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RESUMO

O presente trabalho tem como objetivo usar técnicas de aprendizado de maquina para
classificar executaveis maliciosos usando o Dataset EMBER. Com o aumento e
evolugcdo constante das ameagas digitais, destacando-se 0 ransomware, a
necessidade da aplicacdo de sistemas e técnicas de seguranca adaptaveis torna-se
imprescindivel na protecdo de sistemas e informacgfes relevantes. Esse estudo,
fazendo uso do Dataset Elastic Malware Benchmark for Empowering Researchers
(EMBER), busca a aplicar o machine learning para testar um modelo capaz de
distinguir entre arquivos benignos e maliciosos. A metodologia utilizada consistiu na
preparacao e configuracdo do ambiente de teste e do Dataset EMBER, que permitiu-
se organizar e preparar os dados extraidos dos executaveis, etapa importante para a
realizacdo dos testes posteriores. Para a classificacdo dos executaveis, foi utilizado o
algoritmo Light Gradient Boosting Machine (LightGBM), conhecido por ser eficiente e
adequado no treinamento com um volume grande de dados, que permitiu o
treinamento de um modelo seguindo as recomendacfes e dados fornecidos pelo
proprio benchmark EMBER, incluindo amostras de ransomware para avaliar seu
comportamento frente a tipos diversificados de malwares. Feito os testes com
executaveis de ransomware e arquivos inofensivos, o modelo mostrou-se adequado
para a funcéo, confirmando sua capacidade de identificar realmente maliciosos e o
validando como uma ferramenta promissora para a deteccao proativa de ameacas,
porém ele exibiu certas limitacdes na classificacdo de ransomwares mais recentes e
modernos, algo que deve ser levado em consideracdo. A pesquisa contribui para o
campo da seguranca da informacdo ao validar uma metodologia moderna para a
deteccdo de malware, oferecendo insights sobre a utilizacdo de datasets como o
EMBER para o desenvolvimento de sistemas de seguranca mais resilientes. Logo,
conclui-se que a aplicacdo do aprendizado de méaquina na andlise de executaveis
pode alterar a forma como as ameacas sao detectadas, trazendo implicagbes
significativas para a protecéo de sistemas e o combate a danos causados por codigos
maliciosos.

Palavras-Chave: Dataset EMBER, ransomware, aprendizado de maquina,
classificagao de malware, LightGBM.



ABSTRACT

This work aims to use machine learning techniques to classify malicious executables
using the EMBER dataset. With the increasing and constant evolution of digital threats,
particularly ransomware, the need for the application of adaptive security systems and
techniques becomes essential in protecting systems and relevant information. This
study, using the Elastic Malware Benchmark for Empowering Researchers (EMBER)
dataset, seeks to apply machine learning to test a model capable of distinguishing
between benign and malicious files. The methodology used consisted of preparing and
configuring the test environment and the EMBER dataset, which allowed for the
organization and preparation of the data extracted from the executables, an important
step for conducting subsequent tests. For the classification of executables, the Light
Gradient Boosting Machine (LightGBM) algorithm was used, known for being efficient
and suitable for training with a large volume of data, which allowed the training of a
model following the recommendations and data provided by the EMBER benchmark
itself, including ransomware samples to evaluate its behavior against diverse types of
malware. After testing with ransomware executables and harmless files, the model
proved suitable for the function, confirming its ability to identify truly malicious files and
validating it as a promising tool for proactive threat detection; however, it exhibited
certain limitations in classifying more recent and modern ransomware, something that
should be taken into consideration. The research contributes to the field of information
security by validating a modern methodology for malware detection, offering insights
into the use of datasets such as EMBER for the development of more resilient security
systems. Therefore, it is concluded that the application of machine learning in the
analysis of executables can change the way threats are detected, bringing significant
implications for the protection of systems and the fight against damage caused by
malicious code.

Keywords: EMBER Dataset, ransomware, machine learning, malware classification,
LightGBM.
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1 INTRODUCAO

A seguranca da informacdo € uma area de importancia e complexidade
crescentes no cenario tecnoldgico atual. Com a vida e 0s processos sendo
digitalizados cada vez mais, o desafio de proteger os dados provenientes dessa
digitalizacdo aumenta de forma constante. Com isso em mente, 0 malware (software
malicioso) € visto como a maior e mais persistente ameaca, devido as suas novas
variantes que surgem todos os dias e as técnicas avancadas, como polimorfismo e
ofuscacgédo, empregadas na confeccéo deles. Logo, tém-se uma corrida que exige a
criacdo de solucBes mais adaptativas e robustas para a identificacdo desses novos
arquivos executaveis maliciosos que surgem a cada dia.

Com o aumento de malwares polimérficos e a criacdo de diversas variacdes
daqueles ja existentes, a detec¢cdo baseada somente em assinaturas torna-se
ineficiente. O campo de aprendizado de maquina ou machine learning emergiu com
uma alternativa promissora, permitindo que se empregue modelos pré-treinados que
podem aprender padrbes complexos e sutis a partir de grandes volumes de dados e
amostras de malwares, na protecdo de sistemas e informacgdes. Ou seja, ao invés de
se depender apenas de regras e assinaturas pré-definidas, os modelos, com sua
capacidade de aprendizagem e previsdo, conseguem aprender novos padrées e
classificar essas ameacas de maneira automatizada, incluindo aquelas ainda
desconhecidas para eles. Essa abordagem vai mais a fundo na analise dos arquivos
maliciosos, ndo dependendo apenas de assinaturas e verificacdes de hashes.

Esse trabalho se foca nesse cenario, na aplicacédo de técnicas de aprendizado
de maquina para automatizar e aprimorar a capacidade de classificacdo de ameacas.
Especificamente, utiliza-se o Dataset EMBER do ano de 2018, um conjunto de dados
de referéncia maduro e amplamente aceito pela comunidade de pesquisa em
seguranca, que fornece uma base rica e diversificada de amostras de executaveis,
tanto maliciosos quanto benignos, para treinamento e avaliagdo de modelos, sendo

inclusive de codigo aberto e gratuito para uso.

1.1 PROBLEMA DE PESQUISA

Diante da necessidade de métodos de deteccdo mais eficazes e adaptaveis, o

problema de pesquisa que norteia esse trabalho é:
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Como aplicar técnicas de aprendizado de maquina para identificar e classificar
executaveis maliciosos de forma eficaz, utilizando o Dataset EMBER como base de

treinamento e teste?
1.2  JUSTIFICATIVA

A relevancia do estudo realizado esta na necessidade de se adaptar a evolugéo
constante das ameacas digitais. A sofisticacdo dos ataques e a velocidades com que
novas variantes sdo produzidas, além das técnicas de polimorfismo e ofuscacgéo
empregadas, tornam a classificagdo de malwares algo cada vez mais desafiador. O
uso do machine learning, junto com um benchmark de qualidade como o Dataset
EMBER, representa uma abordagem promissora no desenvolvimento de sistemas de
classificagdo automatizados, capazes de se adaptar e aprender constantemente. A
contribuicdo desse trabalho € demonstrar a eficacia de um modelo de classificacdo
baseado em aprendizado de maquina na classificacdo de executaveis maliciosos,

além de fornecer insights sobre a utilizacdo de datasets na seguranca de sistemas.

1.3 OBJETIVOS
1.3.1 OBJETIVO GERAL

O objetivo geral desse trabalho é:
Aplicar técnicas de aprendizado de maquina na classificacdo de executaveis

maliciosos utilizando o Dataset EMBER.
1.3.2 OBJETIVOS ESPECIFICOS

Para alcancar o objetivo geral, os seguintes objetivos especificos foram
definidos:

1. Preparar o ambiente de desenvolvimento e configurar o Dataset EMBER
para o treinamento do modelo de aprendizado de maquina voltado a classificacéo de
executaveis.

2. Treinar um modelo de classificacédo de executaveis maliciosos com base nas
informacdes e parametros recomendados para o Dataset EMBER.

3. Testar o modelo treinado utilizando um arquivo malicioso e um arquivo

benigno, avaliando sua capacidade de classificagédo e desempenho.
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1.4 ESTRUTURA DO TRABALHO

Esse Trabalho de Conclusdo de Curso estd organizado em cinco capitulos,
organizados de forma a conduzir o leitor desde o embasamento tedrico até a
apresentacao dos resultados praticos.

O capitulo 2, referencial tedrico, apresenta os fundamentos tedricos
necessarios para a compreensdo do tema, abordando conceitos essenciais de
seguranca da informacdo, o panorama das ameacas de malware, a arquitetura de
arquivos executaveis e os principios do aprendizado de maquina aplicados na
deteccdo de ameacas, além de uma descricdo detalhada do Dataset EMBER.

O capitulo 3, metodologia de desenvolvimento, descrevera o caminho
percorrido para a realizacdo da pesquisa, detalhando o processo de preparagéao do
ambiente, a obtencéo e pré-processamento dos dados, a escolha e configuracédo do
algoritmo de machine learning e os procedimentos de treinamento e teste do modelo
realizados.

O capitulo 4, resultados e analise, apresenta e discute os achados da pesquisa
exibindo as métricas de desempenho do modelo treinado, como acuracia, precisao,
recall e AUC, além de uma analise critica dos resultados obtidos na classificacdo das
amostras de teste.

Finalmente, o capitulo 5, resultados e consideracfes finais, ira retomar o
problema e o0s objetivos propostos, apresentando as conclusdes do estudo e
discutindo as limitacbes encontradas no decorrer do trabalho e sugeridas direcées
para futuras pesquisas na area de classificacdo de executaveis maliciosos utilizando

aprendizado de maquina.
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2 REFERENCIAL TEORICO

Antes de se debater sobre a IA (Inteligéncia artificial), € necessario entender
bem suas origens, antecessores e criadores, além dos usos que essas tecnologias
tiveram no decorrer da histéria, com o intuito de se contextualizar melhor e
compreender como tudo se desenvolveu até os dias atuais. Tais assuntos serao

tratados nos subcapitulos abaixo, comeg¢ando pelos computadores.

2.1 A HISTORIA DOS COMPUTADORES
2.1.1 A ORIGEM DO TERMO “COMPUTADOR” E “COMPUTAR”

Inicialmente, quando se refere ao termo “computador” a primeira imagem que
se vem a mente é a de uma incrivel maquina amplamente usada nos ultimos tempos
com finalidades profissionais, pessoais e de entretenimento. No entanto, pouco se
pensa sobre como essa tecnologia chegou a esse ponto e menos ainda sobre a
origem do seu nome.

A palavra “computador” € um nome errbneo dado a maquinas digitais que agora
residem nas mesas da maioria das pessoas, ja que, até meados da Guerra Fria, 0
termo se referia a uma ocupac¢ao muito necessaria, € o que diz Kelly et al. (2013, p.
19). As chamadas “computadores humanos” eram pessoas responsaveis pela
realizacdo de calculos mateméaticos complexos e pelo armazenamento e manipulacéo
de informacdes, exatamente o que é feito por maquinas atualmente (Kelly et al., 2013,
p. 19).

Um exemplo histérico desse trabalho se da no Reino Unido que, no inicio da
Segunda Guerra Mundial, com um contrato com o Ministério da Guerra, Leslie John
Comrie, pioneiro em computacao mecanica da época, usou uma equipe de dezesseis
‘computadores humanos” para calcular e produzir tabelas de artilharia que eram
usadas pelos soldados para mirar os canhdes (Kelly et al., 2013, p. 74). Outro
momento, na década de sessenta, em meio a corrida espacial, esses profissionais, a
maioria mulheres afrodescendentes, eram muito empregados nos calculos de
trajetéria orbital de voos espaciais na NACA (National Advisory Committee for
Aeronautics) que, mais tarde, se tornou a NASA (National Aeronautics and Space

Administration), o que é demonstrado por Shetterly, (2016, p. 23).
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Com o fim da guerra e, consequentemente, com o desenvolvimento de diversas
maquinas eletrénicas capazes de fazer o trabalho de computar diversas vezes mais
rapido e com melhor eficiéncia do que humanos, esses trabalhadores foram deixados
de lado (Kelly et al., 2013, p. 74). Assim sendo, o termo “computador” deixou de se
referir a trabalhadores cuja funcdo era desempenhar calculos complexos e foi
atribuido a maquinas eletrénicas que realizavam o mesmo trabalho, porém de forma
mais eficiente, rapida e barata (Crevier, 1993, p.28). Agora, no proximo paragrafo,
sera abordado o termo “computar”.

Independente de um computador ser digital, baseia-se em circuitos e estruturas
eletrbnicas para funcionar, ou analdgico, que faz uso de partes mecéanicas para
operar, suas funcdes basicas permanecem as mesmas: obter informacdes, interpreta-
las e gerar um resultado (Woiler, 1970). E evidente que, na informatica, essas s&o
exatamente as etapas que um computador percorre para cumprir seu papel na
agilizacdo e precisao das mais diversas atividades. Portanto, “computar” significa
obter uma entrada, processa-la e produzir uma saida (Woiler, 1970). A origem do

” 11} J) &

termo vem do latim computo que significa “fazer o cémputo de”, “contar”, “calcular”,
“orgar” ou, no contexto da informatica, “processar” (Dicionario Priberam, 2025). Agora,
com essas informacdes em mente, serd abordado os principais computadores e
dispositivos de calculo criados durante a histéria, no intuito de fornecer uma clara linha

do tempo de fatos que levaram essas maquinas a se tornarem o que se vé hoje.

2.1.2 OS PRIMEIROS COMPUTADORES, PROGRAMAS E DISPOSITIVOS DE
CALCULO

E de conhecimento geral que, no decorrer da histéria, foram desenvolvidos
muitos dispositivos tecnoldgicos cujo objetivo era automatizar calculos. Kelly et al.
(2013, p. 12) cita que magquinas de calculo de mesa ja& eram estudadas e
desenvolvidas por Blaise Pascal e Gottfried Leibniz, indicando que no século XVII
essa tecnologia ja era cobigcada por grandes mentes. Kelly et al. (2013, p. 45) também
menciona alguns outros dispositivos historicos como o tear de Joseph-Marie
Jacquard, desenvolvido no inicio do século XIX, que revolucionou a indastria téxtil por
usar cartdbes perfurados para o armazenamento de instrucbes para padroes de
tecelagem e o Aritmémetro de Thomas de Colmar de Alséacia, feita em 1820, sendo a

primeira maquina comercialmente produzida que permitia realizacdo das quatro
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operacbes matematicas basicas: adi¢cao, subtracdo, multiplicacdo e divisdo. A seguir,
uma imagem da calculadora mecéanica de Pascal, criada por volta de 1642, e o tear
de Jacquard, feito em 1804.

Além disso, Russell e Norvig (2009, p. 33) abordam alguns dos exemplos mais
conhecidos como a Maquina Diferencial e a Maquina Analitica de Charles Babbage,
ambas criadas na década de 1830, cujo objetivo era o calculo de tabelas matematicas.
A segunda foi programada por Ada Lovelace, colega de Babbage e considerada a
primeira programadora do mundo, que especulou que um dia a maquina poderia
compor musica ou jogar xadrez, o que mostra que ela jA compreendia a dimensdo em
gue a inteligéncia das maquinas poderia chegar (Russell; Norvig, 2009, p. 33).

Agora, j& na segunda metade do século XIX, embora nem todas sejam
exatamente maquinas de célculo matematico, Dyson (2012, p. 88), juntamente com
Suleyman e Bhaskar (2023, p. 43), Kelly (2013, p. 13) e Crevier (1993, p. 27), citam
outros dispositivos que agilizaram e automatizaram processos, como a maquina de
escrever comercialmente bem-sucedida da Remington, em 1874, o telefone,
introduzido por Alexander Graham Bell, em 1876, algo que, para a época, foi um
marco na agilizacdo das comunicacgdes, as primeiras estacfes elétricas em Londres
e Nova York, por volta de 1882 e a maquina de tabulacdo de Herman Hollerith, em
1890, que processava dados para o censo dos Estados Unidos usando cartbes
perfurados, uma grande inovacao para e época.

Ja trazendo para o0 século passado, no ano de inicio da Primeira Guerra
Mundial, em 1914, Schmidhuber (2022, p. 23) menciona o El Ajedrecista, uma
magquina funcional, construida pelo espanhol Leonardo Torres y Quevedo, capaz de
jogar xadrez, a qual é considerada até mesmo o marco inicial da IA. A Segunda Guerra
Mundial, apesar dos horrores desse momento sombrio da historia, foi o periodo em
gue mais houve avancos na computacéo, algo que é indicado por varios autores como
Kelly (2013, p. 75) que menciona a constru¢ao do Harvard Mark | da IBM (International
Business Machines), iniciada em 1937 e finalizada em 1943, revelando a
convergéncia, mesmo a partir daquela época, de maquinas de calculo e escritorio.

Agora, focando nos computadores criados no periodo da Segunda Guerra
Mundial, Crevier (1993, p. 312) fala do Zuse-2, o primeiro computador eletromecanico
construido pelo alemdo Konrad Zuse, em 1939. Russell e Norvig (2009, p. 33)
mencionam a série Heath Robinson, em 1940, construidos pela equipe de Alan Turing

na Gra-Bretanha cujo uso era decifrar mensagens alemds e a Bombe, também
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conhecida como Maquina de Turing, finalizada em 1940, cujo papel foi vital no
desenrolar da guerra devido sua capacidade de quebrar as cifras geradas pela
Enigma alema. Russell e Norvig (2009, p. 34-35) também citam o ABC (Atanasoff-
Berry Computer), iniciado em 1940 e finalizado em 1942, sendo o primeiro computador
eletrbnico, construido por John Atanasoff e Clifford Berry, o Zuse-3, em 1941, a
evolucao do Zuse-2 de Konrad Zuse, onde se introduziu os numeros de ponto flutuante
e a primeira linguagem de programacdo de alto nivel chamada Plankakil e o
Colossus, em 1943, maquina baseada em vélvulas de vacuo, também feita pela
equipe de Turing cujo uso era a quebra das cifras geradas pela Lorenz alema. Por fim,
Schmidhuber (2022, p. 24) aborda o desenvolvimento do ENIAC (Electronic Numerical
Integrator and Computer), no final da guerra, em 1945, desenvolvido na Universidade
da Pensilvania, considerado o primeiro computador digital programavel multiuso cujo
objetivo inicial era o célculo de tabelas de artilharia para o exército dos Estados
Unidos.

Dito isso, préximo subtépico, serd discutido o termo inteligéncia artificial,

juntamente com 0s seus conceitos e histéria.

2.2 INTELIGENCIA ARTIFICIAL

Agora que ja se tem em mente alguns dos principais eventos e antecessores
da inteligéncia artificial, pode-se partir para os primeiros projetos, estudos e ideias
que posteriormente levaram a criacdo do campo de estudo dessa incrivel tecnologia.

No ano de 1943, em meio ao conflito entre as poténcias mundiais, o
neurofisiologista Warren McCulloch e o matematico Walter Pitts, escreveram um
artigo revolucionario intitulado “A Logical Calculus of the Ideas Immanent in Nervous
Activity” (Um Calculo Logico de ldeias Imanente na Atividade Nervosa) (Santos,
2023), onde propuseram um modelo matematico de redes neurais, assim como as
bases para o desenvolvimento da inteligéncia artificial.

Ja em 1950, Alan Turing, o famoso matematico britanico e criador da “The
Bombe”, abordada anteriormente, publica o artigo intitulado "Computing Machinery
and Intelligence" (Maquinas de Computacdo e Inteligéncia), que estabelece
guestionamentos acerca da capacidade das magquinas de pensarem e agirem como
humanos e seu método, atualmente conhecido como “Teste de Turing” ou “Jogo da

Imitacao”, que permite calcular a capacidade delas de imitarem o comportamento
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humano (Santos, 2023). Isso se tornou um pilar central no estudo e desenvolvimento
da inteligéncia artificial até os dias atuais (Mucci, 2024).

Pouco tempo depois, em 1951, Marvin Minsky e Dean Edmunds, apoiados
pelo matematico e fisico John von Neumann, criaram a primeira rede neural artificial,
chamada SNARC (Calculadora de Refor¢co Analdgico Neural Estocastico) (Mucci,
2024), que por meio de trés mil valvulas eletrbnicas, simulava quarenta unidades
semelhantes a neurdnios. Ela foi uma tentativa inicial de modelar os processos de
aprendizado no cérebro humano. Com essas informagbes em mente, a partir do
proximo paragrafo, sera tratado a criacdo oficial do termo “inteligéncia artificial”,
juntamente com seu significado.

Mesmo com toda a contribui¢do e invengdes citadas até o momento, o termo
“‘inteligéncia artificial” ainda n&o existia formalmente e, sim, apenas como uma
expressado para definir uma ideia. Foi somente no ano de 1956, na Conferéncia de
Dartmouth, que, John McCarthy, considerado o pai da inteligéncia artificial,
juntamente com Marvin Minsky, Claude Shannon, Nathaniel Rochester e outras
figuras importantes, fundaram o termo “inteligéncia artificial” (Abeliuk; Gutiérrez,
2021), a formalizando de vez como um novo campo de estudo cientifico. Somente a
partir dai, essa expressao comecou de fato a ganhar popularidade, sendo um marco
inicial para a tecnologia em questéao.

Agora que o termo para essa invencao ja existe, deve-se também atribuir os
conceitos que definem uma inteligéncia artificial. Segundo o dicionario Oxford
Languages, o termo “inteligéncia” significa “faculdade de conhecer, compreender e
aprender” e “artificial” define-se por “produzido pela mao do homem, ndo pela
natureza; postico”. Portanto, “inteligéncia artificial’, juntando a definicdo de cada
palavra separadamente, seria algo como uma simulacdo da capacidade de
aprendizado e conhecimento do ser humano em algo criado por ele mesmo. Agora,
com isso tudo definido, serdo abordados os subcampos da IA: aprendizado de
maquina, redes neurais e aprendizado profundo. Com isso, no subcapitulo a seguir,

sera abordado a respeito do aprendizado de maquina.

2.2.1 APRENDIZADO DE MAQUINA

Agora, que ja se sabe um pouco sobre a IA, deve-se ter conhecimento de

alguns dos seus subcampos, como o machine learning ou aprendizado de maquina.
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Esse termo € uma area da ciéncia de programacao dos computadores para que eles
possam aprender com dados, utilizando algoritmos que aprimoram seu desempenho
e precisdo com base em experiéncia, sem que precisem ser explicitamente
programados, é o que diz Géron (2019, p. 30).

Logo, observa-se a importancia desse campo, afinal, um programador, na
construcdo de um sistema de antispam de e-mails, por exemplo, precisaria observar
as palavras mais comuns contidas neles e entdo criar uma série de regras a um
algoritmo, para que entdo ele possa filtr4-los, cenario citado por Russell e Norvig
(2009, p. 884). O problema existente nesse sistema € que, caso ele ndo seja
continuamente atualizado pelo programador com novos dados, ele se tornara
ineficiente em seu trabalho, pois os autores dos spams, rapidamente, adaptariam seus
e-mails, seja usando palavras-chave diferentes ou alterando diversas palavras por
seus sinbnimos, assim contornando o algoritmo (Géron, 2019, p. 32).

Com isso em mente, é aqui que entra o machine learning: ao se coletar um
grande volume de dados, nesse caso, e-mails ja verificados como spam por humanos,
rotula-los, assim treinando um modelo, e disponibiliza-los para o software, ele, com
base nisso, sabera quais e-mails sdo spam ou ndo. Géron (2019, p. 33) explica que,
no aprendizado de maquina, o algoritmo se foca em encontrar padrées nos dados e
nao em seguir regras, assim permitindo que, mesmo que chegue um dado ainda
desconhecido, ele, com base nas informacdes ja adquiridas, possa fazer uma previsao
sobre esse dado. No exemplo citado, ele poderia prever se um e-mail, mesmo néo
sendo conhecido, € spam ou ndo com base no volume de dados ja possuido. Esse &
0 objetivo central e a particularidade do machine learning.

Bishop (2006, p. 22), juntamente com Goodfellow, Bengio e Courville (2016, p.
130), revelam que o principal desafio do aprendizado de maquina € criar algoritmos
gue funcionem bem tanto com os dados com os quais foram treinados, mas também
com novas informacdes, nunca vistas pela maquina, capacidade chamada de
generalizagdo, que é desenvolvida ao se encontrar padrdes nos dados. Existem trés
principais tipos de aprendizado de maquina, que serdo tratados nos paragrafos
seguintes.

Aprendizado supervisionado: Géron (2019, p. 74), Goodfellow, Bengio e
Courville (2016, p. 125) dizem que esse € o tipo mais comum. Resume-se a alimentar
o algoritmo com dados de treinamento com exemplos de pares de entrada e saida,

onde cada saida é rotulada por um humano, cujo objetivo € mapear as entradas as
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saidas corretas. As duas tarefas mais comuns supervisionadas séo classificar e prever
valores numéricos.

Aprendizado nédo supervisionado: Géron (2019, p. 409) e Bishop (2006, p. 23)
explicam que nesse método os dados de treinamento s&o compostos por um conjunto
de entradas sem quaisquer valores de saida correspondentes, com o0 objetivo de
descobrir padrbes e estruturas nos proprios dados e, com isso, formar agrupamentos,
distribuir e projetar os dados para posterior visualizacao.

Aprendizado por refor¢co: Géron (2019, p. 37), Bishop (2006, p. 23) e
Goodfellow, Bengio e Courville (2016, p. 126) citam que essa € uma abordagem muito
utilizada para treinamento de bots para as mais diversas atividades. Resume-se a
ensinar um agente de software a se comportar em um cenario realizando acfes e
observando resultados. Esse programa recebe puni¢cbes ou recompensas, uma
espécie de feedback, com base no resultado que ele gera, assim o ensinando uma
politica de atividades que maximizem sua recompensa total ao longo do tempo.

Portanto, os maiores beneficios do uso do aprendizado de maquina € a
resolucdo de problemas que seriam intratdveis pela programacéo tradicional e a
adaptacdo a novos ambientes e ameacas, coisas que sao, de certa forma, a fundacéo
da IA, afinal a caracteristica central da inteligéncia € a capacidade de aprender, algo
enfatizado por Russell e Norvig (2009, p. 21). Agora, no proximo subcapitulo, seréo

abordadas as redes neurais, outro subtopico da inteligéncia artificial.

2.2.2 REDES NEURAIS

Outro subcampo da IA sé@o as Redes Neurais Atrtificiais (RNA), que sdo modelos
de aprendizado de maquina inspirados nos neurénios biol6égicos em nossos cérebros,
dai o nome “redes neurais” (Géron, 2019, p. 463). Eles sao feitos para realizar
atividades que exigiram inteligéncia humana, como reconhecimento de padrdes,
previsdo e classificacdo, cuja ideia principal € fazer muitas unidades computacionais,
chamadas, nesse caso, de neuronios, trabalharem juntas para resolver tarefas
complexas e exibir um comportamento inteligente quando interconectadas em uma
rede (Goodfellow; Bengio; Courville, 2016, p. 39).

Assim como em um computador, o ciclo de vida de informac¢des em uma rede
neural segue o mesmo padrdo: entrada, processamento e saida. Na insercao de

dados (que séo recebidos pela chamada camada de entrada, uma das camadas de
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neurdnios que constituem a rede neural, que por sua vez pode ser composta por uma
ou mais camadas) deve-se transforma-los, antes de tudo, em nimeros, normalmente
na forma de vetores ou matrizes, é o que dizem Géron (2019, p.12) e Mitchell (2019,
p. 33). Dependendo do formato desses dados, podendo ser imagem, texto ou dados
tabulares, pode ser usado uma transformacdo usando célculos diferentes, mas o
objetivo € sempre 0 mesmo nessa etapa: obter uma representacdo numérica dessas
informagdes (Bishop, 2006, p. 158). A camada de entrada n&o realiza nenhuma
computacéo, ela apenas passa os dados brutos para a camada oculta da rede.

Agora, ap0s a entrada ser feita com sucesso, essas informacdes passam por
uma ou mais camadas ocultas (Hidden layers) que é onde serdo, de fato,
processadas. Mitchell (2019, p. 44) aborda que o objetivo principal nessa parte é
transformé-las em representacfes mais abstratas e, consequentemente, Uteis para a
tarefa final, como classificacdo ou regressdo. O processamento nas camadas ocultas
pode ser dividido em duas etapas principais, com a primeira sendo a combinacao
linear, ou soma ponderada, em que, segundo Géron (2019, p. 472) e Bishop (2006, p.
247), cada neurdnio (ou unidade de processamento) recebe as saidas de todos os
neurdnios da camada anterior e, considerando o peso (weight) associado a cada uma
dessas conexdes, que indica a forca ou importancia daquela conexao, o neurdnio
calcula uma soma ponderada de suas entradas, adicionando também um valor de viés
(bias) a esse calculo.

Utilizando uma funcéo de ativacao, que é um célculo matematico que auxilia o
neurdnio a aprender um padrdo complexo, a segunda etapa de processamento faz
uso dessa funcao do tipo nao linear, que, ap0s a etapa anterior, que ao ser aplicada
pelo neurbnio, o resultado obtido é usado para produzir sua saida final (Bishop, 2006,
p. 248). A ndo linearidade é crucial nessa etapa, sendo a rede neural constituida de
multiplas camadas seria equivalente a uma rede neural de Unica camada, limitando
severamente sua capacidade de aprender padrbes complexos (Géron, 2019, p. 483).

Apos o processamento realizado, a camada de saida, que é a ultima da rede,
recebe as saidas da ultima camada oculta e as transforma no formato final desejado
(Goodfellow; Bengio; Courville, 2016, p. 384). Dependendo do tipo de atividade sendo
executada, a saida produzida sera diferente, por exemplo, se a tarefa é prever um
valor continuo, a camada de saida é composta por um unico neurénio com uma funcéo

de ativacao do tipo linear, cuja saida € a previsdo numérica final (Géron, 2019, p. 485).
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Para classificacdes, comecando pela binaria, para identificar se uma entrada é
ou ndo spam, por exemplo, a camada de saida também sera constituida por somente
um neurénio, que desta vez usara uma funcao de ativagédo sigmoide, comprimindo a
saida em um valor entre zero e um, interpretado como a probabilidade de ser positivo
ou negativo. Géron (2019, p. 488) explica que, para classificacdo multiclasse, o
segundo tipo, se consiste em classificar a entrada em um certo nimero de classes
exclusivas, usando um numero igual de classes e neurdnios, cada um representando
uma classe, que constituirdo a camada de saida. Géron (2019, p. 489) também
salienta que a funcao de ativacdo softmax € aplicada a toda a camada para garantir
gue as saidas de todos os neurdnios sejam valores entre zero e um e gue juntos
somem um. Ao analisar cada uma delas, pode-se descobrir a probabilidade de a
entrada pertencer aquela classe ou ndo. Agora, no subtopico abaixo, sera abordado

o deep learning.

2.2.3 APRENDIZADO PROFUNDO

O deep learning ou aprendizado profundo, € um subcampo do machine learning
gue usa modelos computacionais das redes neurais, mais precisamente as Deep
Neural Networks ou Redes Neurais Profundas, que séo redes neurais constituidas por
muitas camadas de neurénios, permitindo um aprendizado muito mais profundo, dai
o seu nome (Friedman; Hastie; Tibshirani, 2009, p. 7). Ele é muito usado em dominios
como reconhecimento de imagem e fala, traducao de idiomas, analise de dados de
aceleradores de particulas, descoberta de medicamentos e andlise de dados
gendmicos, justamente por serem areas amplas que exigem um bom aprofundamento
para que sejam dominadas, € o que dizem Suleyman e Bhaskar (2023, p. 158) e
Lecun, Bengio e Hinton (2023, p. 2).

A ideia fundamental do deep learning é permitir que computadores aprendam
a partir da experiéncia e entendam o mundo em termos de uma hierarquia de
conceitos, onde cada um deles é definido em relagcdo a outros mais simples
(Goodfellow; Bengio; Courville, 2016, p. 24). Em vez de serem programadas com
regras explicitas por humanos, como “gatos tém orelhas pontudas e bigodes”, as
redes de aprendizado profundo aprendem automaticamente a partir de dados (Lecun;
Bengio; Hinton, 2023, p. 2). Essa abordagem é um tipo de aprendizado de

representacéo, onde, em cada camada, o modelo transforma a representacao do nivel
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anterior em outra de nivel superior sendo um pouco mais abstrata (Lecun; Bengio;
Hinton, 2023, p. 3). As primeiras camadas aprendem a detectar caracteristicas mais
simples e de baixo nivel enquanto as camadas mais profundas combinam esse
aprendizado para assimilar conceitos mais complexos e abstratos, também explicado
por Lecun, Bengio e Hinton (2023, p. 2). A principal caracteristica do deep learning
esta no fato de que essas camadas nao sao projetadas por engenheiro humanos, mas
sim aprendidas a partir dos dados com um procedimento de aprendizado de propdsito
geral, a diferenciando das técnicas de aprendizado de méaquina convencionais
(Suleyman; Bhaskar, 2023, p. 162).

Lecun, Bengio e Hinton (2023, p. 4) dizem que o funcionamento do aprendizado
profundo & um processo iterativo, normalmente usando um algoritmo de otimizacao
chamado stochastic gradient descent ou descida de gradiente estocastico. O processo
pode ser divido nas seguintes etapas: antes de tudo, como no machine learning, &
obtido uma entrada de grande quantidade de dados rotulados, sejam imagens, textos,
audios etc. Feito isso, inicia-se o treinamento de minimizar a funcado de custo (ou
perda), que mede o erro entre a saida produzida pela rede e a saida desejada (o rétulo
correto) (Lecun; Bengio; Hinton, 2023, p. 2). Agora, com a funcao de custo reduzida,
comeca o processo de forward propagation ou passagem direta, em que um lote de
dados de treinamento € passado através da rede, em cada camada nela, desde a
entrada até a saida. Usando todo o processo descrito anteriormente no tépico de
redes neurais (calculo de soma ponderada, aplicacdo da funcéo de ativacdo etc.) a
esses dados, é produzido, no final dessa etapa, a previsao da rede, o que € explicado
por Goodfellow, Bengio e Courville (2016, p. 191) e Lecun, Bengio e Hinton (2023, p.
3).

Terminando essa etapa, ap0s a passagem direta, o erro é calculado. Em
seguida, o algoritmo de retropropagacédo calcula o gradiente da funcédo de erro em
relacdo a cada peso e viés da rede (Géron, 2019, p. 480). Esse algoritmo, que é uma
aplicacao eficiente da regra da cadeia do calculo, propaga o gradiente de erro da
camada de saida até a camada de entrada, ou seja, “para tras”, o que determina a
contribuicdo de cada parametro para o erro total (Lecun; Bengio; Hinton, 2023, p. 5).
Por fim, com os resultados obtidos até agora, € realizado um ajuste de pesos, em que
o gradiente calculado é usado por um algoritmo de otimizacdo para ajustar 0s pesos
e vieses da rede na diregcdo que reduz o erro. Lecun, Bengio e Hinton (2023, p. 5)

7

citam que esse processo é repetido milhdes de vezes, usando lotes de dados
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diferentes, até que o desempenho da rede em um conjunto de validacdo pare de
melhorar, o que mostra que chegou em seu ponto de precisdo maximo. Com isso,
encerra-se o topico de aprendizado profundo, assim como o de inteligéncia artificial.
No subtépico seguinte, sera discutido o cenério atual da IA no mundo.

2.2.4 CENARIO ATUAL DA INTELIGENCIA ARTIFICIAL

A inteligéncia artificial se tornou um pilar fundamental no nosso século e com o
passar do tempo ela deixou de ser uma tecnologia em desenvolvimento e se tornou
uma ferramenta utilizada no cotidiano (Thunderbit, 2025).

Em 2025, 78% das organizacdes relataram que usam a IA, com um aumento
de 55% em relagcdo ao ano anterior, seu uso acabou impactando diversos setores da
sociedade (Ramos, 2024). Na saude, por exemplo, algoritmos de aprendizado de
magquina sdo usados para diagndsticos mais precisos e aceleram as descobertas de
medicamentos. Um estudo da IBM Watson Health demonstrou que sistemas de IA
podem identificar anomalias em imagens médicas com até 95% de preciséo,
superando, em alguns casos, a acuracia de médicos humanos (IBM, 2025). Em outros
setores como na educacéo, plataformas personalizam e facilitam o aprendizado, no
mercado veiculos autbnomos geram rotas e se controlam sem auxilio, plataformas
como o YouTube e Netflix aprendem os gostos do cliente para deduzir e recomendar
anuncios e videos personalizados, e na industria financeira, detecta fraudes e otimiza
investimentos.

Em 2025, o mercado global de IA esta em expansdo exponencial. E estimado
que o valor do mercado estd na faixa de US$ 391 bilhdes, com projecbes de
crescimento de cerca de US$ 1,81 trilhdo até 2030, com uma taxa de crescimento
anual composta (CAGR) de 37,3% (Founders Forum Group, 2025). A inteligéncia
artificial generativa sozinha atingiu 33,9 bilhdes em 2024 e deve atingir cerca de US$
356,10 dolares até 2030, um aumento de sessenta vezes em relacdo a 2020
(Demetrio, [s.d.]). No subcapitulo seguinte sera iniciado o assunto sobre executaveis
maliciosos, onde sera explicado o que sao, seus tipos, como funcionam e suas

origens.
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2.3 EXECUTAVEIS PE

Daniel Donda ([s.d.]), especialista em ciberseguranca conhecido, define
Portable Executable (PE), como o formato padrdo do Windows x86 e x64 para
executaveis portateis, equivalente ao formato Executable Link File (ELF) no sistema
operacional Linux. Ele é o sucessor do antigo formato Common Object File Format
(COFF) usado em sistemas Windows NT.

Um executavel PE € uma estrutura de dados que oferece ao loader do sistema
operacional todas as informacdes necessarias para que o cédigo do executavel seja
encapsulado, carregado na memoria e executado. As estruturas dos arquivos PE

possuem 0s seguintes componentes principais, descritos nas Tabelas 1, 2 e 3:

Tabela 1 — Estrutura do arquivo PE

Estrutura Descrigcéo
DOS Header Primeiros 64 bytes, identificam o arquivo como executavel.
DOS Stub Exibe uma mensagem de erro se executado em modo DOS.

Inclui SIGNATURE, IMAGE_FILE_HEADER e
PE File Header|IMAGE_OPTIONAL_HEADER, definindo a aparéncia do restante do

arquivo.

. Apesar do nome, este ndo € apenas um cabecalho opcional, ele
Image Optional o N ) _
contém informacdes criticas que estdo além das informacdes
Header _ .
basicas contidas na estrutura.

Fonte: Proprios autores

Na Tabela 1, pode-se observar a estrutura do arquivo PE, algo importante para
entender melhor como ele funciona e quais campos ele possui, afinal isso é parte das
informagdes contidas no Dataset EMBER que permite a classificagdo de um
executavel de maneira correta. A seguir, encontra-se a Tabela 2, contendo o section

table e seus campos:
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Tabela 2 — Section table e seus campos

Section Table

Sao sec¢des do arquivo

Name Nome da sec¢ao
VirtualSize Tamanho em meméria
SizeOfRawData Tamanho no disco

PointerToRawData

Deslocamento dos dados

Characteristics

Atributos da sec¢ao

Fonte: Préprios autores

A Tabela 2 exibe as informacfes contidas em uma tabela de se¢cdes de um
arquivo PE, ela descreve as secbOes do programa para que o Windows possa
compreendé-lo corretamente para assim poder fazer bom uso dele. Abaixo, na Tabela

3, sera abordado as descricdes dessas secoes:

Tabela 3 - Sections e suas descri¢cdes

roxt Caodigo executavel, com o ponto de entrada
tex
do programa.

.data Dados inicializados, como strings.

Tabela de importacédo com APIs do
Windows e DLLs.

.rdata ou .idata

.reloc Informacdes de realocacgéo.
.rsrc Recursos como imagens de interface.
.debug Informacdes de depuracao.

Fonte: Préprios autores

A Tabela 3 é autoexplicativa, ela exibe as principais se¢des contidas no arquivo
PE juntamente com a descri¢do deles. A seguir, no proximo subtdpico, sera tratado o

tema dos executaveis maliciosos.
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2.4 EXECUTAVEIS MALICIOSOS

De acordo com a Microsoft Corporation (2025), executaveis maliciosos ou
malwares, sdo softwares projetados especificamente com a intencdo de causar danos,
roubar informacdes ou comprometer a integridade de dispositivos e redes. Eles
frequentemente se disfarcam como arquivos legitimos, como executaveis ou
documentos, induzindo o usuéario a ativa-los inadvertidamente. O impacto pode variar
de roubo de dados pessoais a interrupcdes graves em infraestruturas criticas. Os
malwares sdo classificados por seu comportamento e impacto, sendo os principais

conforme descrito na Tabela 4:
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Tabela 4 - Malwares

Programas que se replicam infectando arquivos ou programas
legitimos, ativando-se quando o arquivo € executado, como o
Melissa e o ILOVEYOU.

Worms

Autorreplicantes que se espalham por redes sem precisar de um
arquivo host, explorando vulnerabilidades, sdo conhecidos por
consumir recursos e instalar backdoors como o Conficker (2008),
gue infectou milhdes de computadores explorando falhas no

Windows.

Trojans

Disfarcam-se de software Gtil para ganhar acesso nao autorizado,
permitindo controle remoto ou instalacdo de outros malwares, trojans

como Zeus podem roubar credenciais bancérias via keylogging.

Ransomware

Criptografa arquivos do usuario e exige pagamento para liberagéo. E
uma das ameacas mais lucrativas e eficientes para cibercriminosos
como o WannaCry (2017), que afetou infraestruturas globais,

incluindo hospitais.

Spyware

Monitora atividades do usuario capturando dados como senhas ou
histérico de navegacdo. Spywares também sdo usados como
ferramentas de vigilancia, citando keyloggers em relatérios de

ciberseguranca.

Rootkits

Os rootkits escondem a presenca do malware em um dispositivo
pelo maximo de tempo possivel para que roube informacdes e

recursos de modo continuo, as vezes, até por anos.

Botnets

Sao redes de dispositivos infectados para ataques DDoS, eles sao
controlados remotamente por invasores, frequentemente usado para

ataques em larga escala.

Fonte: Proprios autores

O ciclo de um executavel malicioso tipicamente envolve quatro estagios,

explicados na Tabela 5:
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Tabela 5 - Etapas da infeccéo

Etapa Descrigcéo
Infeccs Entra via vetores como e-mails phishing, downloads infectados
nfeccéo . . ,
ou exploits de vulnerabilidades em softwares desatualizados.
L Dispara por a¢do do usuario como abrir um anexo ou gatilhos
Ativacao L
automaticos.
Propagacéo Replica-se para outros arquivos ou redes.
Payload Executa o dano principal, como roubo de dados ou criptografia.

Fonte: Proprios autores

Segundo o Rohr (2025), o primeiro virus surgiu em 1986 infectando plataformas
IBM PC utilizando mecanismos de ocultacédo, ele foi chamado de Cérebro Paquistanés
e atacou a inicializacao dos disquetes, 0 que permitiu que se propagasse em poucas
semanas. Em seguida, nos anos 80, foi o Morris Worm, conhecido como o primeiro
“‘verme” que se propagou em milhares de minicomputadores e estagdes de trabalho
como VMS, BSD e SunOS.

Ja na década de noventa foi o virus Michelangelo, que infectou o setor de
disquetes e o setor de MBR de discos rigidos. No ano de 1994 o primeiro ransomware
foi denominado OneHalf embora nenhum resgate fosse exigido e ndo houvesse
codigo de desativacdo, ascendeu a primeira série do setor de disco rigido. Se o FDISK
/ MBR fosse usado, o setor MBR era deletado, incapacitando o sistema de iniciar.

Em 1997, o malware auto propagacdo comecou a ser substituido por trojans, a
tendéncia de roubar credenciais de conta AOL assumiu diferentes formas e
pressagiava o fendmeno do phishing. Nos anos 2000 foi um worm de e-mail conhecido
como ILOVEYOU, que atacou dezenas de milhdes de PCs Windows. Ele chegava
COMO um anexo que se passava por uma carta de amor que quando aberto, 0s
cibercriminosos acessavam o0 sistema operacional, o armazenamento de dados
secundarios e os dados da vitima.

Em 2005, nos encontramos CommWarrior, o primeiro malware para telefone
movel capaz de se espalhar por meio de mensagens MMS e Bluetooth. Ele atacou a
linha de smartphones Symbian Series 60. Em 2008, surge o codigo malicioso
Conflicker, que transforma computadores infectados em parte de uma botnet. Esta

ameaca se propagou por muito tempo e infectou milhares de usuarios. Em 2010, um
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verme chamado Stuxnet marcou uma nova era de malware moderno, 0S mesmos que
atacam sistemas de controle industrial e sdo usados contra instalacbes nucleares
iranianas.

Em 2012 surge a Medre, uma ameaca que rouba informacgdes extraindo
documentos AutoCAD. Atualmente, nos deparamos com ameacas como Hesperbot,
trojan bancario avancado que ataca usuarios mediante campanhas de estilo phishing,
que imitam organiza¢fes confidveis. Assim, quando os atacantes percebem que a
vitima executou o malware, eles roubam as credenciais da pessoa. Também
encontramos com Windigo, que em 2014 assumiu o controle de vinte e cinco mil
servidores Unix em todo o mundo e enviou milhées de mensagens de spam por dia,
a fim de sequestrar servidores, infectar computadores e roubar informacoes.

Com a evolugcdo da internet os malwares tem se tornado cada vez mais
complexos e imprevisiveis ao longo do tempo, se propagando com facilidade pela
midia. Di Jorge afirma “O Dia Mundial da Internet € uma data para ser comemorada,
mas também para refletirmos como os cédigos maliciosos tém evoluido e se tornado
mais sofisticados ao longo do tempo”, “Além de mais estruturados, os seus métodos
de propagacdo e infeccdo sdo mais elaborados, e tém como principal objetivo o
retorno econémico para o cibercriminoso”, finaliza o executivo. No subtopico seguinte,

serda tratado o tema ransomware.

241 RANSOMWARE

Ransomwares sdo uma forma especifica de malware, eles sdo programas
projetados para bloguear o acesso a dados ou sistemas de uma vitima, exigindo
pagamento para restaurar o acesso. Nos primeiros ataques de ransomware eles
simplesmente exigiam um resgate em troca de uma chave de criptografia para
recuperar acesso aos dados, que seriam criptografados pelo criminoso.

Eles representam uma ameacga cibernética crescente, com impactos
financeiros e operacionais significativos em individuos, empresas e governos.
Diferente de outros malwares, o ransomware foca na extorséo direta, combinando

criptografia de arquivos com ameacas de divulgacéo de dados roubados.
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2.4.2 WANNACRY

Um grande incidente de seguranca que atingiu organizacdes em todo o mundo
foi o ataque de ransomware WannaCry. No dia doze de maio de 2017, o worm do
ransomware WannaCry se propagou para mais de duzentas mil maquinas em mais
de cento e cinquenta nacdes. FedEx, Honda, Nissan e o Servico Nacional de Saude
(NHS) do Reino Unido sdo algumas das vitimas notaveis, sendo que este ultimo teve

gue redirecionar algumas de suas ambulancias para hospitais diferentes.

2.4.3 SEGURANCA DA INFORMACAO

Neste cenério cadtico, surge a seguranca da informacao (Sl) para deteccéo,
prevencdo e mitigacdo de ameacgas cibernéticas, ela compreende um conjunto de
acOes estratégias para proteger sistemas, programas, equipamentos e redes de
invasoes.

Conforme Bastos ([s.d.]), o intuito central da seguranca da informacdo é
identificar, registrar e combater as ameacas, garantindo assim a protecao de dados e

sistemas valiosos de possiveis viola¢des ou ataques.

“Seguranca da informagdo € a prote¢do de informac¢des importantes contra acesso nao
autorizado, divulgacdo, uso, alteracdo ou interrupcdo. Ajuda a garantir que os dados
organizacionais confidenciais estejam disponiveis para usuarios autorizados, permanecam
confidenciais e mantenham sua integridade”.

A S| (Seguranca da Informacdo) possui estratégias e praticas fundamentais
baseadas em trés pilares principais também conhecida pela sigla CID:
confidencialidade, integridade e disponibilidade. Entretanto, com o desenvolvimento
da tecnologia outros pilares foram surgindo, resultando na autenticidade,
irretratabilidade e conformidade, totalizando em seis pilares principais.

Confidencialidade significa garantir que as informacfes sejam acessiveis
somente por pessoas, processos ou sistemas autorizados. Disponibilidade significa
assegurar que informacdes e sistemas estejam acessiveis e operacionais quando
necessarios, por usuarios legitimos. Integridade significa garantir que as informacdes
nao sejam alteradas, corrompidas ou modificadas de forma nao autorizada.
Autenticidade significa comprovar que a informacao, o usuario ou o sistema € genuino
e confiavel. Irretratabilidade ou Nao Repudio, significa impedir que autor ou receptor

neguem uma acao ou transacao ja realizada. Conformidade significa garantir que
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todos os processos, sistemas e dados estejam em conformidade com ad leis, normas
e regulamentos.

Os malwares representam uma ameaca significativa no cenario digital, com
impactos que vao além do financeiro, afetando a privacidade e a confianca nas
tecnologias. A seguranca da informacéo, com suas praticas e tecnologias, é essencial
para proteger sistemas e dados, garantindo a continuidade dos negdcios e a protecao
dos usuérios. Investir em prevencéo, educacao e resposta rapida a incidentes é crucial
para mitigar os riscos. A medida que as ameacas evoluem, as estratégias de
seguranca também devem se adaptar, incorporando inovacfes tecnolbgicas e
politicas eficazes.

No subtdpico a seguir sera introduzido o Dataset EMBER, usado na realizacdo

do experimento pratico desse trabalho.

2.5 EMBER DATASET

O Dataset EMBER € um conjunto de dados de cédigo aberto e gratuito
comumente utilizado como base a diversos treinamentos de machine learning para
reconhecimento e classificacdo de malwares. Esse dataset é fruto de um conjunto de
diversas amostras de arquivos executaveis PE (Roth, 2022).

A versdo de 2018 do Dataset EMBER, que sera usada neste trabalho, conta
com mais de um milhdo de amostras de executaveis PE digitalizados até o ano de

2018. Dentre as amostras para treinamento que compde o Dataset EMBER, é

indicado na Tabela 6:

Tabela 6 - Amostras para treinamento

Tipo de Amostra Quantidade Aproximada Observacao
Maliciosas 300.000 Amostras maliciosas
Benignas 300.000 Amostras benignas

N&o rotuladas 300.000 Amostras sem rotulo

Fonte: Roth, 2018

A Tabela 7 se refere as amostras que compdem os testes:
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Tabela 7 - Amostras para testes

Malignas 100.000

Benignas 100.000
Fonte: Roth, 2018

Além disso, a Tabela 8 exibe do que cada amostra no dataset € composta por:

Tabela 8 - Estruturas das amostras

Hash SHA256 do arquivo Identificador Unico da amostra
Data da primeira aparicao Data em que o arquivo surgiu
Rétulo da classificacao Indicacdo se € maligna ou benigna

) Conjunto de caracteristicas coletadas da
Features extraidas

amostra

Fonte: Phil Roth, 2018

2.5.1 FUNCIONALIDADES DA BIBLIOTECA EMBER

A biblioteca EMBER utilizada no Python comp®e diversas funcionalidades para
a manipulagéo do dataset e manipulacdo do modelo de treinamento, entre elas pode-

se citar, na Tabela 9:
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Tabela 9 - Fun¢des do Dataset

Funcéo

Descricéao

create_metadata(data_dir)

Escreve os metadados em um arquivo CSV

e retorna o dataframe dele.

create_vectorized_features(data_dir,

feature_version=2)

Cria os features vectors de um arquivo de

features e os escreve no disco.

read_metadata(data_dir)

L& um arquivo de metadados ja criado e

retorna o dataframe.

read_vectorized_features(data_dir,

subset=None, feature_version=2)

Lé as features vetorizadas e carrega como

numpy arrays dentro da memoria.

predict_sample(lgbm_model, file_data,

feature_version=2)

Prevé um arquivo PE com base no modelo
LightGBM.

train_model(data_dir, params={},

feature_version=2)

Treina o modelo LightGBM do Dataset

EMBER a partir de vectorized features.

Fonte: Proprios autores

As funcionalidades acima permitem automatizar e padronizar o processo de

extracdo de dados e treinamento de modelos, reduzindo a complexidade técnica para

pesquisadores e profissionais que desejam avaliar técnicas de deteccdo de malwares

baseadas em aprendizado de maquina. Agora sera abordada a metodologia de

desenvolvimento utilizada no trabalho juntamente com o experimento préatico

realizado.
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3 METODOLOGIA DE DESENVOLVIMENTO

Neste capitulo, sdo descritas as etapas da metodologia realizadas para a
realizacdo da parte pratica, que consistiu na leitura de um dataset e no treinamento
de um modelo de classificacdo de amostras de ransomware. O processo abrange
desde a preparacdo do ambiente até a instalacdo de dependéncias e do modulo
EMBER para o Python.

3.1 FERRAMENTAS E TECNOLOGIAS UTILIZADAS

Para a elaboracao deste trabalho, foram utilizados ambientes e médulos com
o foco em favorecer o funcionamento e compatibilidade adequados do ambiente e dos
codigos que foram empregados, j4 que, para isso, foram necessarias as versoes
corretas de determinados moédulos para a execucdo das etapas. As principais

tecnologias utilizadas séo exibidas na Tabela 10:
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Tabela 10 — Tecnologias utilizadas

Python 3.6

Para o funcionamento desta metodologia, foi estritamente

necessario utilizar a versédo correta do Python. Algumas de
suas atualizagcdes acabaram gerando incompatibilidades com

algumas partes do cadigo.

Miniconda3

Por conta de sua flexibilidade e facil configuracdo de médulos
em versdes especificas, foi utilizado o Miniconda3. Sua
flexibilidade permite a criacdo de um ambiente virtual com a

versao do Python necesséria para o trabalho.

EMBER

Um dos médulos principais, que incluiu funcionalidades para
leitura de dados, extracdo de features e treinamento de
modelos usando o Dataset EMBER, um dataset de cédigo
aberto e gratuito para uso em sua verséo de 2018.

LightGBM

Biblioteca de aprendizado de maquina baseada em arvores de

deciséo, que foi usada para o treinamento e teste do modelo.

SKLEARN

Biblioteca de machine learning que oferece suporte a avaliacao
do modelo, divisdo de dados em treino e teste, e outras fungdes

auxiliares como métricas de desempenho.

MATPLOITLIB

Biblioteca utilizada para visualizacéo de dados e geracao de

gréficos, incluindo a exibicdo da arvore de deciséo treinada.

Linux Mint no

VirtualBox

Para este trabalho foi utilizado o sistema operacional Linux
Mint, na sua versao 22.2 XFCE, virtualizado no programa
VirtualBox. O mesmo processo pode ser feito no Windows,
porém com algumas diferencas que nao foram abordadas

nesse trabalho.

Fonte: Proprios autores
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3.2 REQUISITOS DE HARDWARE

Para garantir o melhor funcionamento € preciso planejar adequadamente o
hardware disponivel. O treinamento de modelo com o EMBER pode consumir muitos
recursos, especialmente na extracdo de caracteristicas e treinamento do modelo. A

Tabela 11 apresenta os requisitos de hardware aproximados:
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Tabela 11 — Especificagbes de Hardware

O pré-processamento do

4 nacleos | 8+ nucleos (Intel | EMBER é intensivo em CPU;

CPU (Intel i5/ i719, Ryzen 7/9, mais nucleos reduzem o
Ryzen 5) Xeon) tempo de extracéo de
features.

_ O EMBER normalmente é
Opcional

( GPU com 8GB+ usado com
ara
P VRAM (NVIDIA LightGBM/XGBoost (CPU),
GPU modelos _
RTX 3060 ou mas redes neurais
baseados em _
i superior) (PyTorch/TensorFlow) se
arvore) o .
beneficiam muito da GPU.
O dataset completo (~1 milh&o
_ de amostras) pode consumir

Memoria RAM 8 GB 16-32 GB

bastante RAM durante o
treinamento e validagéo.
O Dataset EMBER 2018
ocupa ~2-3 GB, mas o

100 GB SSD espaco extra é necessario
Armazenamento | 50 GB HDD ) o

NVMe para versdes intermediarias e
checkpoints. SSD acelera

leitura/escrita.

_ Linux oferece melhor
Windows 10 /

_ _ Linux (Ubuntu compatibilidade com
Sistema Linux .
_ 22.04 LTS ou frameworks de machine
Operacional (Ubuntu _ _ o
superior) learning e bibliotecas
20.04+) o
otimizadas.

Fonte: Préprios autores
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3.3 ANACONDA E JUPYTER NOTEBOOK

Neste trabalho, foram utilizados o Anaconda e o Jupyter Notebook (ambos do
Miniconda3) por conta da flexibilidade provida por eles em relagédo a versao de
maodulos e da linguagem Python.

3.4 CONFIGURACAO DO AMBIENTE

Nesta secéo foi abordada a configuracdo do ambiente para a realizacdo da
leitura do dataset e treinamento do modelo. Todos os passos a partir daqui foram
seguidos com rigor, pois qualquer erro poderia comprometer toda a execucao do

processo.

3.4.1 MINICONDAS3

A primeira etapa consistiu no download e instalacdo do ambiente, que pode ser

feito pelo seguinte endereco: “https://www.anaconda.com/download/success”,

conforme na Figura 1:

Figura 1 - Site Anaconda

) Download Success | Anacon x + - 2 X

< C [J = anaconda.com/download/success ENES @ V.4 B ORs=

J ANACONDA Prod v luti v R ~  Company v | Free Download Signn -

-

Distribution Installers Miniconda Installers

For installation assistance, refer to troubleshooting. For installation assistance, refer to troubleshooting

Windows v Windows v
Mac v Mac v
Linux v Linux v

Fonte: Préprios autores a partir do site oficial do Anaconda
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Foi realizado o download do programa e, feito isso, acessou-se a pasta onde
ele foi salvo e feita a alteragao de permissao necessaria com o comando: “chmod 700
<arquivo-baixado>" e, apos isso, ele foi instalado, usando-se “./<arquivo-baixado>".
Ressalta-se que foi utilizado “<>”" para sinalizar o arquivo, pois é possivel haver
diferencas nos nhomes dos arquivos. Nesse exemplo, conforme a Figura 2, o nome do

arquivo instalado foi “Miniconda3-latest-Linux-x86_64.sh”:

Figura 2 - Permisséo e instalagéo

~ Terminal - user@LinuxMinkt: ~/Downloads

Arquivo Editar Ver Terminal Abas Ajuda

user@LinuxMint: $ chmod 700 Miniconda3-latest-Linux-x86 64.sh
user@LinuxMint: $ 1s -1

total 158336

er 162129736 set 15 15:23 Miniconda3-latest-Linux-x86_64.sh

Fonte: Préprios autores a partir do VirtualBox

Apds se executar o script de instalacdo, foram apenas seguidas as instrucdes
exibidas no terminal, que consistiam, no geral, em aceitar os termos de uso e definir
o diretério de instalacdo. Agora serd tratada a criacdo do ambiente virtual de forma
detalhada.

3.4.2 CRIANDO O AMBIENTE VIRTUAL

Logo apés a instalagdo do Miniconda3, foi gerado um diretdrio na pasta usada
para a instalacéo, a qual foi “/home/user/miniconda3”. Esse diretério continha todos
0S executaveis importantes para se executar o Anaconda. Para comecar, foi conferido
se o comando “conda” estava funcionando, com o uso de “miniconda3/bin/conda —

version”, indicado na Figura 3:

Figura 3 - Conferindo a verséo

Arquivo Editar Ver Terminal Abas Ajuda

user@LinuxMint:~$ miniconda3/bin/conda --version
conda 25.7.0
user@LinuxMint:~s [

Fonte: Préprios autores a partir do VirtualBox
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Ao se confirmar o funcionamento do comando “conda”, ele foi inicializado o
para a interacdo com o shell, usando-se “miniconda3/bin/conda init”, processo exibido

na Figura 4:

Figura 4 — Inicializacao

Arquivo Editar Ver Terminal Abas Ajuda

user@LinuxMint:~$ miniconda3/bin/conda init

change /home/user/miniconda3/condabin/conda

change /home/user/miniconda3/bin/conda

change /home/user/miniconda3/bin/conda-env

change /home/user/miniconda3/bin/activate

[ ELE /home/user/miniconda3/bin/deactivate

change /home/user/miniconda3/etc/profile.d/conda.sh

change /home/user/miniconda3/etc/fish/conf.d/conda.fish

change /home/user/miniconda3/shell/condabin/Conda.psml

change /home/user/miniconda3/shell/condabin/conda-hook.psl
/home/user/miniconda3/lib/python3.13/site-packages/xontrib/conda.xsh
/home/user/miniconda3/etc/profile.d/conda.csh
/home/user/.bashrc

==> For changes to take effect, close and re-open your current shell. <==

user@LinuxMint:~$ [

Fonte: Proprios autores fazendo uso do VirtualBox

A sequir, foi adicionado algumas linhas de configuragdo no arquivo
‘/lhome/user/.bashrc” e, para que essas modificacbes funcionassem, ele foi

recarregado com o comando “source ~/.bashrc”, mostrado na Figura 5:
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Figura 5 - Atualizando o .bashrc

Arguivo Editar Ver Terminal Abas Ajuda

user@LinuxMint:~$ source ~/.bashrc
(base) user@LinuxMint:~$ |}

Fonte: Préprios autores usando o VirtualBox

Ao atualizar-se o “~/.bashrc”, o ambiente padrdo do Conda, de nome “base” é
inicializado. Como a metodologia requer modulos em determinadas versdes além do
préprio Python, para que ndo houvesse conflitos entre as dependéncias a serem
instaladas, os ambientes e seus moédulos utilizados foram criados de forma isolada,
assim evitando possiveis conflitos e problemas.

Realizada essa parte, foi executado o primeiro comando para sair do ambiente
padrao do Conda e criar o ambiente: “conda deactivate”.

Se 0s passos anteriores foram executados corretamente, os comandos que
comegavam com “miniconda3/bin/conda” foram descartados. No entanto, caso os
termos de uso nao tenham sido aceitos previamente, foi gerado um erro ao tentar criar
0 primeiro ambiente. Esse erro solicitava a aceitacdo dos termos de uso, que pode ser
feita com a execucdo do comando sugerido pelo préprio Anaconda. Tal situacao é

ilustrada na Figura 6:
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Figura 6 — Termos de uso

(base) user@LinuxMint:-$ conda deactivate
user@LinuxMint:~$ conda create -n ember python=3.6 -y

CondaToSNonInteractiveError: Terms of Service have not been accepted for the following channels. Please a
ccept or remove them before proceeding:

- https://repo.anaconda.com/pkgs/main

- https://repo.anaconda.com/pkgs/r

To accept these channels' Terms of Service, run the following commands:
conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/main
conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/r

For information on safely removing channels from your conda configuration,
please see the official documentation:

https://www.anaconda.com/docs/tools/working-with-conda/channels

user@LinuxMint:~$ conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/main
accepted Terms of Service for

user@LinuxMint:-$ conda tos accept --override-channels --channel https://repo.anaconda.com/pkgs/r
accepted Terms of Service for

user@LinuxMint:~$ i

Fonte: Préprios autores a partir do VirtualBox

Ao executar o comando para sair do ambiente base, foi possivel confirmar a
mudanca observando o terminal antes e depois da execucdo. Durante a criagao do
primeiro ambiente sem a aceitacdo prévia dos termos, foi retornado um erro. Esse
erro, no entanto, apresentou uma solucdo simples, bastando executar os comandos
sugeridos pelo préprio Anaconda “conda tos accept --override-channels --channel

https://repo.anaconda.com/pkgs/main“ e “conda tos accept --override-channels —

channel https://repo.anaconda.com/pka/r” .

Logo apds se aceitar os termos, foi usado novamente o comando para criar o
ambiente, nesse momento a versdo do Python que sera instalada foi escolhida, um
passo que é fundamental para o funcionamento do trabalho. Caso a versao do Python
nao seja passada no comando, ou caso se altere a versdo, isso pode acabar
comprometendo a execugao do projeto. O ambiente foi criado usando: “conda create
-n ember python=3.6 -y”.

O parametro “-n” especifica 0 nome do ambiente que sera criado, enquanto o
parametro “-y” instrui o instalador a confirmar automaticamente todas as solicitagcdes
durante o processo de instalacdo. A seguir iniciou-se a criagdo do ambiente virtual,

conforme mostrado na Figura 7:


https://repo.anaconda.com/pkgs/main
https://repo.anaconda.com/pkg/r
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Figura 7 - Criando o ambiente virtual

user@LinuxMint:-$ conda create -n ember python=3.6 -yJj

Fonte: Proprios autores se usando o VirtualBox

Apoés a criacdo do ambiente, foi instalado tudo o que é necessario para o
funcionamento. Em seguida, foi verificado se o ambiente havia sido criado
corretamente por meio do comando: “conda env list”, processo exibido na Figura 8 e
9:

Figura 8 — Criando o ambiente virtual e conferindo

Arguivo Editar Ver Terminal Abas Ajuda

tk pkgs/main/linux-64::tk-8.6.15-h54eBaa7 0

wheel pkgs/main/noarch::wheel-0.37.1-pyhd3eblbd 0

xorg-libx11 pkgs/main/linux-64::xorg-1ibx11-1.8.12-h9ble0fa 1

xorg-libxau pkgs/main/linux-64::xorg-libxau-1.0.12-h9ble0fa 0

xorg-libxdmcp pkgs/main/linux-64::xorg-Llibxdmcp-1.1.5-h9ble0fa ©

xorg-xorgproto pkgs/main/linux-64::xorg-xorgproto-2024.1-h5eeel8b 1
pkgs/main/linux-64::xz-5.6.4-h5eeel8b 1
pkgs/main/linux-64::zLlib-1.3.1-hb25bd0a 0

Downloading and Extracting Packages:

Preparing transaction: done
Verifying transaction: done
Executing transaction: done

#

To activate this environment, use

$ conda activate ember

To deactivate an active environment, use

#
#
#
#
#
#
#

$ conda deactivate
user@LinuxMint:-$ conda env list
# conda environments:

/home/user/miniconda3
/home/user/miniconda3/envs/ember

user@LinuxMint:~$ |

Fonte: Proprios autores fazendo uso do VirtualBox
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Figura 9 - Ativando o ambiente

user@LinuxMint:~$ conda activate ember
(ember) user@LinuxMint:-$ [

Fonte: Préprios autores com o uso do VirtualBox

Apés a execucdo correta do comando, foi observado, por meio do terminal, que
o ambiente EMBER havia sido ativado com sucesso. Agora serd abordado a respeito

do seu repositério oficial.

3.4.3 REPOSITORIO EMBER

O mddulo EMBER, que faz uso do Dataset EMBER, abordado anteriormente,
juntamente com suas dependéncias, esta disponivel no repositorio oficial da Elastic
no GitHub, acessivel por meio do seguinte endereco: “https://github.com/

elastic/ember”, conforme exibido na Figura 10.

Figura 10 - Github EMBER

€) GitHub - elastic/ember: Elast: x _ |\ x
4 C [l %= github.com/elastic/ember Con B <9 P B OG6 <%
3 W 5 WS '
[J README [ License &E Security = - A .
by

Empowering Researchers

Elastic Malware Benchmark for % Languages
® Jupyter Notebook 79.7
/ ® Python20.1% @ Dockerfile 0.2%
The EMBER dataset is a collection of features from PE files that serve as a m
benchmark dataset for researchers. The EMBER2017 dataset contained
features from 1.1 million PE files scanned in or before 2017 and the
EMBER2018 dataset contains features from 1 million PE files scanned in or
hefare 2018. This repository makes it easy to reproducibly train the
benchmark models, extend the provided feature set, or classify new PE files with the benchmark models.

This paper describes many more details about the dataset: https://arxiv.org/abs/1804.04637

Features

The LIEF project is used to extract features from PE files included in the EMBER dataset. Raw features are
extracted to JSON format and included in the publicly available dataset. Vectorized features can be produced
from these raw features and saved in binary format from which they can be converted to CSV, dataframe, or
any other format. This repository makes it easy to generate raw features and/or vectorized features from any
PE file. Researchers can implement their own features, or even vectorize the existing features differently from
the existing implementations.

The feature calculation is versioned. Feature version 1 is calculated with the LIEF library version 0.8.3. Feature
version 2 includes the additional data directory feature, updated ordinal import processing, and is calculated T

Fonte: Proprios autores a partir da pagina oficial do EMBER
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Por meio do terminal, foi utilizado o comando “git” para clonar o repositério do
EMBER. Caso o Git ndo estivesse previamente instalado, isso poderia ser feito com o
comando: “sudo apt update && sudo apt install git”.

A partir deste ponto, como 0os comandos passaram a manipular arquivos e
diretorios especificos, foi necessario ter atencdo redobrada quanto aos caminhos
utilizados. Para verificar o diretdrio atual, utilizou-se o comando: “pwd”.

Feito isso, foi conferido se o Git foi instalado com sucesso e em seguida
clonado o repositério “git —help” e do EMBER, por meio do comando "git clone

https://qgithub.com/elastic/ember.qit*, indicado na Figura 11 e 12:

Figura 11 - Conferindo o Git

Arguivo Editar Ver Terminal Abas Ajuda

(ember) user@LinuxMint: $ git --help

usage: git [-v | --version] [-h | --help] [-C <path>] [-c <name>=<value>]
[--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]
[-p | --paginate | -P | --no-pager] [--no-replace-objects] [--bare]
[--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]
[--config-env=<name>=<envvar>] <command> [<args>]

These are common Git commands used in various situations:

start a working area (see also: git help tutorial)
clone Clone a repository into a new directory
init Create an empty Git repository or reinitialize an existing one

work on the current change (see also: git help everyday)
add Add file contents to the index
mv Move or rename a file, a directory, or a symlink
restore Restore working tree files
rm Remove files from the working tree and from the index

examine the history and state (see also: git help revisions)
bisect Use binary search to find the commit that introduced a bug
diff Show changes between commits, commit and working tree, etc
grep Print lines matching a pattern
log Show commit logs
show Show various types of objects
status Show the working tree status

grow, mark and tweak your common history
branch List, create, or delete branches
commit Record changes to the repository
merge Join two or more development histories together
rebase Reapply commits on top of another base tip
Reset current HEAD to the specified state
Ciiid b brancbho-

Fonte: Proprios autores a partir do VirtualBox

O procedimento se segue na Figura 12:


https://github.com/elastic/ember.git
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Figura 12 - Clonando o repositério

Arguive Editar Ver Terminal Abas Ajuda
(ember) user@LinuxMint: $ git clone https://github.com/elastic/em
ber.git
Cloning into 'ember'...
: Enumerating objects: 288, done.
: Counting objects: 100% (93/93), done.
: Compressing objects: 100% (30/30), done.
: Total 288 (delta 74), reused 63 (delta 63), pack-reused 195 (from 2)
Receiving objects: 100% (288/288), 11.36 MiB | 2.10 MiB/s, done.
Resolving deltas: 100% (125/125), done.
(ember) user@LinuxMint: N |

Fonte: Proprios autores a partir do VirtualBox

Agora, no proximo subtopico, sera instalado o médulo do EMBER juntamente

com suas dependéncias.

3.4.4 INSTALANDO MODULO EMBER E DEPENDENCIAS

Nesta etapa, foi realizada a instalagdo do modulo EMBER para Python,
juntamente com suas dependéncias. A correta execucdo desse procedimento foi
fundamental, uma vez que a auséncia de alguma dependéncia, ou a utilizacdo de

versdes incompativeis, comprometeria a execu¢ao do projeto.

Dentro do ambiente EMBER, verificou-se se o repositorio havia sido clonado
corretamente, utilizando o comando “Is -I e em seguida acessado o diretério do

repositério com "cd ember/”, conforme demonstrado na Figura 13:



Figura 13 — Diret6rio EMBER

Arguivo Editar Ver Terminal Abas Ajuda

(ember) user@LinuxMint: $ 1s -1
total 4

drwxrwxr-x 8 user user 4096 set 26 12:31

(ember) user@LinuxMint: $ cd ember/
(ember) user@LinuxMint: |

Fonte: Préprios autores usando o VirtualBox

Foi entdo conferido o conteudo do diretorio com “Is -I”, exibido na Figura 14:

Figura 14 — Conteudo do diret6ério

Arquivo Editar Ver Terminal Abas Ajuda
(ember) user@LinuxMint:
total 52
SrwW-rw-r--
drwXxrwxr-x

user user : Dockerfile
user user
user user
user user : LICENSE. txt
user user

1

2

2
Srw-rw-r-- 1
2
1 user user : README . md
1
1
1
2
2

drwXrwxr-x

user user : requirements conda.txt
user user : requirements_notebook.txt
user user : requirements.txt
user user
user user
1 user user : setup.py
(ember) user@LinuxMint:

Fonte: Proprios autores usando-se o VirtualBox

51




52

No diretorio do EMBER, encontram-se trés arquivos essenciais:
‘requirements_conda.txt”, “requirements_notebook.txt” e “setup.py”, sendo o ultimo o
principal responséavel pela instalagdo do moédulo EMBER, enquanto os dois arquivos
restantes especificam as dependéncias necessarias. Estes arquivos de dependéncias
incluem médulos essenciais para o treinamento do modelo e algoritmos de arvore de
deciséo, como LightGBM, Scikit-learn, Matplotlib, entre outros. A seguir, na Tabela 12,
descritos alguns dos comandos utilizados para se instalar as dependéncias do

ambiente e o médulo EMBER.

Tabela 12 - Comandos utilizados na instalagdo do médulo EMBER e dependéncias

Comando Descricao

Adiciona o repositério Conda-forge como fonte de
conda config --add channels | pacotes. Ele € uma comunidade que mantém pacotes
conda-forge atualizados e mais variados do que os disponiveis no

canal padréo.

conda install --file Instala todos os modulos contidos no arquivo
requirements_conda.txt ‘requirements_conda.txt”.
conda install --file Instala todos os médulos existentes no arquivo
requirements_notebook.txt ‘requirements_notebook.txt”.
python setup.py install Instala o projeto EMBER como um pacote Python.

Fonte: Roth, 2022

Na Figura 15 e 16, é ilustrado o processo de instalacdo das dependéncias
necessarias descritas anteriormente na Tabela 12, com o intuito de garantir o

funcionamento correto do ambiente:
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Figura 15 - Instalando dependéncias

Arquivo Editar Ver Terminal Abas Ajuda
(ember) user@LinuxMint:
-forge
(ember) user@LinuxMint:
| conda. txt
2 channel Terms of Service accepted
Retrieving notices: done
Channels:

- conda-forge

- defaults
Platform: linux-64

Collecting package metadata (repodata.json): \ |}

$ conda config --add channels conda

$ conda install --file requirements

Fonte: Proprios autores fazendo uso do VirtualBox

Figura 16 - Instalando as demais dependéncias

Arguivo Editar Ver Terminal Abas Ajuda

(ember) user@LinuxMint:
_notebook.txt
2 channel Terms of Service accepted
Channels:
- conda-forge
- defaults
Platform: linux-64
Collecting package metadata (repodata

$ conda install --file requirements

Fonte: Proprios autores a partir do VirtualBox

Apods a instalacdo correta dos pacotes essenciais, foi instalado o modulo

EMBER, processo exibido na Figura 17:
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Figura 17 — Instalacdo do médulo EMBER

Arquivo Editar Ver Terminal Abas Ajuda

(ember) user@LinuxMint: $ python setup.py install
running install
running bdist egg
running egg info
creating ember.egg-info
writing ember.egg-info/PKG-INFO
writing dependency links to ember.egg-info/dependency links.txt
writing top-level names to ember.egg-info/top level.txt
(writing manifest file 'ember.egg-info/SOURCES.txt'
reading manifest file 'ember.egg-info/SOURCES.txt'
adding license file ICENSE. txt
writing manifest file 'ember.egg-info/SOURCES.txt'
installing library code to build/bdist.linux-x86_64/egg
running install lib
running build py
creating build
creating build/lib
creating build/lib/ember
copying ember/ init .py -> build/lib/ember
copying ember/features.py -> build/lib/ember
creating build/bdist.linux-x86_64
creating build/bdist.linu 86_64/eqg
creating build/bdist.linux-x86 64/egg/ember
copying build/lib/ember/__init__ .py -> build/bdist.linux-x86_64/egg/ember
copying build/lib/ember/features.py -> build/bdist.linux-x86 64/egg/ember
byte-compiling build/bdist.linux-x86 64/egg/ember/ init .py to init  .cpython-36.pyc
byte-compiling build/bdist.linux-x86_64/egg/ember/features.py to features.cpython-36.pyc
creating build/bdist.linux-x86_64/egg/EGG-INFO
.egg-info/PKG-INFO -> build/bdist.linux-x86 64/eqg/EGG-INFO
.egg-info/SOURCES.txt -> build/bdist.linux-x86 64/egg/EGG-INFO
copying ember.egg-info/dependency_links.txt -> build/bdist.linux-x86_64/eqq/EGG-INFO
copying ember.egg-info/top_level.txt -> build/bdist.linux-x86_64/eqg/EGG-INFO
zip _safe flag not set; analyzing archive contents...
creating dist
creating 'dist/ember-0.1.0-py3.6.egg’' and adding 'build/bdist.linux-x86_64/egg’' to it
removing 'build/bdist.linux-x86 64/egg' (and everything under it)
Processing ember-0.1.0-py3.6.egg
Copying ember-0.1.0-py3.6.egg to /home/user/miniconda3/envs/ember/lib/python3.6/site-packages
Adding ember 0 to easy-install.pth file

Fonte: Préprios autores no VirtualBox

Apoés a instalacdo dos arquivos de dependéncias e do pacote EMBER, foi
instalada a interface de programacao Jupyter Notebook por meio do comando "conda

install jupyter -y”, conforme a Figura 18:

Figura 18 - Instalando o Jupyter Notebook

Arquivo Editar Ver Terminal Abas Ajuda
(ember) user@LinuxMint: $ conda install jupyter -y
2 channel Terms of Service accepted
Channels:

- conda-forge

- defaults
Platform: linux-64
Collecting package metadata (repodata.json): | [

Fonte: Proprios autores
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A seguir, sera abordado sobre o dataset escolhido e utilizado na realizacédo do

trabalho, juntamente com outros detalhes sobre ele.

3.4.5 DATASET UTILIZADO

Apos instalado o pacote EMBER, além das dependéncias, foi feito o download
do dataset  localizado no préprio Github  “https://ember.elastic.co/
ember_dataset 2018 2.tar.bz2”.

O dataset usado neste trabalho é a segunda versao, de 2018, devido ao fato

de ele ser de cddigo aberto e gratuito para uso. Para garantir o correto funcionamento
dos codigos desenvolvidos nos topicos seguintes, o dataset foi mantido no diretério
em que esses codigos estavam localizados. Agora sera iniciada a extracao de vetores

numéricos.

3.5 EXTRAINDO VETORES NUMERICOS

A partir desse ponto, iniciou-se a utilizacdo dos codigos desenvolvidos. Foi
verificado que todos os procedimentos anteriores foram executados corretamente.
Dentro do ambiente virtual, o Jupyter Notebook foi aberto dentro do diretério onde o
para facilitar a execucéo dos scripts. Para isso, 0 comando foi executado no terminal
no diretorio onde o dataset havia sido baixado: “jupyter notebook”.

Apés digitar o comando, foi aberto uma guia no navegador com o Jupyter
Notebook, conforme mostrado na Figura 19:

Figura 19 — Guia no navegador com Jupyter Notebook

() Documen tos/TCC/Metodole X + ~
(&] QO D http://localhost:8888/tree/Dacumentos/TCC/Metadologia-DatasetEMBER/Untitled Folder Pk e N & =
~ Jupyter qut || Logowt
Files Running Clusters

Select items to perform actions on them. Upload | New~ | &

0 -~ | Bm/ D TCC / Metodologia-DatasetEMBER / Untitled Folder Name & | Last Modified File size

(] poucos segundos atras

[ ember_dataset 2018 2.tarbz2 i5diasatras 1.7 GB

Fonte: Proprios autores


https://ember.elastic.co/

56

Apoés aberto o Jupyter Notebook, foi selecionada a op¢ao “Python 3” no menu
“New”, criando-se um documento para a inser¢ao dos codigos. Em seguida, verificou-
se se o0s procedimentos anteriores de configuragéo foram executados corretamente
por meio do comando “Ipython —version”, usado para verificar a versao do Python, que

nesse cenario foi a 3.6, conforme a Figura 20:

Figura 20 - Testando versdo e modulo EMBER

'python --version

Python 3.6.13 :: Anaconda, Inc.

import ember
print({ember)

<module 'ember' from '/home/user/miniconda3/envs/ember/lib/python3.6/site-packages/ember-0.1.0-py3.6.egg/ember/__ini
t .py'>

Fonte: Préprios autores a partir da tela do Jupyter Notebook

Agora, dentro de uma nova célula, foi extraido o dataset com o seguinte
comando: “Itar -xvjf <dataset>". Este processo levou algum tempo, devido ao tamanho

consideravel do dataset, conforme exibido na Figura 21:

Figura 21 - Extraindo o dataset

'tar -xvjf ember dataset 2018 2.tar.bz2

ember2018/

ember2018/train features 1.jsonl
ember2018/train features 0.jsonl
ember2018/train features 3.jsonl
ember2018/test features.jsonl
ember2018/ember model 2018.txt
ember2018/train features 5.jsonl
ember2018/train features 4.jsonl
ember2018/train features 2.jsonl

Fonte: Proprios autores na tela do Jupyter Notebook
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Apos se extrair, foi executada a seguinte célula de codigo exibida na Figura 22:

Figura 22 - Vetorizacdo e Geracdo de Metadados

import ember
ember.create vectorized_features("C:\\Users\\0646972311011\\Documents\\ember2018")
ember.create metadata("C:\\Users\\8048972311811\\Documents\\emberz018")

Vectorizing training set

106 | 1 RN | 00000/300000 [04:43<00:00, 2820.461

t/s]

Vectorizing test set

100" | N | 2 0000/200000 [01:11<00:00, 2782.791

t/5]

Fonte: Proprios autores a partir do Jupyter Notebook

Esse passo € obrigatério antes de treinar qualquer modelo, pois os dados

precisam estar "vetorizados" (transformados de arquivos binarios em vetores

numericos). Os diretérios usados dentro das funcdes devem ser os mesmos onde o

dataset estava localizado.

Figura 23 — Dataframe obtido ap0s a vetorizagéo

sha256 appeared label

avclass subset

999995

999996

999997

999998

999999

Oabb4fda7d5b13801d63bees3ebe2bbbed4dei41faaliva.. 200612

c9cafffiab96badadibafb4babaebi2ef3329d95p85M15... 2007-01

eac8ddb4970f8af985742973d60e06902d42a3684d791...  2007-02

7f513818bcc276c531af2e641c597744daB07e21cc1160...  2007-02

caf5elcd87adccleVdBaloe12bf1befof534c903208d95... 2007-02

e033bc4967ceb4bbb5cafdb234372099395185a6e0280c... 201812

c7d167361d905i5fbed530670011e787eb122e86536380... 201812

002007 7cb673729209d88b603bddf560925018e682892a...  2018-12

1b7e7c8febabf70d1c17iedcyabf80f33003581c380f28... 201812

83606312312b597632bcalf738e68e4d231672d587a fc...  2018-12

1000000 rows = 5 columns

Fonte: Proprios autores no Jupyter Notebook

Zbaot

flystudio

emotet

train

train

train

train

train

test

test

test

test

test
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A Figura 23 representa o principal dataframe com um milhdo de amostras que
€ exibida apés a vetorizacdo dos dados. Agora sera abordado o carregamento de

dados vetorizados e metadados no subtépico a seguir.

3.6 CARREGAMENTO DOS DADOS VETORIZADOS E METADADOS

Nesta etapa, foram carregados os vetores de caracteristicas “(X_train, X_test)”
e os rétulos “(y_train, y_test)” previamente extraidos, além do dataframe de metadados

contendo informagdes como hash, data de aparecimento, rétulo e tipo de malware,
conforme exibido na Figura 24:

Figura 24 - Carregamento dos Dados Vetorizados e Metadados
import ember

X train, y train, X test, y test = ember.read vectorized features("C:\\Users\\0040972311011\\Documents\\ember2018")
metadata dataframe = ember.read metadata("C:\\Users\\0040972311011\\Documents\\ember2018")

Fonte: Proprios autores fazendo uso do Jupyter Notebook

Agora, com toda a preparacdo do ambiente concluida, sera iniciado o
treinamento de um modelo para teste.

3.7 TREINANDO O MODELO

Para treinar o modelo preditivo, foi utilizado a funcao “train_model” do pacote
EMBER, que implementa um classificador LightGBM. O conjunto de treinamento
contém seiscentas mil amostras balanceadas entre arquivos maliciosos e benignos,

com mais de duas mil caracteristicas extraidas de cada arquivo PE. Isso pode ser
visto na Figura 25:

Figura 25 — Treinando o modelo

import ember
lgbm_model = ember.train_model("C:\\Users\\0040972311011\\Documents\\ember2018")

[LightGBM] [Info] Number of positive: 300000, number of negative: 300000

[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 4.725833 seconds.
You can set “force col wise=true” to remove the overhead.

[LightGBM] [Info] Total Bins 212057

[LightGBM] [Info] Number of data points in the train set: 600000, number of used features: 2333
[LightGBM] [Info] [binary:BoostFromScore]: pavg=0.500000 -> initscore=0.000000

Fonte: Proprios autores
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A funcéo realizou o ajuste dos parametros internos do modelo, otimizando sua
capacidade de identificar padrées que discriminam malwares. No proximo subtdpico,

sera abordada a arvore de decisdo gerada a partir do modelo treinado.

3.8 ARVORE DE DECISAO

Foi gerada uma arvore de decisao, ilustrada nas Figuras 26, 27 e 28, a partir
do modelo treinado, que explica a maneira como ele faz sua escolha de maneira
grafica e permitindo melhor compreenséo. Cada n6 da arvore de deciséo representa
uma “regra” ou “teste” que o modelo faz sobre os dados. Esses nés mostram varias

informacdes importantes, cujas informacfes sdo explicadas na Tabela 13:



Tabela 13 - Informacdes dos campos da arvore de decisao

Campo

Significado

Exemplo na arvore

feature

Qual caracteristica foi usada para
dividir os dados, representa
caracteristica (ou atributo do dado).
Cada numero (feature_637) é uma
coluna da sua matriz “X_train”.
Entao, “feature_637” é a 6372 coluna
do vetor de caracteristicas (dos

milhares gerados pelo EMBER).

feature 637 <=-0.5

gini

Impureza do n6 (mistura de classes),
ou seja, 0 quao misturadas estéo as
classes dentro dele. Gini = 0 — n6 puro
(todas as amostras sdo da mesma
classe).

Gini alto (ex: 0.65) — o n6 tem mistura
de classes (malware e benignos

juntos).

gini = 0.656

samples

E o nimero de amostras (linhas) do
dataset que chegaram até esse né
durante o treinamento.

samples = 800000

value

Quantas amostras de cada classe

estd0 no nd. class_names = [200000, 300000, 300000]

["unlabeled”, "benign", "malware"]

class

Classe predominante no no (resultado).
decisédo final do n6

benign

Fonte: Proprios autores
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Figura 26 — Sub-arvore de decisdo gerada contendo o primeiro né e sua primeira decisdo

feature 637 <= 05
gini = 0.656
samples = 800000
value = [200000, 300000, 300000]
class = benign

False
> 0.5
feature 611 <= 6.007 feature 2359 <= 5988.0
gini = 0.483 gini = 0.638
samples = 203656 samples = 596344
value = [47538, 137153, 18965] value = [152462, 162847, 281035]
class = benign class = malware

Fonte: Proprios autores a partir do codigo presente no Jupyter Notebook

A Figura 26 contém o primeiro nd, de onde se inicia a deciséo do modelo, e a primeira
decisdo que ele deve tomar. A seguir, sera exibido o restante das decisfes e seus ndés em
forma de sub-arvores, com a Figura 27 se iniciando a partir da primeira decisédo considerando
0 arquivo malicioso e a Figura 28 o considerando benigno.

Figura 27 — Sub-arvore de decisdo gerada considerando o arquivo malicioso

gini = 0.648
samples = 105030
value = [26492, 46220, 32318]
class = benign

feature 503 <= 0.0
gini = 0.607
samples = 505346
value = [128042, 108396, 268908]
class = malware

gini = 0.562
samples = 400316
value = [101550, 62176, 236590]
class = malware

feature 2359 <= 5988.0
gini = 0.638
samples = 596344
value = [152462, 162847, 281035]
class = malware

feature_679 <= 9.5
gini = 0.552
samples = 90998
value = [24420, 54451, 12127]

class = benign

gini = 0.613
samples = 42679
value = [11344, 22166, 9169]
class = benign

gini = 0.477
samples = 48319
value = [13076, 32285, 2958]
class = benign

Fonte: Proprios autores a partir do codigo presente no Jupyter Notebook
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Figura 28 — Sub-arvore de decisdo gerada considerando o arquivo benigno

gini = 0.425
samples = 1475
value = [373, 49, 1053]
class = malware

True

feature 784 <= -11.843
gini = 0.415
samples = 174600
value = [40325, 127103, 7172]
class = benign

gini = 0.407
samples = 173125
value = [39952, 127054, 6119]
class = benign

feature 611 <= 6.007
gini = 0.483
samples = 203656
value = [47538, 137153, 18965]
class = benign

feature_2359 <= 1146.0
gini = 0.654
samples = 29056
value = [7213, 10050, 11793]

class = malware

gini = 0.598
samples = 21265
value = [5069, 4582, 11614]
class = malware

gini = 0.431
samples = 7791
value = [2144, 5468, 179]
class = benign

Fonte: Proprios autores a partir do codigo presente no Jupyter Notebook

Agora sera finalmente iniciada a classificacao de executaveis fazendo uso do
modelo treinado para isso.

3.9 CLASSIFICANDO EXECUTAVEIS

Para realizar a predicdo em um arquivo binario individual, foi carregado o
modelo LightGBM previamente treinado pelo EMBER e aplicando funcéo

“predict_sample” que processou o conteudo bruto do arquivo executavel. Isso pode
ser observado na Figura 29:

Figura 29 — Classificacdo do executavel

import ember

import lightgbm as lgb

1gbm model = lgb.Booster(model file="C:\\Users\\0040972311011\\Documents\\ember2018\\ember model 2018.txt")
putty data = open("C:\\Users\\0040972311011\\Documents\\putty.exe", "rb").read()

print(ember.predict sample(lgbm model, putty data))

[LightGBM] [Warning] Ignoring unrecognized parameter 'max conflict rate' found in model string.

[LightGBM] [Warning] Ignoring unrecognized parameter 'sparse threshold' found in model string.

[LightGBM] [Warning] Ignoring unrecognized parameter 'enable load from binary file' found in model string.
[LightGBM] [Warning] Ignoring unrecognized parameter 'max_position' found in model string.
3.165875703315708e-05

Fonte: Proprios autores usando o Jupyter Notebook

O executavel usado foi o “putty.exe”, um cliente SSH bem conhecido e

claramente benigno. O resultado apresentado foi uma pontuacdo que representa a
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probabilidade de o arquivo ser malicioso, onde valores préximos a zero indicam alta
probabilidade de benignidade, e valores préximos a um indicam maior suspeita de
malware. Agora sera feita a mesma analise, porém em um ransomware real. No
proximo subtépico serd abordada a amostra de malware escolhida para o

experimento.

3.10 AMOSTRA DE RANSOWARE

Para a amostra de ransomware, foi utilizado o WannaCry, muito conhecido
pelos ataques realizados no passado fazendo uso dele. Apds carregar-se o modelo
em “ember_model_2018.txt” realizou-se a predicdo do malware. A saida representou
um numero muito proximo de um, indicando que ele foi detectado como altamente

malicioso, eventos exibidos na Figura 30:

Figura 30 — Predicdo do Ransomware WannaCry

import ember

import lightgbm as lgb

Llgbm_model = lgb.Booster(model_ file="/root/Downloads/ember model 2018.txt")
putty data = open("/root/WannaCry.EXE", "rb").read()

print(ember.predict sample(lgbm model, putty data))

0.9999947091796528
Fonte: Proprios autores

Agora, no topico a seguir, sera feita a analise de resultados obtidos.
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4 ANALISE DE RESULTADOS

Nesta secdo, foram expostos e analisados os resultados derivados da

utilizacdo do modelo EMBER na identificagdo de arquivos maliciosos. Examinando as

métricas gerais de classificacdo, e elementos especificos, a finalidade foi analisar a

capacidade do modelo em diversas situacoes.

Para andlise de resultados, foi utilizado um cédigo em Python, utilizando o

Jupyter Notebook. Para iniciar a andlise, foram carregados os médulos mostrados na

Figura 31:

import
import
import
import
import
import
import

Figura 31 — Carregamento dos médulos para analise

0s

ember

numpy as np

pandas as pd

altair as alt

lightgbm as lgb
matplotlib.pylab as plt

from sklearn.metrics import roc auc score, roc curve
= alt.renderers.enable( 'default"')

Fonte: Proprios autores do Jupyter Notebook

Apés se importar os médulos, foi definida uma variavel para armazenar o

diretério do dataset, conforme demonstrado na Figura 32:

Figura 32 - Variavel do diretério do dataset

data dir = "/home/user/Documentos/TCC/Metodologia-DataseEMBER/ember2018/"

Fonte: Proprios autores fazendo uso do Jupiter Notebook

Realizada essa etapa, foi feita a vetorizacdo dos dados novamente, utilizando

as funcdes do modulo EMBER. Esse processo extrai caracteristicas como se¢des do

binario, imports, export tables, entropia etc. Em seguida, os metadados (hash, data,

label e subset) sdo gerados, passo ilustrado na Figura 33:
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Figura 33 — Vetorizacdo gerada novamente

ember.create vectorized features(data dir)
= ember.create metadata(data dir)

Vectorizing training set
100% ||| c00000/800000 [20:16<00:00, 657.52it/s]
Vectorizing test set

100% ||| 200000/200000 [04:52<00:00, 683.81it/s]

Fonte: Proprios autores a partir do Jupyter Notebook

Nesse ponto, o dataset j4 vetorizado foi carregado na memoaria. “emberdf’
recebeu o dataframe de metadados, enquanto “X_train”, “X_test”, “y_train” e “y_test”
receberam os vetores numéricos e seus respectivos rétulos. O modelo LightGBM preé-
treinado também foi carregado, permitindo gerar predicdes imediatamente. O

carregamento das features é demonstrado na Figura 34:

Figura 34 — Carregando Features

emberdf = ember.read metadata(data dir)
X train, y train, X test, y test = ember.read vectorized features(data dir)
lgbm_model = lgb.Booster(model file=os.path.join(data dir, "ember model 2018.txt"))

Fonte: Proprios autores

A seguir sera abordada a distribuicdo do Dataset EMBER além de algumas

informacdes importante sobre ele.

4.1 DISTRIBUICAO DO DATASET EMBER

A base de dados utilizada neste trabalho foi o EMBER 2018, contendo um
grande volume de amostras destinadas tanto ao treinamento quanto a validacdo de
modelos de aprendizado de maquina, o que torna possivel avaliar o desempenho de
deteccdo em um cenario proximo ao ambiente real.

O primeiro grafico demonstra a divisio em train e test totalizando

aproximadamente um milhdo. Foi possivel observar que o subset de treino contém a
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maior parte dos dados. Cada subset foi dividido em trés categorias: amostras
benignas, maliciosas e nao rotuladas, onde as n&o rotuladas refletem uma
caracteristica muito importante, pois aborda a realidade de muitos ambientes de
seguranca, onde nem todos os arquivos capturados possuem rétulo imediato. Para
gerar o primeiro grafico, na Figura 36, foi usado a célula de cddigo presente na Figura
35:

Figura 35 — Cdédigo da divisdo de amostras

plotdf = emberdf.copy()
gbdf = plotdf.groupby(["label”, "subset"]).count().reset index()
alt.Chart(gbdf).mark bar().encode(
alt.X('subset:0', axis=alt.Axis(title='Subset')),
alt.Y('sum({sha256):0', axis=alt.Axis{title='Number of samples'}),
alt.Color('label:N', scale=alt.Scale(range=["#08b360", "#3333ff", "#ff3333"]),
legend=alt.lLegend(values=["unlabeled", "benign", "malicious"]))

Fonte: Préprios autores a partir do Jupyter Notebook

Ao rodar a célula de caodigo, o grafico foi gerado logo em sequéncia, assim,

representou visualmente a divisao:

Figura 36 - Divisdo de amostras

800,000 label
unlabeled

700,000 - benign
malicious

500,000 -

400,000

300,000

Mumber of samples

Subset

Fonte: Proprios autores usando a célula de codigo descrita no Jupyter Notebook
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A existéncia de uma quantidade significativa de amostras “unlabeled” é
especialmente importante, pois aproxima o processo de classificacdo de um cenario
real, onde diversas ameacas emergentes ainda nao foram totalmente analisadas.

O segundo gréfico apresenta a distribuicdo por més das amostras,
evidenciando o més de aparecimento das amostras durante todo o ano de 2018, além
de um conjunto adicional de amostras, anteriores a 2018. Esse grafico foi gerado

através da seguinte célula de comando, conforme a Figura 37:

Figura 37 - Cdodigo do aparecimento de amostras

plotdf = emberdf.copy()

plotdf.loc[plotdf["appeared"] < "2818-81", "appeared"”] = " <2018"

gbdf = plotdf.groupby(["appeared", "label"]).count(}.reset index()

alt.Chart(gbdf).mark bar().encode(
alt.X('appeared:0', axis=alt.Axis(title='Month appeared'}),
alt.¥('sum(sha256):0', axis=alt.Axis(title='Number of samples')}),
alt.Color('label:N', scale=alt.Scale(range=["#80b300", "#3333ff", "#ff3333"]),
legend=alt.Legend(values=["unlabeled", "benign", "malicious"]))

Fonte: Préprios autores a partir do Jupyter Notebook

Feito isso, foi gerado a imagem a seguir que demonstra visualmente o

aparecimento das amostras:
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Figura 38 - Aparecimento de amostras

120,000 - label

unlabeled
benign

100,000 - malicious

80,000

70,000+

Mumber of samples

20,000

=333333333333

Fonte: Proprios autores com uso do Jupyter Notebook

O gréfico exibido na Figura 38 é muito importante, pois evidencia que o dataset
nao € estatico, mas sim uma base que contempla uma evolucdo temporal, o que
melhora a capacidade do modelo em reconhecer diferentes padrdées de
comportamento de malware ao longo do tempo. No proximo subtdpico seréa discutido
o desempenho com a taxa de falso positivo controlado.

4.2 DESEMPENHO COM FPR CONTROLADO (ENTRE 1% E 0.1)

Nesta etapa, foi feita uma avaliacédo da taxa de falso positivos. O objetivo dessa
analise é observar como o modelo se comporta ao alcancar diferentes niveis de
tolerancia a falsos positivos.

O threshold define o ponto de corte da pontuacdo de probabilidade predita pelo
modelo, determinando se uma amostra sera classificada como maliciosa (pré6ximo de
um) ou benigna (préximo de zero). Um limiar mais baixo implica em uma deteccédo
mais agressiva (maior taxa de deteccao, porém mais falsos positivos), enquanto limiar

mais alto torna 0 modelo mais conservador (menos falsos positivos, mas maior chance
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de ndo detectar alguns malwares). Foi usado a seguinte célula de codigo, conforme

exibido na Figura 39, que iniciou a fase de geracédo das previsdes do modelo:

Figura 39 - Previsdes

y test pred = lgbm model.predict(X test)
y train pred = lgbm model.predict(X train)

emberdf["y pred"] = np.hstack((y train pred, y test pred))

Fonte: Proprios autores fazendo uso do Jupyter Notebook

Geradas as previsdes, foi usado a seguinte célula de cddigo, presente na
Figura 40, para a avaliagdo do modelo:

Figura 40 - Cddigo da avaliacdo do modelo

def get fpr(y true, y pred):
nbenign = (y_true == 8).sum(}
nfalse = (y _pred[y true == @] == 1).sum()
return nfalse / float(nbenign)

def find threshold(y true, y pred, fpr_target):
thresh = 6.8
fpr = get_fpri{y_true, y pred = thresh)
while fpr = fpr_target and thresh = 1.8:
thresh += 8.00081
fpr = get_fpr(y_true, y pred = thresh)
return thresh, fpr

testdf = emberdf[emberdf["subset"] == "test"]
print{“ROC AUC:", roc_auc_score(testdf.label, testdf.y pred}}
print(}

threshold, fpr = find threshold(testdf.label, testdf.y pred, 08.01)

fnr = (testdf.y pred[testdf.label == 1] = threshold).sum{) / float((testdf.label == 1).sum()}
print{“Ember Model Performance at 1% FPR: ™)

print{“Threshold: {:.4f}".format{threshold))

print{“"False Positive Rate: {:.3f}%".format(fpr * 180))

print{“False Negative Rate: {:.3f}%".format(fnr * 188}))

print{"Detection Rate: {}%".format(l08 - fnr *|IBDj]

print(}

threshold, fpr = find_threshold(testdf.label, testdf.y _pred, ©.001)

fnr = (testdf.y pred[testdf.label == 1] = threshold).sum{) / float(({testdf.label == 1}).sum())
print{“Ember Model Performance at 8.1% FPR:")

print{“Threshold: {:.4f}".format{threshold))

print{“False Positive Rate: {:.3f}%".format(fpr * 180}))

print{“False MNegative Rate: {:.3f}%".format(fnr * 180))

print{"Detection Rate: {}%".format(l08 - fnr * 108))

Fonte: Préprios autores a partir do Jupyter Notebook
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Logo apods usar o cédigo para avaliagdo do modelo, foi gerado em sequéncia a

saida com informacdes para a avaliacdo, conforme exibido na Figura 41:

Figura 41 — Resultado da avaliagdo do modelo

ROC AUC: ©.9964289467999999

Ember Model Performance at 1% FPR:
Threshold: ©.8336

False Positive Rate: 1.000%

False Negative Rate: 3.502%
Detection Rate: 96.498%

Ember Model Performance at 0.1% FPR:
Threshold: ©.9996

False Positive Rate: 0.098%

False Negative Rate: 13.192%
Detection Rate: 86.80799999999990%

Fonte: Proprios autores com uso do Jupyter Notebook

Na saida com "ROC AUC: 0.9964" foi observado que o modelo tem a
possibilidade de distinguir perfeitamente amostras malignas e benignas. Apenas um
de cada cem arquivos benignos foi classificado erroneamente como malware com 1%
de Falsos Positivos (FPR = 0.01), o modelo detectou cerca de 96,5% dos malwares,
com 1% de Falsos Positivos. J& 0 modelo mais conservador com 0.1% (FPR = 0.001),
apenas um de cada mil arquivos benignos é incorretamente alertado, porém, a taxa
de deteccéo caiu para cerca de 87%.

Com base nos resultados obtidos, diminuir a FPR (ser mais rigido com falsos
positivos) aumenta o limiar e reduz a taxa de deteccdo, sendo o comportamento
esperado em qualquer modelo de classificacdo binaria. Agora sera abordada a

classificagdo da amostra de ransomware realizada.

43 CLASSIFICACAO DE AMOSTRA DE RANSOMWARE

Para avaliar a capacidade do modelo em identificar ransomware, foi utilizada
uma amostra real do WannaCry, conhecida por criptografar arquivos do sistema e
exigir pagamento para sua liberagdo, além de um executavel legitimo para

comparacdo de resultados, o Putty, um cliente SSH. O modelo LightGBM,
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previamente treinado com o Dataset EMBER, foi carregado a partir do arquivo
‘ember_model_2018.txt”. Em seguida, a fung¢ao “predict_sample” do médulo EMBER
foi aplicada diretamente sobre o conteddo binario do executavel, processando suas
caracteristicas estaticas e retornando uma pontuacdo de probabilidade de ser
malware.

A execucéo das duas classificacdes resultou em uma pontuacéao de 0.9999 na
classificacdo do WannaCry, valor muito préximo de um, indicando alta probabilidade
de comportamento malicioso. Durante a classificagdo do Putty, o resultado retornado
foi um valor extremamente baixo, muito proximo de zero. Esse resultado demonstra
gue o modelo treinado foi capaz de identificar corretamente a amostra WannaCry
como um ransomware, confirmando sua eficacia na detec¢cao de ameacas conhecidas
e perigosas. Agora sera comentado sobre algumas limitac6es identificadas no dataset

utilizado no trabalho.

4.4  LIMITACOES OBSERVADAS

Durante os testes complementares, foi avaliada uma amostra recente de
ransomware, nao presente no conjunto de dados original EMBER 2018.
Ao realizar a predicdo com o mesmo modelo LightGBM, observou-se que o valor
retornado foi muito préximo de zero, o que indica alta probabilidade de benignidade.

Esse comportamento demonstra uma limitagdo importante do modelo em
detectar variantes novas ou amostras de malware que nao compartilham
caracteristicas estaticas similares com aquelas utilizadas durante o treinamento.

Como o Dataset EMBER 2018 foi construido com amostras coletadas até o ano
de 2018, o modelo tende a apresentar reducdo de desempenho frente a ameacas
mais recentes, especialmente quando o ransomware adota técnicas modernas de
ofuscacdo, empacotamento, ou assinaturas de codigo alteradas. A seguir seréo

abordadas as consideracgdes finais sobre os resultados obtidos.

5 RESULTADOS E CONSIDERACOES FINAIS

O presente trabalho de conclusao de curso teve como objetivo principal aplicar
técnicas de aprendizado de maquina na classificacdo de executaveis maliciosos

utilizando o Dataset EMBER de 2018. Com ele, os testes feitos demostraram que o
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modelo treinado teve um 6timo desempenho, alcancando um ROC AUC de 0.9964, o
gue mostrou alta capacidade de separacao entre amostras benignas e maliciosas.

Observou-se que nos testes com controle de taxa de falsos positivos (FPR), o
modelo manteve taxas de detecc¢éo elevadas mesmo em cendrios mais restritivos, a
1% de FPR, o modelo alcancou 96,5% de taxa de deteccdo. A 0,1% de FPR, ainda
obteve 86,8% de taxa de deteccdo. Os dados apontam que o classificador é eficiente
e resistente na deteccado de ameacgas conhecidas, incluindo amostras de ransomware
classico, como o WannaCry, que foi classificado corretamente com uma probabilidade
qguase igual a um, confirmando que se tratava de um malware.

Entretanto, em testes com amostras recentes, 0 modelo teve limitacdes em
realizar a classificacdo do executavel como malwares de maneira adequada e, nesses
casos, foram obtidas pontuac6es muito préximas de zero, indicando falsos negativos
e refletindo a dependéncia temporal e estatica do modelo. Dessa forma, conclui-se
que, embora 0 modelo tenha apresentado excelente desempenho na deteccdo de
malwares conhecidos, sua eficacia pode ser comprometida frente a ameacas
modernas ou variacdes inéditas.

Com isso em mente, fica evidente a necessidade de mais estudos na area além
da criacao de novos métodos e tecnologias para tornar a abordagem mais confiavel e
eficaz na classificacdo de malwares mais sofisticados.

Em suma, este trabalho respondeu a questdo de pesquisa "como aplicar
técnicas de aprendizado de maquina para identificar e classificar executaveis
maliciosos de forma eficaz, utilizando o Dataset EMBER como base de treinamento e
teste?" e, mesmo com as limitagdes encontradas, o objetivo geral “aplicar técnicas de
aprendizado de maquina na classificacdo de executaveis maliciosos utilizando o

Dataset EMBER” péde ser alcangado.
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