas situações.  

 Para análise de resultados, foi utilizado um código em Python, utilizando o 

Jupyter Notebook. Para iniciar a análise, foram carregados os módulos mostrados na 

Figura 31: 

 

 

Figura 31 – Carregamento dos módulos para análise 

 

 

  

 

 

 

Fonte: Próprios autores do Jupyter Notebook 

 

 Após se importar os módulos, foi definida uma variável para armazenar o 

diretório do dataset, conforme demonstrado na Figura 32: 

 

Figura 32 - Variável do diretório do dataset 

 Fonte: Próprios autores fazendo uso do Jupiter Notebook 

 

 Realizada essa etapa, foi feita a vetorização dos dados novamente, utilizando 

as funções do módulo EMBER. Esse processo extrai características como seções do 

binário, imports, export tables, entropia etc. Em seguida, os metadados (hash, data, 

label e subset) são gerados, passo ilustrado na Figura 33: 
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Figura 33 – Vetorização gerada novamente 

 

 

 

 

 

Fonte: Próprios autores a partir do Jupyter Notebook 

 

 Nesse ponto, o dataset já vetorizado foi carregado na memória. “emberdf” 

recebeu o dataframe de metadados, enquanto “X_train”, “X_test”, “y_train” e “y_test” 

receberam os vetores numéricos e seus respectivos rótulos. O modelo LightGBM pré-

treinado também foi carregado, permitindo gerar predições imediatamente. O 

carregamento das features é demonstrado na Figura 34: 

 

Figura 34 – Carregando Features 

Fonte: Próprios autores 

 

 A seguir será abordada a distribuição do Dataset EMBER além de algumas 

informações importante sobre ele. 

 

4.1 DISTRIBUIÇÃO DO DATASET EMBER 

 A base de dados utilizada neste trabalho foi o EMBER 2018, contendo um 

grande volume de amostras destinadas tanto ao treinamento quanto à validação de 

modelos de aprendizado de máquina, o que torna possível avaliar o desempenho de 

detecção em um cenário próximo ao ambiente real. 

 O primeiro gráfico demonstra a divisão em train e test totalizando 

aproximadamente um milhão. Foi possível observar que o subset de treino contém a 
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maior parte dos dados. Cada subset foi dividido em três categorias: amostras 

benignas, maliciosas e não rotuladas, onde as não rotuladas refletem uma 

característica muito importante, pois aborda a realidade de muitos ambientes de 

segurança, onde nem todos os arquivos capturados possuem rótulo imediato. Para 

gerar o primeiro gráfico, na Figura 36, foi usado a célula de código presente na Figura 

35: 

 

Figura 35 – Código da divisão de amostras 

Fonte: Próprios autores a partir do Jupyter Notebook 

 

 Ao rodar a célula de código, o gráfico foi gerado logo em sequência, assim, 

representou visualmente a divisão: 

Figura 36 - Divisão de amostras 

 

 

 

 

 

 

 

 

 

 

 

Fonte: Próprios autores usando a célula de código descrita no Jupyter Notebook 
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 A existência de uma quantidade significativa de amostras “unlabeled” é 

especialmente importante, pois aproxima o processo de classificação de um cenário 

real, onde diversas ameaças emergentes ainda não foram totalmente analisadas. 

 O segundo gráfico apresenta a distribuição por mês das amostras, 

evidenciando o mês de aparecimento das amostras durante todo o ano de 2018, além 

de um conjunto adicional de amostras, anteriores a 2018. Esse gráfico foi gerado 

através da seguinte célula de comando, conforme a Figura 37: 

 

Figura 37 - Código do aparecimento de amostras 

Fonte: Próprios autores a partir do Jupyter Notebook 

  

Feito isso, foi gerado a imagem a seguir que demonstra visualmente o 

aparecimento das amostras: 
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Figura 38 - Aparecimento de amostras 

 

 

 

 

 

 

 

 

 

 

 

Fonte: Próprios autores com uso do Jupyter Notebook 

 

 O gráfico exibido na Figura 38 é muito importante, pois evidencia que o dataset 

não é estático, mas sim uma base que contempla uma evolução temporal, o que 

melhora a capacidade do modelo em reconhecer diferentes padrões de 

comportamento de malware ao longo do tempo. No próximo subtópico será discutido 

o desempenho com a taxa de falso positivo controlado. 

 

4.2 DESEMPENHO COM FPR CONTROLADO (ENTRE 1% E 0.1) 

 Nesta etapa, foi feita uma avaliação da taxa de falso positivos. O objetivo dessa 

análise é observar como o modelo se comporta ao alcançar diferentes níveis de 

tolerância a falsos positivos. 

 O threshold define o ponto de corte da pontuação de probabilidade predita pelo 

modelo, determinando se uma amostra será classificada como maliciosa (próximo de 

um) ou benigna (próximo de zero). Um limiar mais baixo implica em uma detecção 

mais agressiva (maior taxa de detecção, porém mais falsos positivos), enquanto limiar 

mais alto torna o modelo mais conservador (menos falsos positivos, mas maior chance 
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de não detectar alguns malwares). Foi usado a seguinte célula de código, conforme 

exibido na Figura 39, que iniciou a fase de geração das previsões do modelo: 

 

Figura 39 - Previsões 

Fonte: Próprios autores fazendo uso do Jupyter Notebook 

 

 Geradas as previsões, foi usado a seguinte célula de código, presente na 

Figura 40, para a avaliação do modelo: 

 

Figura 40 - Código da avaliação do modelo 

Fonte: Próprios autores a partir do Jupyter Notebook 
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 Logo após usar o código para avaliação do modelo, foi gerado em sequência a 

saída com informações para a avaliação, conforme exibido na Figura 41: 

 

Figura 41 – Resultado da avaliação do modelo 

   

 

 

 

 

 

 

Fonte: Próprios autores com uso do Jupyter Notebook 

 

 Na saída com "ROC AUC: 0.9964" foi observado que o modelo tem a 

possibilidade de distinguir perfeitamente amostras malignas e benignas. Apenas um 

de cada cem arquivos benignos foi classificado erroneamente como malware com 1% 

de Falsos Positivos (FPR = 0.01), o modelo detectou cerca de 96,5% dos malwares, 

com 1% de Falsos Positivos. Já o modelo mais conservador com 0.1% (FPR = 0.001), 

apenas um de cada mil arquivos benignos é incorretamente alertado, porém, a taxa 

de detecção caiu para cerca de 87%. 

 Com base nos resultados obtidos, diminuir a FPR (ser mais rígido com falsos 

positivos) aumenta o limiar e reduz a taxa de detecção, sendo o comportamento 

esperado em qualquer modelo de classificação binária. Agora será abordada a 

classificação da amostra de ransomware realizada. 

 

4.3  CLASSIFICAÇÃO DE AMOSTRA DE RANSOMWARE 

 Para avaliar a capacidade do modelo em identificar ransomware, foi utilizada 

uma amostra real do WannaCry, conhecida por criptografar arquivos do sistema e 

exigir pagamento para sua liberação, além de um executável legítimo para 

comparação de resultados, o Putty, um cliente SSH. O modelo LightGBM, 



71 

 

previamente treinado com o Dataset EMBER, foi carregado a partir do arquivo 

“ember_model_2018.txt”. Em seguida, a função “predict_sample” do módulo EMBER 

foi aplicada diretamente sobre o conteúdo binário do executável, processando suas 

características estáticas e retornando uma pontuação de probabilidade de ser 

malware.  

 A execução das duas classificações resultou em uma pontuação de 0.9999 na 

classificação do WannaCry, valor muito próximo de um, indicando alta probabilidade 

de comportamento malicioso. Durante a classificação do Putty, o resultado retornado 

foi um valor extremamente baixo, muito próximo de zero. Esse resultado demonstra 

que o modelo treinado foi capaz de identificar corretamente a amostra WannaCry 

como um ransomware, confirmando sua eficácia na detecção de ameaças conhecidas 

e perigosas. Agora será comentado sobre algumas limitações identificadas no dataset 

utilizado no trabalho. 

 

4.4 LIMITAÇÕES OBSERVADAS 

 Durante os testes complementares, foi avaliada uma amostra recente de 

ransomware, não presente no conjunto de dados original EMBER 2018. 

Ao realizar a predição com o mesmo modelo LightGBM, observou-se que o valor 

retornado foi muito próximo de zero, o que indica alta probabilidade de benignidade. 

 Esse comportamento demonstra uma limitação importante do modelo em 

detectar variantes novas ou amostras de malware que não compartilham 

características estáticas similares com aquelas utilizadas durante o treinamento. 

 Como o Dataset EMBER 2018 foi construído com amostras coletadas até o ano 

de 2018, o modelo tende a apresentar redução de desempenho frente a ameaças 

mais recentes, especialmente quando o ransomware adota técnicas modernas de 

ofuscação, empacotamento, ou assinaturas de código alteradas. A seguir serão 

abordadas as considerações finais sobre os resultados obtidos. 

 

5 RESULTADOS E CONSIDERAÇÕES FINAIS 

 O presente trabalho de conclusão de curso teve como objetivo principal aplicar 

técnicas de aprendizado de máquina na classificação de executáveis maliciosos 

utilizando o Dataset EMBER de 2018. Com ele, os testes feitos demostraram que o 
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modelo treinado teve um ótimo desempenho, alcançando um ROC AUC de 0.9964, o 

que mostrou alta capacidade de separação entre amostras benignas e maliciosas. 

 Observou-se que nos testes com controle de taxa de falsos positivos (FPR), o 

modelo manteve taxas de detecção elevadas mesmo em cenários mais restritivos, a 

1% de FPR, o modelo alcançou 96,5% de taxa de detecção. A 0,1% de FPR, ainda 

obteve 86,8% de taxa de detecção. Os dados apontam que o classificador é eficiente 

e resistente na detecção de ameaças conhecidas, incluindo amostras de ransomware 

clássico, como o WannaCry, que foi classificado corretamente com uma probabilidade 

quase igual a um, confirmando que se tratava de um malware. 

 Entretanto, em testes com amostras recentes, o modelo teve limitações em 

realizar a classificação do executável como malwares de maneira adequada e, nesses 

casos, foram obtidas pontuações muito próximas de zero, indicando falsos negativos 

e refletindo a dependência temporal e estática do modelo. Dessa forma, conclui-se 

que, embora o modelo tenha apresentado excelente desempenho na detecção de 

malwares conhecidos, sua eficácia pode ser comprometida frente a ameaças 

modernas ou variações inéditas. 

 Com isso em mente, fica evidente a necessidade de mais estudos na área além 

da criação de novos métodos e tecnologias para tornar a abordagem mais confiável e 

eficaz na classificação de malwares mais sofisticados. 

Em suma, este trabalho respondeu a questão de pesquisa "como aplicar 

técnicas de aprendizado de máquina para identificar e classificar executáveis 

maliciosos de forma eficaz, utilizando o Dataset EMBER como base de treinamento e 

teste?" e, mesmo com as limitações encontradas, o objetivo geral “aplicar técnicas de 

aprendizado de máquina na classificação de executáveis maliciosos utilizando o 

Dataset EMBER” pôde ser alcançado. 
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