
Faculdade de Tecnologia de Americana “Ministro Ralph Biasi”

Curso Superior de Tecnologia em Segurança da Informação

Guilherme Henrique Crivelari Beloti

Lucas Amazonas Oliveira Ayres

Matheus da Costa Rosa

CLASSIFICAÇÃO DE EXECUTÁVEIS MALICIOSOS COM

APRENDIZADO DE MÁQUINA:

uma abordagem usando o Dataset EMBER em amostras de

ransomware

Americana, SP

2025

Guilherme Henrique Crivelari Beloti

Lucas Amazonas Oliveira Ayres

Matheus da Costa Rosa

CLASSIFICAÇÃO DE EXECUTÁVEIS MALICIOSOS COM

APRENDIZADO DE MÁQUINA:

uma abordagem usando o Dataset EMBER em amostras de

ransomware

Trabalho de Conclusão de Curso desenvolvido

em cumprimento à exigência curricular do Curso

Superior de Tecnologia em Segurança da

Informação na área de concentração em

segurança da informação.

Orientador(a): Prof. Me. Rafael Rodrigo Martinati

Este trabalho corresponde à versão final do

Trabalho de Conclusão de Curso

apresentado por Guilherme Henrique

Crivelari Beloti, Lucas Amazonas Oliveira

Ayres e Matheus da Costa Rosa e orientado

pelo Prof. Me. Rafael Rodrigo Martinati.

Americana, SP

2025

RESUMO

O presente trabalho tem como objetivo usar técnicas de aprendizado de máquina para
classificar executáveis maliciosos usando o Dataset EMBER. Com o aumento e
evolução constante das ameaças digitais, destacando-se o ransomware, a
necessidade da aplicação de sistemas e técnicas de segurança adaptáveis torna-se
imprescindível na proteção de sistemas e informações relevantes. Esse estudo,
fazendo uso do Dataset Elastic Malware Benchmark for Empowering Researchers
(EMBER), busca a aplicar o machine learning para testar um modelo capaz de
distinguir entre arquivos benignos e maliciosos. A metodologia utilizada consistiu na
preparação e configuração do ambiente de teste e do Dataset EMBER, que permitiu-
se organizar e preparar os dados extraídos dos executáveis, etapa importante para a
realização dos testes posteriores. Para a classificação dos executáveis, foi utilizado o
algoritmo Light Gradient Boosting Machine (LightGBM), conhecido por ser eficiente e
adequado no treinamento com um volume grande de dados, que permitiu o
treinamento de um modelo seguindo as recomendações e dados fornecidos pelo
próprio benchmark EMBER, incluindo amostras de ransomware para avaliar seu
comportamento frente a tipos diversificados de malwares. Feito os testes com
executáveis de ransomware e arquivos inofensivos, o modelo mostrou-se adequado
para a função, confirmando sua capacidade de identificar realmente maliciosos e o
validando como uma ferramenta promissora para a detecção proativa de ameaças,
porém ele exibiu certas limitações na classificação de ransomwares mais recentes e
modernos, algo que deve ser levado em consideração. A pesquisa contribui para o
campo da segurança da informação ao validar uma metodologia moderna para a
detecção de malware, oferecendo insights sobre a utilização de datasets como o
EMBER para o desenvolvimento de sistemas de segurança mais resilientes. Logo,
conclui-se que a aplicação do aprendizado de máquina na análise de executáveis
pode alterar a forma como as ameaças são detectadas, trazendo implicações
significativas para a proteção de sistemas e o combate a danos causados por códigos
maliciosos.

Palavras-Chave: Dataset EMBER, ransomware, aprendizado de máquina,
classificação de malware, LightGBM.

ABSTRACT

This work aims to use machine learning techniques to classify malicious executables
using the EMBER dataset. With the increasing and constant evolution of digital threats,
particularly ransomware, the need for the application of adaptive security systems and
techniques becomes essential in protecting systems and relevant information. This
study, using the Elastic Malware Benchmark for Empowering Researchers (EMBER)
dataset, seeks to apply machine learning to test a model capable of distinguishing
between benign and malicious files. The methodology used consisted of preparing and
configuring the test environment and the EMBER dataset, which allowed for the
organization and preparation of the data extracted from the executables, an important
step for conducting subsequent tests. For the classification of executables, the Light
Gradient Boosting Machine (LightGBM) algorithm was used, known for being efficient
and suitable for training with a large volume of data, which allowed the training of a
model following the recommendations and data provided by the EMBER benchmark
itself, including ransomware samples to evaluate its behavior against diverse types of
malware. After testing with ransomware executables and harmless files, the model
proved suitable for the function, confirming its ability to identify truly malicious files and
validating it as a promising tool for proactive threat detection; however, it exhibited
certain limitations in classifying more recent and modern ransomware, something that
should be taken into consideration. The research contributes to the field of information
security by validating a modern methodology for malware detection, offering insights
into the use of datasets such as EMBER for the development of more resilient security
systems. Therefore, it is concluded that the application of machine learning in the
analysis of executables can change the way threats are detected, bringing significant
implications for the protection of systems and the fight against damage caused by
malicious code.

Keywords: EMBER Dataset, ransomware, machine learning, malware classification,
LightGBM.

LISTA DE FIGURAS

Figura 1: Site Anaconda...42

Figura 2: Permissão e instalação...43

Figura 3: Conferindo a versão..43

Figura 4: Inicialização...44

Figura 5: Atualizando o .bashrc..45

Figura 6: Termos de uso..46

Figura 7: Criando o ambiente virtual..47

Figura 8: Criando o ambiente virtual e conferindo...47

Figura 9: Ativando o ambiente...48

Figura 10: Github EMBER..48

Figura 11: Conferindo o Git..49

Figura 12: Clonando o repositório..50

Figura 13: Diretório EMBER...51

Figura 14: Conteúdo do diretório..51

Figura 15: Instalando dependências..53

Figura 16: Instalando as demais dependências...53

Figura 17: Instalação do módulo EMBER..54

Figura 18: Instalando o Jupyter Notebook...54

Figura 19: Guia no navegador com Jupyter Notebook..55

Figura 20: Testando versão e módulo EMBER...56

Figura 21: Extraindo o dataset...56

Figura 22: Vetorização e Geração de Metadados..57

Figura 23: Dataframe obtido após a vetorização..57

Figura 24: Carregamento dos Dados Vetorizados e Metadados...............................58

Figura 25: Treinando o modelo..58

Figura 26: Sub-árvore de decisão contendo o primeiro nó e sua primeira

decisão...61

Figura 27: Sub-árvore de decisão gerada considerando o arquivo malicioso...........61

Figura 28: Sub-árvore de decisão gerada considerando o arquivo benigno..............62

Figura 29: Classificação de executável..62

Figura 30: Predição do ransomware WannaCry..63

Figura 31: Carregamento dos módulos para análise...64

Figura 32: Variável do diretório do dataset..64

Figura 33: Vetorização gerada novamente..65

Figura 34: Carregando Features..65

Figura 35: Código da divisão de amostras...66

Figura 36: Divisão de amostras..66

Figura 37: Código do aparecimento de amostras..67

Figura 38: Aparecimento de amostras...68

Figura 39: Previsões..69

Figura 40: Código da avaliação do modelo...69

Figura 41: Resultado da avaliação do modelo..70

LISTA DE TABELAS

Tabela 1: Estrutura do arquivo PE...28

Tabela 2: Section table e seus campos..29

Tabela 3: Sections e suas descrições..29

Tabela 4: Malwares..31

Tabela 5: Etapas da infecção...32

Tabela 6: Amostras para treinamento..35

Tabela 7: Amostras para testes..36

Tabela 8: Estruturas das amostras...36

Tabela 9: Funções do Dataset...37

Tabela 10: Tecnologias utilizadas..39

Tabela 11: Especificações de Hardware..41

Tabela 12: Comandos utilizados na instalação do módulo EMBER e

dependências...52

Tabela 13: Informações dos campos da árvore de decisão.......................................60

LISTA DE ABREVIATURAS E SIGLAS

ABC Atanasoff-Berry Computer

AOL America Online

AUC Area Under the Curve

AutoCAD Autodesk Computer-Aided Design

BSD Berkeley Software Distribution

CAGR Taxa de Crescimento Anual Composta

COFF Common Object File Format

CPU Central Processing Unit

CSV Comma-Separated Values

DDoS Distributed Denial of Service

DLL Dynamic-link Library

DOS Disk Operating System

ELF Executable Link File

ENIAC Electronic Numerical Integrator and Computer

EMBER Elastic Malware Benchmark for Empowering Researchers

ESET Essential Security against Evolving Threats

FDISK Fixed Disk Setup Program

FPR False Positive Rate

GPU Graphics Processing Unit

IA Inteligência Artificial

IBM International Business Machines Corporation

IBM PC IBM Personal Computer

LightGBM Light Gradient Boosting Machine

MBR Master Boot Record

MMS Multimedia Messaging Service

NACA National Advisory Committee for Aeronautics

NASA National Aeronautics and Space Administration

NHS National Health Service

NT New Technology

PC Personal Computer

PE Portable Executable

RAM Random Access Memory

RNA Redes Neurais Artificiais

ROC Receiver Operating Characteristic

SHA Secure Hash Algorithm

SKlearn Scikit-Learn

SNARC Stochastic Neural Analog Reinforcement Calculator

SSD Solid-State Drive

SSH Secure Shell

SunOS Sun Operating System

VMS Video Management System

XFCE XForms Common Environment

SUMÁRIO

LISTA DE FIGURAS...7

LISTA DE TABELAS..9

LISTA DE ABREVIAÇÕES E SIGLAS..10

1 INTRODUÇÃO..14

1.1 PROBLEMA DE PESQUISA..14

1.2 JUSTIFICATIVA...15

1.3 OBJETIVO..15

1.3.1 OBJETIVO GERAL..15

1.3.2 OBJETIVOS ESPECÍFICOS...15

1.4 ESTRUTURA DO TRABALHO...16

2 REFERENCIAL TEÓRICO..17

2.1 A HISTÓRIA DOS COMPUTADORES...17

2.1.1 A ORIGEM DO TERMO "COMPUTADOR" E "COMPUTAR"...........................17

2.1.2 OS PRIMEIROS COMPUTADORES, PROGRAMAS E DISPOSITIVOS DE

CÁLCULO...18

2.2 INTELIGÊNCIA ARTIFICIAL..20

2.2.1 APRENDIZADO DE MÁQUINA...21

2.2.2 REDES NEURAIS...23

2.2.3 APRENDIZADO PROFUNDO...25

2.2.4 CENÁRIO ATUAL DA INTELIGÊNCIA ARTIFICIAL...27

2.3 EXECUTÁVEIS PE...28

2.4 EXECUTÁVEIS MALICIOSOS...30

2.4.1 RANSOMWARE..33

2.4.2 WANNACRY..34

2.4.3 SEGURANÇA DA INFORMAÇÃO...34

2.5 EMBER DATASET...35

2.5.1 FUNCIONALIDADE DA BIBLIOTECA EMBER...36

3 METODOLOGIA DE DESENVOLVIMENTO...38

3.1 FERRAMENTAS E TECNOLOGIAS UTILIZADAS..38

3.2 REQUISITOS DE HARDWARE...40

3.3 ANACONDA E JUPYTER NOTEBOOK...42

3.4 CONFIGURAÇÃO DO AMBIENTE..42

3.4.1 MINICONDA3..42

3.4.2 CRIANDO O AMBIENTE VIRTUAL...43

3.4.3 REPOSITÓRIO EMBER..48

3.4.4 INSTALANDO MÓDULO EMBER E DEPENDÊNCIAS....................................50

3.4.5 DATASET UTILIZADO..55

3.5 EXTRAINDO VETORES NUMÉRICOS...55

3.6 CARREGAMENTO DOS DADOS VETORIZADOS E METADADOS..................58

3.7 TREINANDO O MÓDELO..58

3.8 ÁRVORE DE DECISÃO...59

3.9 CLASSIFICANDO EXECUTÁVEIS..62

3.10 AMOSTRA DE RANSOMWARE..63

4 ANÁLISE DE RESULTADOS..64

4.1 DISTRIBUIÇÃO DO DATASET EMBER..65

4.2 DESEMPENHO COM FPR CONTROLADO (ENTRE 1% E 0.1).........................68

4.3 CLASSIFICAÇÃO DE AMOSTRA DE RANSOMWARE......................................70

4.4 LIMITAÇÕES OBSERVADAS..71

5 RESULTADOS E CONSIDERAÇÕES FINAIS..71

REFERÊNCIAS..73

14

1 INTRODUÇÃO

 A segurança da informação é uma área de importância e complexidade

crescentes no cenário tecnológico atual. Com a vida e os processos sendo

digitalizados cada vez mais, o desafio de proteger os dados provenientes dessa

digitalização aumenta de forma constante. Com isso em mente, o malware (software

malicioso) é visto como a maior e mais persistente ameaça, devido as suas novas

variantes que surgem todos os dias e as técnicas avançadas, como polimorfismo e

ofuscação, empregadas na confecção deles. Logo, têm-se uma corrida que exige a

criação de soluções mais adaptativas e robustas para a identificação desses novos

arquivos executáveis maliciosos que surgem a cada dia.

 Com o aumento de malwares polimórficos e a criação de diversas variações

daqueles já existentes, a detecção baseada somente em assinaturas torna-se

ineficiente. O campo de aprendizado de máquina ou machine learning emergiu com

uma alternativa promissora, permitindo que se empregue modelos pré-treinados que

podem aprender padrões complexos e sutis a partir de grandes volumes de dados e

amostras de malwares, na proteção de sistemas e informações. Ou seja, ao invés de

se depender apenas de regras e assinaturas pré-definidas, os modelos, com sua

capacidade de aprendizagem e previsão, conseguem aprender novos padrões e

classificar essas ameaças de maneira automatizada, incluindo aquelas ainda

desconhecidas para eles. Essa abordagem vai mais a fundo na análise dos arquivos

maliciosos, não dependendo apenas de assinaturas e verificações de hashes.

 Esse trabalho se foca nesse cenário, na aplicação de técnicas de aprendizado

de máquina para automatizar e aprimorar a capacidade de classificação de ameaças.

Especificamente, utiliza-se o Dataset EMBER do ano de 2018, um conjunto de dados

de referência maduro e amplamente aceito pela comunidade de pesquisa em

segurança, que fornece uma base rica e diversificada de amostras de executáveis,

tanto maliciosos quanto benignos, para treinamento e avaliação de modelos, sendo

inclusive de código aberto e gratuito para uso.

1.1 PROBLEMA DE PESQUISA

Diante da necessidade de métodos de detecção mais eficazes e adaptáveis, o

problema de pesquisa que norteia esse trabalho é:

15

Como aplicar técnicas de aprendizado de máquina para identificar e classificar

executáveis maliciosos de forma eficaz, utilizando o Dataset EMBER como base de

treinamento e teste?

1.2 JUSTIFICATIVA

 A relevância do estudo realizado está na necessidade de se adaptar a evolução

constante das ameaças digitais. A sofisticação dos ataques e a velocidades com que

novas variantes são produzidas, além das técnicas de polimorfismo e ofuscação

empregadas, tornam a classificação de malwares algo cada vez mais desafiador. O

uso do machine learning, junto com um benchmark de qualidade como o Dataset

EMBER, representa uma abordagem promissora no desenvolvimento de sistemas de

classificação automatizados, capazes de se adaptar e aprender constantemente. A

contribuição desse trabalho é demonstrar a eficácia de um modelo de classificação

baseado em aprendizado de máquina na classificação de executáveis maliciosos,

além de fornecer insights sobre a utilização de datasets na segurança de sistemas.

1.3 OBJETIVOS

1.3.1 OBJETIVO GERAL

O objetivo geral desse trabalho é:

Aplicar técnicas de aprendizado de máquina na classificação de executáveis

maliciosos utilizando o Dataset EMBER.

1.3.2 OBJETIVOS ESPECÍFICOS

Para alcançar o objetivo geral, os seguintes objetivos específicos foram

definidos:

1. Preparar o ambiente de desenvolvimento e configurar o Dataset EMBER

para o treinamento do modelo de aprendizado de máquina voltado à classificação de

executáveis.

2. Treinar um modelo de classificação de executáveis maliciosos com base nas

informações e parâmetros recomendados para o Dataset EMBER.

3. Testar o modelo treinado utilizando um arquivo malicioso e um arquivo

benigno, avaliando sua capacidade de classificação e desempenho.

16

1.4 ESTRUTURA DO TRABALHO

Esse Trabalho de Conclusão de Curso está organizado em cinco capítulos,

organizados de forma a conduzir o leitor desde o embasamento teórico até a

apresentação dos resultados práticos.

O capítulo 2, referencial teórico, apresenta os fundamentos teóricos

necessários para a compreensão do tema, abordando conceitos essenciais de

segurança da informação, o panorama das ameaças de malware, a arquitetura de

arquivos executáveis e os princípios do aprendizado de máquina aplicados na

detecção de ameaças, além de uma descrição detalhada do Dataset EMBER.

O capítulo 3, metodologia de desenvolvimento, descreverá o caminho

percorrido para a realização da pesquisa, detalhando o processo de preparação do

ambiente, a obtenção e pré-processamento dos dados, a escolha e configuração do

algoritmo de machine learning e os procedimentos de treinamento e teste do modelo

realizados.

O capítulo 4, resultados e análise, apresenta e discute os achados da pesquisa

exibindo as métricas de desempenho do modelo treinado, como acurácia, precisão,

recall e AUC, além de uma análise crítica dos resultados obtidos na classificação das

amostras de teste.

Finalmente, o capítulo 5, resultados e considerações finais, irá retomar o

problema e os objetivos propostos, apresentando as conclusões do estudo e

discutindo as limitações encontradas no decorrer do trabalho e sugeridas direções

para futuras pesquisas na área de classificação de executáveis maliciosos utilizando

aprendizado de máquina.

17

2 REFERENCIAL TEÓRICO

Antes de se debater sobre a IA (Inteligência artificial), é necessário entender

bem suas origens, antecessores e criadores, além dos usos que essas tecnologias

tiveram no decorrer da história, com o intuito de se contextualizar melhor e

compreender como tudo se desenvolveu até os dias atuais. Tais assuntos serão

tratados nos subcapítulos abaixo, começando pelos computadores.

2.1 A HISTÓRIA DOS COMPUTADORES

2.1.1 A ORIGEM DO TERMO “COMPUTADOR” E “COMPUTAR”

 Inicialmente, quando se refere ao termo “computador” a primeira imagem que

se vem à mente é a de uma incrível máquina amplamente usada nos últimos tempos

com finalidades profissionais, pessoais e de entretenimento. No entanto, pouco se

pensa sobre como essa tecnologia chegou a esse ponto e menos ainda sobre a

origem do seu nome.

 A palavra “computador” é um nome errôneo dado a máquinas digitais que agora

residem nas mesas da maioria das pessoas, já que, até meados da Guerra Fria, o

termo se referia a uma ocupação muito necessária, é o que diz Kelly et al. (2013, p.

19). As chamadas “computadores humanos” eram pessoas responsáveis pela

realização de cálculos matemáticos complexos e pelo armazenamento e manipulação

de informações, exatamente o que é feito por máquinas atualmente (Kelly et al., 2013,

p. 19).

Um exemplo histórico desse trabalho se dá no Reino Unido que, no início da

Segunda Guerra Mundial, com um contrato com o Ministério da Guerra, Leslie John

Comrie, pioneiro em computação mecânica da época, usou uma equipe de dezesseis

“computadores humanos” para calcular e produzir tabelas de artilharia que eram

usadas pelos soldados para mirar os canhões (Kelly et al., 2013, p. 74). Outro

momento, na década de sessenta, em meio a corrida espacial, esses profissionais, a

maioria mulheres afrodescendentes, eram muito empregados nos cálculos de

trajetória orbital de voos espaciais na NACA (National Advisory Committee for

Aeronautics) que, mais tarde, se tornou a NASA (National Aeronautics and Space

Administration), o que é demonstrado por Shetterly, (2016, p. 23).

18

 Com o fim da guerra e, consequentemente, com o desenvolvimento de diversas

máquinas eletrônicas capazes de fazer o trabalho de computar diversas vezes mais

rápido e com melhor eficiência do que humanos, esses trabalhadores foram deixados

de lado (Kelly et al., 2013, p. 74). Assim sendo, o termo “computador” deixou de se

referir a trabalhadores cuja função era desempenhar cálculos complexos e foi

atribuído a máquinas eletrônicas que realizavam o mesmo trabalho, porém de forma

mais eficiente, rápida e barata (Crevier, 1993, p.28). Agora, no próximo parágrafo,

será abordado o termo “computar”.

 Independente de um computador ser digital, baseia-se em circuitos e estruturas

eletrônicas para funcionar, ou analógico, que faz uso de partes mecânicas para

operar, suas funções básicas permanecem as mesmas: obter informações, interpretá-

las e gerar um resultado (Woiler, 1970). É evidente que, na informática, essas são

exatamente as etapas que um computador percorre para cumprir seu papel na

agilização e precisão das mais diversas atividades. Portanto, “computar” significa

obter uma entrada, processá-la e produzir uma saída (Woiler, 1970). A origem do

termo vem do latim computo que significa “fazer o cômputo de”, “contar”, “calcular”,

“orçar” ou, no contexto da informática, “processar” (Dicionário Priberam, 2025). Agora,

com essas informações em mente, será abordado os principais computadores e

dispositivos de cálculo criados durante a história, no intuito de fornecer uma clara linha

do tempo de fatos que levaram essas máquinas a se tornarem o que se vê hoje.

2.1.2 OS PRIMEIROS COMPUTADORES, PROGRAMAS E DISPOSITIVOS DE

CÁLCULO

É de conhecimento geral que, no decorrer da história, foram desenvolvidos

muitos dispositivos tecnológicos cujo objetivo era automatizar cálculos. Kelly et al.

(2013, p. 12) cita que máquinas de cálculo de mesa já eram estudadas e

desenvolvidas por Blaise Pascal e Gottfried Leibniz, indicando que no século XVII

essa tecnologia já era cobiçada por grandes mentes. Kelly et al. (2013, p. 45) também

menciona alguns outros dispositivos históricos como o tear de Joseph-Marie

Jacquard, desenvolvido no início do século XIX, que revolucionou a indústria têxtil por

usar cartões perfurados para o armazenamento de instruções para padrões de

tecelagem e o Aritmômetro de Thomas de Colmar de Alsácia, feita em 1820, sendo a

primeira máquina comercialmente produzida que permitia realização das quatro

19

operações matemáticas básicas: adição, subtração, multiplicação e divisão. A seguir,

uma imagem da calculadora mecânica de Pascal, criada por volta de 1642, e o tear

de Jacquard, feito em 1804.

Além disso, Russell e Norvig (2009, p. 33) abordam alguns dos exemplos mais

conhecidos como a Máquina Diferencial e a Máquina Analítica de Charles Babbage,

ambas criadas na década de 1830, cujo objetivo era o cálculo de tabelas matemáticas.

A segunda foi programada por Ada Lovelace, colega de Babbage e considerada a

primeira programadora do mundo, que especulou que um dia a máquina poderia

compor música ou jogar xadrez, o que mostra que ela já compreendia a dimensão em

que a inteligência das máquinas poderia chegar (Russell; Norvig, 2009, p. 33).

Agora, já na segunda metade do século XIX, embora nem todas sejam

exatamente máquinas de cálculo matemático, Dyson (2012, p. 88), juntamente com

Suleyman e Bhaskar (2023, p. 43), Kelly (2013, p. 13) e Crevier (1993, p. 27), citam

outros dispositivos que agilizaram e automatizaram processos, como a máquina de

escrever comercialmente bem-sucedida da Remington, em 1874, o telefone,

introduzido por Alexander Graham Bell, em 1876, algo que, para a época, foi um

marco na agilização das comunicações, as primeiras estações elétricas em Londres

e Nova York, por volta de 1882 e a máquina de tabulação de Herman Hollerith, em

1890, que processava dados para o censo dos Estados Unidos usando cartões

perfurados, uma grande inovação para e época.

 Já trazendo para o século passado, no ano de início da Primeira Guerra

Mundial, em 1914, Schmidhuber (2022, p. 23) menciona o El Ajedrecista, uma

máquina funcional, construída pelo espanhol Leonardo Torres y Quevedo, capaz de

jogar xadrez, a qual é considerada até mesmo o marco inicial da IA. A Segunda Guerra

Mundial, apesar dos horrores desse momento sombrio da história, foi o período em

que mais houve avanços na computação, algo que é indicado por vários autores como

Kelly (2013, p. 75) que menciona a construção do Harvard Mark I da IBM (International

Business Machines), iniciada em 1937 e finalizada em 1943, revelando a

convergência, mesmo a partir daquela época, de máquinas de cálculo e escritório.

Agora, focando nos computadores criados no período da Segunda Guerra

Mundial, Crevier (1993, p. 312) fala do Zuse-2, o primeiro computador eletromecânico

construído pelo alemão Konrad Zuse, em 1939. Russell e Norvig (2009, p. 33)

mencionam a série Heath Robinson, em 1940, construídos pela equipe de Alan Turing

na Grã-Bretanha cujo uso era decifrar mensagens alemãs e a Bombe, também

20

conhecida como Máquina de Turing, finalizada em 1940, cujo papel foi vital no

desenrolar da guerra devido sua capacidade de quebrar as cifras geradas pela

Enigma alemã. Russell e Norvig (2009, p. 34-35) também citam o ABC (Atanasoff-

Berry Computer), iniciado em 1940 e finalizado em 1942, sendo o primeiro computador

eletrônico, construído por John Atanasoff e Clifford Berry, o Zuse-3, em 1941, a

evolução do Zuse-2 de Konrad Zuse, onde se introduziu os números de ponto flutuante

e a primeira linguagem de programação de alto nível chamada Plankakül e o

Colossus, em 1943, máquina baseada em válvulas de vácuo, também feita pela

equipe de Turing cujo uso era a quebra das cifras geradas pela Lorenz alemã. Por fim,

Schmidhuber (2022, p. 24) aborda o desenvolvimento do ENIAC (Electronic Numerical

Integrator and Computer), no final da guerra, em 1945, desenvolvido na Universidade

da Pensilvânia, considerado o primeiro computador digital programável multiuso cujo

objetivo inicial era o cálculo de tabelas de artilharia para o exército dos Estados

Unidos.

Dito isso, próximo subtópico, será discutido o termo inteligência artificial,

juntamente com os seus conceitos e história.

2.2 INTELIGÊNCIA ARTIFICIAL

Agora que já se tem em mente alguns dos principais eventos e antecessores

da inteligência artificial, pode-se partir para os primeiros projetos, estudos e ideias

que posteriormente levaram a criação do campo de estudo dessa incrível tecnologia.

No ano de 1943, em meio ao conflito entre as potências mundiais, o

neurofisiologista Warren McCulloch e o matemático Walter Pitts, escreveram um

artigo revolucionário intitulado “A Logical Calculus of the Ideas Immanent in Nervous

Activity” (Um Cálculo Lógico de Ideias Imanente na Atividade Nervosa) (Santos,

2023), onde propuseram um modelo matemático de redes neurais, assim como as

bases para o desenvolvimento da inteligência artificial.

Já em 1950, Alan Turing, o famoso matemático britânico e criador da “The

Bombe”, abordada anteriormente, publica o artigo intitulado "Computing Machinery

and Intelligence" (Máquinas de Computação e Inteligência), que estabelece

questionamentos acerca da capacidade das máquinas de pensarem e agirem como

humanos e seu método, atualmente conhecido como “Teste de Turing” ou “Jogo da

Imitação”, que permite calcular a capacidade delas de imitarem o comportamento

21

humano (Santos, 2023). Isso se tornou um pilar central no estudo e desenvolvimento

da inteligência artificial até os dias atuais (Mucci, 2024).

Pouco tempo depois, em 1951, Marvin Minsky e Dean Edmunds, apoiados

pelo matemático e físico John von Neumann, criaram a primeira rede neural artificial,

chamada SNARC (Calculadora de Reforço Analógico Neural Estocástico) (Mucci,

2024), que por meio de três mil válvulas eletrônicas, simulava quarenta unidades

semelhantes a neurônios. Ela foi uma tentativa inicial de modelar os processos de

aprendizado no cérebro humano. Com essas informações em mente, a partir do

próximo parágrafo, será tratado a criação oficial do termo “inteligência artificial”,

juntamente com seu significado.

Mesmo com toda a contribuição e invenções citadas até o momento, o termo

“inteligência artificial” ainda não existia formalmente e, sim, apenas como uma

expressão para definir uma ideia. Foi somente no ano de 1956, na Conferência de

Dartmouth, que, John McCarthy, considerado o pai da inteligência artificial,

juntamente com Marvin Minsky, Claude Shannon, Nathaniel Rochester e outras

figuras importantes, fundaram o termo “inteligência artificial” (Abeliuk; Gutiérrez,

2021), a formalizando de vez como um novo campo de estudo científico. Somente a

partir daí, essa expressão começou de fato a ganhar popularidade, sendo um marco

inicial para a tecnologia em questão.

Agora que o termo para essa invenção já existe, deve-se também atribuir os

conceitos que definem uma inteligência artificial. Segundo o dicionário Oxford

Languages, o termo “inteligência” significa “faculdade de conhecer, compreender e

aprender” e “artificial” define-se por “produzido pela mão do homem, não pela

natureza; postiço”. Portanto, “inteligência artificial”, juntando a definição de cada

palavra separadamente, seria algo como uma simulação da capacidade de

aprendizado e conhecimento do ser humano em algo criado por ele mesmo. Agora,

com isso tudo definido, serão abordados os subcampos da IA: aprendizado de

máquina, redes neurais e aprendizado profundo. Com isso, no subcapítulo a seguir,

será abordado a respeito do aprendizado de máquina.

2.2.1 APRENDIZADO DE MÁQUINA

 Agora, que já se sabe um pouco sobre a IA, deve-se ter conhecimento de

alguns dos seus subcampos, como o machine learning ou aprendizado de máquina.

22

Esse termo é uma área da ciência de programação dos computadores para que eles

possam aprender com dados, utilizando algoritmos que aprimoram seu desempenho

e precisão com base em experiência, sem que precisem ser explicitamente

programados, é o que diz Géron (2019, p. 30).

Logo, observa-se a importância desse campo, afinal, um programador, na

construção de um sistema de antispam de e-mails, por exemplo, precisaria observar

as palavras mais comuns contidas neles e então criar uma série de regras a um

algoritmo, para que então ele possa filtrá-los, cenário citado por Russell e Norvig

(2009, p. 884). O problema existente nesse sistema é que, caso ele não seja

continuamente atualizado pelo programador com novos dados, ele se tornará

ineficiente em seu trabalho, pois os autores dos spams, rapidamente, adaptariam seus

e-mails, seja usando palavras-chave diferentes ou alterando diversas palavras por

seus sinônimos, assim contornando o algoritmo (Géron, 2019, p. 32).

Com isso em mente, é aqui que entra o machine learning: ao se coletar um

grande volume de dados, nesse caso, e-mails já verificados como spam por humanos,

rotulá-los, assim treinando um modelo, e disponibilizá-los para o software, ele, com

base nisso, saberá quais e-mails são spam ou não. Géron (2019, p. 33) explica que,

no aprendizado de máquina, o algoritmo se foca em encontrar padrões nos dados e

não em seguir regras, assim permitindo que, mesmo que chegue um dado ainda

desconhecido, ele, com base nas informações já adquiridas, possa fazer uma previsão

sobre esse dado. No exemplo citado, ele poderia prever se um e-mail, mesmo não

sendo conhecido, é spam ou não com base no volume de dados já possuído. Esse é

o objetivo central e a particularidade do machine learning.

Bishop (2006, p. 22), juntamente com Goodfellow, Bengio e Courville (2016, p.

130), revelam que o principal desafio do aprendizado de máquina é criar algoritmos

que funcionem bem tanto com os dados com os quais foram treinados, mas também

com novas informações, nunca vistas pela máquina, capacidade chamada de

generalização, que é desenvolvida ao se encontrar padrões nos dados. Existem três

principais tipos de aprendizado de máquina, que serão tratados nos parágrafos

seguintes.

 Aprendizado supervisionado: Géron (2019, p. 74), Goodfellow, Bengio e

Courville (2016, p. 125) dizem que esse é o tipo mais comum. Resume-se a alimentar

o algoritmo com dados de treinamento com exemplos de pares de entrada e saída,

onde cada saída é rotulada por um humano, cujo objetivo é mapear as entradas às

23

saídas corretas. As duas tarefas mais comuns supervisionadas são classificar e prever

valores numéricos.

 Aprendizado não supervisionado: Géron (2019, p. 409) e Bishop (2006, p. 23)

explicam que nesse método os dados de treinamento são compostos por um conjunto

de entradas sem quaisquer valores de saída correspondentes, com o objetivo de

descobrir padrões e estruturas nos próprios dados e, com isso, formar agrupamentos,

distribuir e projetar os dados para posterior visualização.

 Aprendizado por reforço: Géron (2019, p. 37), Bishop (2006, p. 23) e

Goodfellow, Bengio e Courville (2016, p. 126) citam que essa é uma abordagem muito

utilizada para treinamento de bots para as mais diversas atividades. Resume-se a

ensinar um agente de software a se comportar em um cenário realizando ações e

observando resultados. Esse programa recebe punições ou recompensas, uma

espécie de feedback, com base no resultado que ele gera, assim o ensinando uma

política de atividades que maximizem sua recompensa total ao longo do tempo.

Portanto, os maiores benefícios do uso do aprendizado de máquina é a

resolução de problemas que seriam intratáveis pela programação tradicional e a

adaptação a novos ambientes e ameaças, coisas que são, de certa forma, a fundação

da IA, afinal a característica central da inteligência é a capacidade de aprender, algo

enfatizado por Russell e Norvig (2009, p. 21). Agora, no próximo subcapítulo, serão

abordadas as redes neurais, outro subtópico da inteligência artificial.

2.2.2 REDES NEURAIS

Outro subcampo da IA são as Redes Neurais Artificiais (RNA), que são modelos

de aprendizado de máquina inspirados nos neurônios biológicos em nossos cérebros,

daí o nome “redes neurais” (Géron, 2019, p. 463). Eles são feitos para realizar

atividades que exigiram inteligência humana, como reconhecimento de padrões,

previsão e classificação, cuja ideia principal é fazer muitas unidades computacionais,

chamadas, nesse caso, de neurônios, trabalharem juntas para resolver tarefas

complexas e exibir um comportamento inteligente quando interconectadas em uma

rede (Goodfellow; Bengio; Courville, 2016, p. 39).

 Assim como em um computador, o ciclo de vida de informações em uma rede

neural segue o mesmo padrão: entrada, processamento e saída. Na inserção de

dados (que são recebidos pela chamada camada de entrada, uma das camadas de

24

neurônios que constituem a rede neural, que por sua vez pode ser composta por uma

ou mais camadas) deve-se transformá-los, antes de tudo, em números, normalmente

na forma de vetores ou matrizes, é o que dizem Géron (2019, p.12) e Mitchell (2019,

p. 33). Dependendo do formato desses dados, podendo ser imagem, texto ou dados

tabulares, pode ser usado uma transformação usando cálculos diferentes, mas o

objetivo é sempre o mesmo nessa etapa: obter uma representação numérica dessas

informações (Bishop, 2006, p. 158). A camada de entrada não realiza nenhuma

computação, ela apenas passa os dados brutos para a camada oculta da rede.

 Agora, após a entrada ser feita com sucesso, essas informações passam por

uma ou mais camadas ocultas (Hidden layers) que é onde serão, de fato,

processadas. Mitchell (2019, p. 44) aborda que o objetivo principal nessa parte é

transformá-las em representações mais abstratas e, consequentemente, úteis para a

tarefa final, como classificação ou regressão. O processamento nas camadas ocultas

pode ser dividido em duas etapas principais, com a primeira sendo a combinação

linear, ou soma ponderada, em que, segundo Géron (2019, p. 472) e Bishop (2006, p.

247), cada neurônio (ou unidade de processamento) recebe as saídas de todos os

neurônios da camada anterior e, considerando o peso (weight) associado a cada uma

dessas conexões, que indica a força ou importância daquela conexão, o neurônio

calcula uma soma ponderada de suas entradas, adicionando também um valor de viés

(bias) a esse cálculo.

Utilizando uma função de ativação, que é um cálculo matemático que auxilia o

neurônio a aprender um padrão complexo, a segunda etapa de processamento faz

uso dessa função do tipo não linear, que, após a etapa anterior, que ao ser aplicada

pelo neurônio, o resultado obtido é usado para produzir sua saída final (Bishop, 2006,

p. 248). A não linearidade é crucial nessa etapa, senão a rede neural constituída de

múltiplas camadas seria equivalente a uma rede neural de única camada, limitando

severamente sua capacidade de aprender padrões complexos (Géron, 2019, p. 483).

 Após o processamento realizado, a camada de saída, que é a última da rede,

recebe as saídas da última camada oculta e as transforma no formato final desejado

(Goodfellow; Bengio; Courville, 2016, p. 384). Dependendo do tipo de atividade sendo

executada, a saída produzida será diferente, por exemplo, se a tarefa é prever um

valor contínuo, a camada de saída é composta por um único neurônio com uma função

de ativação do tipo linear, cuja saída é a previsão numérica final (Géron, 2019, p. 485).

25

Para classificações, começando pela binária, para identificar se uma entrada é

ou não spam, por exemplo, a camada de saída também será constituída por somente

um neurônio, que desta vez usará uma função de ativação sigmoide, comprimindo a

saída em um valor entre zero e um, interpretado como a probabilidade de ser positivo

ou negativo. Géron (2019, p. 488) explica que, para classificação multiclasse, o

segundo tipo, se consiste em classificar a entrada em um certo número de classes

exclusivas, usando um número igual de classes e neurônios, cada um representando

uma classe, que constituirão a camada de saída. Géron (2019, p. 489) também

salienta que a função de ativação softmax é aplicada a toda a camada para garantir

que as saídas de todos os neurônios sejam valores entre zero e um e que juntos

somem um. Ao analisar cada uma delas, pode-se descobrir a probabilidade de a

entrada pertencer àquela classe ou não. Agora, no subtópico abaixo, será abordado

o deep learning.

2.2.3 APRENDIZADO PROFUNDO

O deep learning ou aprendizado profundo, é um subcampo do machine learning

que usa modelos computacionais das redes neurais, mais precisamente as Deep

Neural Networks ou Redes Neurais Profundas, que são redes neurais constituídas por

muitas camadas de neurônios, permitindo um aprendizado muito mais profundo, daí

o seu nome (Friedman; Hastie; Tibshirani, 2009, p. 7). Ele é muito usado em domínios

como reconhecimento de imagem e fala, tradução de idiomas, análise de dados de

aceleradores de partículas, descoberta de medicamentos e análise de dados

genômicos, justamente por serem áreas amplas que exigem um bom aprofundamento

para que sejam dominadas, é o que dizem Suleyman e Bhaskar (2023, p. 158) e

Lecun, Bengio e Hinton (2023, p. 2).

 A ideia fundamental do deep learning é permitir que computadores aprendam

a partir da experiência e entendam o mundo em termos de uma hierarquia de

conceitos, onde cada um deles é definido em relação a outros mais simples

(Goodfellow; Bengio; Courville, 2016, p. 24). Em vez de serem programadas com

regras explícitas por humanos, como “gatos têm orelhas pontudas e bigodes”, as

redes de aprendizado profundo aprendem automaticamente a partir de dados (Lecun;

Bengio; Hinton, 2023, p. 2). Essa abordagem é um tipo de aprendizado de

representação, onde, em cada camada, o modelo transforma a representação do nível

26

anterior em outra de nível superior sendo um pouco mais abstrata (Lecun; Bengio;

Hinton, 2023, p. 3). As primeiras camadas aprendem a detectar características mais

simples e de baixo nível enquanto as camadas mais profundas combinam esse

aprendizado para assimilar conceitos mais complexos e abstratos, também explicado

por Lecun, Bengio e Hinton (2023, p. 2). A principal característica do deep learning

está no fato de que essas camadas não são projetadas por engenheiro humanos, mas

sim aprendidas a partir dos dados com um procedimento de aprendizado de propósito

geral, a diferenciando das técnicas de aprendizado de máquina convencionais

(Suleyman; Bhaskar, 2023, p. 162).

 Lecun, Bengio e Hinton (2023, p. 4) dizem que o funcionamento do aprendizado

profundo é um processo iterativo, normalmente usando um algoritmo de otimização

chamado stochastic gradient descent ou descida de gradiente estocástico. O processo

pode ser divido nas seguintes etapas: antes de tudo, como no machine learning, é

obtido uma entrada de grande quantidade de dados rotulados, sejam imagens, textos,

áudios etc. Feito isso, inicia-se o treinamento de minimizar a função de custo (ou

perda), que mede o erro entre a saída produzida pela rede e a saída desejada (o rótulo

correto) (Lecun; Bengio; Hinton, 2023, p. 2). Agora, com a função de custo reduzida,

começa o processo de forward propagation ou passagem direta, em que um lote de

dados de treinamento é passado através da rede, em cada camada nela, desde a

entrada até a saída. Usando todo o processo descrito anteriormente no tópico de

redes neurais (cálculo de soma ponderada, aplicação da função de ativação etc.) a

esses dados, é produzido, no final dessa etapa, a previsão da rede, o que é explicado

por Goodfellow, Bengio e Courville (2016, p. 191) e Lecun, Bengio e Hinton (2023, p.

3).

 Terminando essa etapa, após a passagem direta, o erro é calculado. Em

seguida, o algoritmo de retropropagação calcula o gradiente da função de erro em

relação a cada peso e viés da rede (Géron, 2019, p. 480). Esse algoritmo, que é uma

aplicação eficiente da regra da cadeia do cálculo, propaga o gradiente de erro da

camada de saída até a camada de entrada, ou seja, “para trás”, o que determina a

contribuição de cada parâmetro para o erro total (Lecun; Bengio; Hinton, 2023, p. 5).

Por fim, com os resultados obtidos até agora, é realizado um ajuste de pesos, em que

o gradiente calculado é usado por um algoritmo de otimização para ajustar os pesos

e vieses da rede na direção que reduz o erro. Lecun, Bengio e Hinton (2023, p. 5)

citam que esse processo é repetido milhões de vezes, usando lotes de dados

27

diferentes, até que o desempenho da rede em um conjunto de validação pare de

melhorar, o que mostra que chegou em seu ponto de precisão máximo. Com isso,

encerra-se o tópico de aprendizado profundo, assim como o de inteligência artificial.

No subtópico seguinte, será discutido o cenário atual da IA no mundo.

2.2.4 CENÁRIO ATUAL DA INTELIGÊNCIA ARTIFICIAL

A inteligência artificial se tornou um pilar fundamental no nosso século e com o

passar do tempo ela deixou de ser uma tecnologia em desenvolvimento e se tornou

uma ferramenta utilizada no cotidiano (Thunderbit, 2025).

Em 2025, 78% das organizações relataram que usam a IA, com um aumento

de 55% em relação ao ano anterior, seu uso acabou impactando diversos setores da

sociedade (Ramos, 2024). Na saúde, por exemplo, algoritmos de aprendizado de

máquina são usados para diagnósticos mais precisos e aceleram as descobertas de

medicamentos. Um estudo da IBM Watson Health demonstrou que sistemas de IA

podem identificar anomalias em imagens médicas com até 95% de precisão,

superando, em alguns casos, a acurácia de médicos humanos (IBM, 2025). Em outros

setores como na educação, plataformas personalizam e facilitam o aprendizado, no

mercado veículos autônomos geram rotas e se controlam sem auxílio, plataformas

como o YouTube e Netflix aprendem os gostos do cliente para deduzir e recomendar

anúncios e vídeos personalizados, e na indústria financeira, detecta fraudes e otimiza

investimentos.

Em 2025, o mercado global de IA está em expansão exponencial. É estimado

que o valor do mercado está na faixa de US$ 391 bilhões, com projeções de

crescimento de cerca de US$ 1,81 trilhão até 2030, com uma taxa de crescimento

anual composta (CAGR) de 37,3% (Founders Forum Group, 2025). A inteligência

artificial generativa sozinha atingiu 33,9 bilhões em 2024 e deve atingir cerca de US$

356,10 dólares até 2030, um aumento de sessenta vezes em relação a 2020

(Demetrio, [s.d.]). No subcapítulo seguinte será iniciado o assunto sobre executáveis

maliciosos, onde será explicado o que são, seus tipos, como funcionam e suas

origens.

28

2.3 EXECUTÁVEIS PE

Daniel Donda ([s.d.]), especialista em cibersegurança conhecido, define

Portable Executable (PE), como o formato padrão do Windows x86 e x64 para

executáveis portáteis, equivalente ao formato Executable Link File (ELF) no sistema

operacional Linux. Ele é o sucessor do antigo formato Common Object File Format

(COFF) usado em sistemas Windows NT.

Um executável PE é uma estrutura de dados que oferece ao loader do sistema

operacional todas as informações necessárias para que o código do executável seja

encapsulado, carregado na memória e executado. As estruturas dos arquivos PE

possuem os seguintes componentes principais, descritos nas Tabelas 1, 2 e 3:

Tabela 1 – Estrutura do arquivo PE

Estrutura Descrição

DOS Header Primeiros 64 bytes, identificam o arquivo como executável.

DOS Stub Exibe uma mensagem de erro se executado em modo DOS.

PE File Header

Inclui SIGNATURE, IMAGE_FILE_HEADER e

IMAGE_OPTIONAL_HEADER, definindo a aparência do restante do

arquivo.

Image Optional

Header

Apesar do nome, este não é apenas um cabeçalho opcional, ele

contém informações críticas que estão além das informações

básicas contidas na estrutura.

Fonte: Próprios autores

 Na Tabela 1, pode-se observar a estrutura do arquivo PE, algo importante para

entender melhor como ele funciona e quais campos ele possui, afinal isso é parte das

informações contidas no Dataset EMBER que permite a classificação de um

executável de maneira correta. A seguir, encontra-se a Tabela 2, contendo o section

table e seus campos:

29

Tabela 2 – Section table e seus campos

Estrutura Descrição

Section Table São seções do arquivo

Name Nome da seção

VirtualSize Tamanho em memória

SizeOfRawData Tamanho no disco

PointerToRawData Deslocamento dos dados

Characteristics Atributos da seção

Fonte: Próprios autores

A Tabela 2 exibe as informações contidas em uma tabela de seções de um

arquivo PE, ela descreve as seções do programa para que o Windows possa

compreendê-lo corretamente para assim poder fazer bom uso dele. Abaixo, na Tabela

3, será abordado as descrições dessas seções:

Tabela 3 - Sections e suas descrições

Seção Descrição

.text
Código executável, com o ponto de entrada

do programa.

.data Dados inicializados, como strings.

.rdata ou .idata
Tabela de importação com APIs do

Windows e DLLs.

.reloc Informações de realocação.

.rsrc Recursos como imagens de interface.

.debug Informações de depuração.

Fonte: Próprios autores

 A Tabela 3 é autoexplicativa, ela exibe as principais seções contidas no arquivo

PE juntamente com a descrição deles. A seguir, no próximo subtópico, será tratado o

tema dos executáveis maliciosos.

30

2.4 EXECUTÁVEIS MALICIOSOS

 De acordo com a Microsoft Corporation (2025), executáveis maliciosos ou

malwares, são softwares projetados especificamente com a intenção de causar danos,

roubar informações ou comprometer a integridade de dispositivos e redes. Eles

frequentemente se disfarçam como arquivos legítimos, como executáveis ou

documentos, induzindo o usuário a ativá-los inadvertidamente. O impacto pode variar

de roubo de dados pessoais a interrupções graves em infraestruturas críticas. Os

malwares são classificados por seu comportamento e impacto, sendo os principais

conforme descrito na Tabela 4:

31

Tabela 4 - Malwares

Tipo de

Malware
Descrição

Vírus

Programas que se replicam infectando arquivos ou programas

legítimos, ativando-se quando o arquivo é executado, como o

Melissa e o ILOVEYOU.

Worms

Autorreplicantes que se espalham por redes sem precisar de um

arquivo host, explorando vulnerabilidades, são conhecidos por

consumir recursos e instalar backdoors como o Conficker (2008),

que infectou milhões de computadores explorando falhas no

Windows.

Trojans

Disfarçam-se de software útil para ganhar acesso não autorizado,

permitindo controle remoto ou instalação de outros malwares, trojans

como Zeus podem roubar credenciais bancárias via keylogging.

Ransomware

Criptografa arquivos do usuário e exige pagamento para liberação. É

uma das ameaças mais lucrativas e eficientes para cibercriminosos

como o WannaCry (2017), que afetou infraestruturas globais,

incluindo hospitais.

Spyware

Monitora atividades do usuário capturando dados como senhas ou

histórico de navegação. Spywares também são usados como

ferramentas de vigilância, citando keyloggers em relatórios de

cibersegurança.

Rootkits

Os rootkits escondem a presença do malware em um dispositivo

pelo máximo de tempo possível para que roube informações e

recursos de modo contínuo, às vezes, até por anos.

Botnets

São redes de dispositivos infectados para ataques DDoS, eles são

controlados remotamente por invasores, frequentemente usado para

ataques em larga escala.

Fonte: Próprios autores

O ciclo de um executável malicioso tipicamente envolve quatro estágios,

explicados na Tabela 5:

32

Tabela 5 - Etapas da infecção

Etapa Descrição

Infecção
Entra via vetores como e-mails phishing, downloads infectados

ou exploits de vulnerabilidades em softwares desatualizados.

Ativação
Dispara por ação do usuário como abrir um anexo ou gatilhos

automáticos.

Propagação Replica-se para outros arquivos ou redes.

Payload Executa o dano principal, como roubo de dados ou criptografia.

Fonte: Próprios autores

 Segundo o Rohr (2025), o primeiro vírus surgiu em 1986 infectando plataformas

IBM PC utilizando mecanismos de ocultação, ele foi chamado de Cérebro Paquistanês

e atacou a inicialização dos disquetes, o que permitiu que se propagasse em poucas

semanas. Em seguida, nos anos 80, foi o Morris Worm, conhecido como o primeiro

“verme” que se propagou em milhares de minicomputadores e estações de trabalho

como VMS, BSD e SunOS.

 Já na década de noventa foi o vírus Michelangelo, que infectou o setor de

disquetes e o setor de MBR de discos rígidos. No ano de 1994 o primeiro ransomware

foi denominado OneHalf embora nenhum resgate fosse exigido e não houvesse

código de desativação, ascendeu a primeira série do setor de disco rígido. Se o FDISK

/ MBR fosse usado, o setor MBR era deletado, incapacitando o sistema de iniciar.

 Em 1997, o malware auto propagação começou a ser substituído por trojans, a

tendência de roubar credenciais de conta AOL assumiu diferentes formas e

pressagiava o fenômeno do phishing. Nos anos 2000 foi um worm de e-mail conhecido

como ILOVEYOU, que atacou dezenas de milhões de PCs Windows. Ele chegava

como um anexo que se passava por uma carta de amor que quando aberto, os

cibercriminosos acessavam o sistema operacional, o armazenamento de dados

secundários e os dados da vítima.

 Em 2005, nos encontramos CommWarrior, o primeiro malware para telefone

móvel capaz de se espalhar por meio de mensagens MMS e Bluetooth. Ele atacou a

linha de smartphones Symbian Series 60. Em 2008, surge o código malicioso

Conflicker, que transforma computadores infectados em parte de uma botnet. Esta

ameaça se propagou por muito tempo e infectou milhares de usuários. Em 2010, um

33

verme chamado Stuxnet marcou uma nova era de malware moderno, os mesmos que

atacam sistemas de controle industrial e são usados contra instalações nucleares

iranianas.

 Em 2012 surge a Medre, uma ameaça que rouba informações extraindo

documentos AutoCAD. Atualmente, nos deparamos com ameaças como Hesperbot,

trojan bancário avançado que ataca usuários mediante campanhas de estilo phishing,

que imitam organizações confiáveis. Assim, quando os atacantes percebem que a

vítima executou o malware, eles roubam as credenciais da pessoa. Também

encontramos com Windigo, que em 2014 assumiu o controle de vinte e cinco mil

servidores Unix em todo o mundo e enviou milhões de mensagens de spam por dia,

a fim de sequestrar servidores, infectar computadores e roubar informações.

 Com a evolução da internet os malwares tem se tornado cada vez mais

complexos e imprevisíveis ao longo do tempo, se propagando com facilidade pela

mídia. Di Jorge afirma “O Dia Mundial da Internet é uma data para ser comemorada,

mas também para refletirmos como os códigos maliciosos têm evoluído e se tornado

mais sofisticados ao longo do tempo”, “Além de mais estruturados, os seus métodos

de propagação e infecção são mais elaborados, e têm como principal objetivo o

retorno econômico para o cibercriminoso”, finaliza o executivo. No subtópico seguinte,

será tratado o tema ransomware.

2.4.1 RANSOMWARE

 Ransomwares são uma forma específica de malware, eles são programas

projetados para bloquear o acesso a dados ou sistemas de uma vítima, exigindo

pagamento para restaurar o acesso. Nos primeiros ataques de ransomware eles

simplesmente exigiam um resgate em troca de uma chave de criptografia para

recuperar acesso aos dados, que seriam criptografados pelo criminoso.

 Eles representam uma ameaça cibernética crescente, com impactos

financeiros e operacionais significativos em indivíduos, empresas e governos.

Diferente de outros malwares, o ransomware foca na extorsão direta, combinando

criptografia de arquivos com ameaças de divulgação de dados roubados.

34

2.4.2 WANNACRY

 Um grande incidente de segurança que atingiu organizações em todo o mundo

foi o ataque de ransomware WannaCry. No dia doze de maio de 2017, o worm do

ransomware WannaCry se propagou para mais de duzentas mil máquinas em mais

de cento e cinquenta nações. FedEx, Honda, Nissan e o Serviço Nacional de Saúde

(NHS) do Reino Unido são algumas das vítimas notáveis, sendo que este último teve

que redirecionar algumas de suas ambulâncias para hospitais diferentes.

2.4.3 SEGURANÇA DA INFORMAÇÃO

 Neste cenário caótico, surge a segurança da informação (SI) para detecção,

prevenção e mitigação de ameaças cibernéticas, ela compreende um conjunto de

ações estratégias para proteger sistemas, programas, equipamentos e redes de

invasões.

 Conforme Bastos ([s.d.]), o intuito central da segurança da informação é

identificar, registrar e combater as ameaças, garantindo assim a proteção de dados e

sistemas valiosos de possíveis violações ou ataques.

“Segurança da informação é a proteção de informações importantes contra acesso não
autorizado, divulgação, uso, alteração ou interrupção. Ajuda a garantir que os dados
organizacionais confidenciais estejam disponíveis para usuários autorizados, permaneçam
confidenciais e mantenham sua integridade”.

 A SI (Segurança da Informação) possui estratégias e práticas fundamentais

baseadas em três pilares principais também conhecida pela sigla CID:

confidencialidade, integridade e disponibilidade. Entretanto, com o desenvolvimento

da tecnologia outros pilares foram surgindo, resultando na autenticidade,

irretratabilidade e conformidade, totalizando em seis pilares principais.

 Confidencialidade significa garantir que as informações sejam acessíveis

somente por pessoas, processos ou sistemas autorizados. Disponibilidade significa

assegurar que informações e sistemas estejam acessíveis e operacionais quando

necessários, por usuários legítimos. Integridade significa garantir que as informações

não sejam alteradas, corrompidas ou modificadas de forma não autorizada.

Autenticidade significa comprovar que a informação, o usuário ou o sistema é genuíno

e confiável. Irretratabilidade ou Não Repúdio, significa impedir que autor ou receptor

neguem uma ação ou transação já realizada. Conformidade significa garantir que

35

todos os processos, sistemas e dados estejam em conformidade com ad leis, normas

e regulamentos.

 Os malwares representam uma ameaça significativa no cenário digital, com

impactos que vão além do financeiro, afetando a privacidade e a confiança nas

tecnologias. A segurança da informação, com suas práticas e tecnologias, é essencial

para proteger sistemas e dados, garantindo a continuidade dos negócios e a proteção

dos usuários. Investir em prevenção, educação e resposta rápida a incidentes é crucial

para mitigar os riscos. À medida que as ameaças evoluem, as estratégias de

segurança também devem se adaptar, incorporando inovações tecnológicas e

políticas eficazes.

No subtópico a seguir será introduzido o Dataset EMBER, usado na realização

do experimento prático desse trabalho.

2.5 EMBER DATASET

 O Dataset EMBER é um conjunto de dados de código aberto e gratuito

comumente utilizado como base a diversos treinamentos de machine learning para

reconhecimento e classificação de malwares. Esse dataset é fruto de um conjunto de

diversas amostras de arquivos executáveis PE (Roth, 2022).

 A versão de 2018 do Dataset EMBER, que será usada neste trabalho, conta

com mais de um milhão de amostras de executáveis PE digitalizados até o ano de

2018. Dentre as amostras para treinamento que compõe o Dataset EMBER, é

indicado na Tabela 6:

Tabela 6 - Amostras para treinamento

Tipo de Amostra Quantidade Aproximada Observação

Maliciosas 300.000 Amostras maliciosas

Benignas 300.000 Amostras benignas

Não rotuladas 300.000 Amostras sem rótulo

Fonte: Roth, 2018

 A Tabela 7 se refere às amostras que compõem os testes:

36

Tabela 7 - Amostras para testes

Classificação Quantidade de Amostras

Malignas 100.000

Benignas 100.000

Fonte: Roth, 2018

Além disso, a Tabela 8 exibe do que cada amostra no dataset é composta por:

Tabela 8 - Estruturas das amostras

Atributo Descrição

Hash SHA256 do arquivo Identificador único da amostra

Data da primeira aparição Data em que o arquivo surgiu

Rótulo da classificação Indicação se é maligna ou benigna

Features extraídas
Conjunto de características coletadas da

amostra

Fonte: Phil Roth, 2018

2.5.1 FUNCIONALIDADES DA BIBLIOTECA EMBER

 A biblioteca EMBER utilizada no Python compõe diversas funcionalidades para

a manipulação do dataset e manipulação do modelo de treinamento, entre elas pode-

se citar, na Tabela 9:

37

Tabela 9 - Funções do Dataset

Função Descrição

create_metadata(data_dir)
Escreve os metadados em um arquivo CSV

e retorna o dataframe dele.

create_vectorized_features(data_dir,

feature_version=2)

Cria os features vectors de um arquivo de

features e os escreve no disco.

read_metadata(data_dir)
Lê um arquivo de metadados já criado e

retorna o dataframe.

read_vectorized_features(data_dir,

subset=None, feature_version=2)

Lê as features vetorizadas e carrega como

numpy arrays dentro da memória.

predict_sample(lgbm_model, file_data,

feature_version=2)

Prevê um arquivo PE com base no modelo

LightGBM.

train_model(data_dir, params={},

feature_version=2)

Treina o modelo LightGBM do Dataset

EMBER a partir de vectorized features.

Fonte: Próprios autores

 As funcionalidades acima permitem automatizar e padronizar o processo de

extração de dados e treinamento de modelos, reduzindo a complexidade técnica para

pesquisadores e profissionais que desejam avaliar técnicas de detecção de malwares

baseadas em aprendizado de máquina. Agora será abordada a metodologia de

desenvolvimento utilizada no trabalho juntamente com o experimento prático

realizado.

38

3 METODOLOGIA DE DESENVOLVIMENTO

 Neste capítulo, são descritas as etapas da metodologia realizadas para a

realização da parte prática, que consistiu na leitura de um dataset e no treinamento

de um modelo de classificação de amostras de ransomware. O processo abrange

desde a preparação do ambiente até a instalação de dependências e do módulo

EMBER para o Python.

3.1 FERRAMENTAS E TECNOLOGIAS UTILIZADAS

 Para a elaboração deste trabalho, foram utilizados ambientes e módulos com

o foco em favorecer o funcionamento e compatibilidade adequados do ambiente e dos

códigos que foram empregados, já que, para isso, foram necessárias as versões

corretas de determinados módulos para a execução das etapas. As principais

tecnologias utilizadas são exibidas na Tabela 10:

39

Tabela 10 – Tecnologias utilizadas

Ferramenta /

Biblioteca /

Sistema

Descrição

Python 3.6

Para o funcionamento desta metodologia, foi estritamente

necessário utilizar a versão correta do Python. Algumas de

suas atualizações acabaram gerando incompatibilidades com

algumas partes do código.

Miniconda3

Por conta de sua flexibilidade e fácil configuração de módulos

em versões especificas, foi utilizado o Miniconda3. Sua

flexibilidade permite a criação de um ambiente virtual com a

versão do Python necessária para o trabalho.

EMBER

Um dos módulos principais, que incluiu funcionalidades para

leitura de dados, extração de features e treinamento de

modelos usando o Dataset EMBER, um dataset de código

aberto e gratuito para uso em sua versão de 2018.

LightGBM
Biblioteca de aprendizado de máquina baseada em árvores de

decisão, que foi usada para o treinamento e teste do modelo.

SKLEARN

Biblioteca de machine learning que oferece suporte à avaliação

do modelo, divisão de dados em treino e teste, e outras funções

auxiliares como métricas de desempenho.

MATPLOITLIB
Biblioteca utilizada para visualização de dados e geração de

gráficos, incluindo a exibição da árvore de decisão treinada.

Linux Mint no

VirtualBox

Para este trabalho foi utilizado o sistema operacional Linux

Mint, na sua versão 22.2 XFCE, virtualizado no programa

VirtualBox. O mesmo processo pode ser feito no Windows,

porém com algumas diferenças que não foram abordadas

nesse trabalho.

Fonte: Próprios autores

40

3.2 REQUISITOS DE HARDWARE

Para garantir o melhor funcionamento é preciso planejar adequadamente o

hardware disponível. O treinamento de modelo com o EMBER pode consumir muitos

recursos, especialmente na extração de características e treinamento do modelo. A

Tabela 11 apresenta os requisitos de hardware aproximados:

41

Tabela 11 – Especificações de Hardware

Componente
Requisito

Mínimo

Recomendado

para

Desempenho

Ideal

Observações

CPU

4 núcleos

(Intel i5 /

Ryzen 5)

8+ núcleos (Intel

i7/i9, Ryzen 7/9,

Xeon)

O pré-processamento do

EMBER é intensivo em CPU;

mais núcleos reduzem o

tempo de extração de

features.

GPU

Opcional

(para

modelos

baseados em

árvore)

GPU com 8GB+

VRAM (NVIDIA

RTX 3060 ou

superior)

O EMBER normalmente é

usado com

LightGBM/XGBoost (CPU),

mas redes neurais

(PyTorch/TensorFlow) se

beneficiam muito da GPU.

Memória RAM 8 GB 16–32 GB

O dataset completo (~1 milhão

de amostras) pode consumir

bastante RAM durante o

treinamento e validação.

Armazenamento 50 GB HDD
100 GB SSD

NVMe

O Dataset EMBER 2018

ocupa ~2–3 GB, mas o

espaço extra é necessário

para versões intermediárias e

checkpoints. SSD acelera

leitura/escrita.

Sistema

Operacional

Windows 10 /

Linux

(Ubuntu

20.04+)

Linux (Ubuntu

22.04 LTS ou

superior)

Linux oferece melhor

compatibilidade com

frameworks de machine

learning e bibliotecas

otimizadas.

Fonte: Próprios autores

42

3.3 ANACONDA E JUPYTER NOTEBOOK

 Neste trabalho, foram utilizados o Anaconda e o Jupyter Notebook (ambos do

Miniconda3) por conta da flexibilidade provida por eles em relação a versão de

módulos e da linguagem Python.

3.4 CONFIGURAÇÃO DO AMBIENTE

 Nesta seção foi abordada a configuração do ambiente para a realização da

leitura do dataset e treinamento do modelo. Todos os passos a partir daqui foram

seguidos com rigor, pois qualquer erro poderia comprometer toda a execução do

processo.

3.4.1 MINICONDA3

 A primeira etapa consistiu no download e instalação do ambiente, que pôde ser

feito pelo seguinte endereço: “https://www.anaconda.com/download/success”,

conforme na Figura 1:

Figura 1 - Site Anaconda

 Fonte: Próprios autores a partir do site oficial do Anaconda

https://www.anaconda.com/download/success

43

 Foi realizado o download do programa e, feito isso, acessou-se a pasta onde

ele foi salvo e feita a alteração de permissão necessária com o comando: “chmod 700

<arquivo-baixado>” e, após isso, ele foi instalado, usando-se “./<arquivo-baixado>”.

Ressalta-se que foi utilizado “<>” para sinalizar o arquivo, pois é possível haver

diferenças nos nomes dos arquivos. Nesse exemplo, conforme a Figura 2, o nome do

arquivo instalado foi “Miniconda3-latest-Linux-x86_64.sh”:

Figura 2 - Permissão e instalação

 Fonte: Próprios autores a partir do VirtualBox

 Após se executar o script de instalação, foram apenas seguidas as instruções

exibidas no terminal, que consistiam, no geral, em aceitar os termos de uso e definir

o diretório de instalação. Agora será tratada a criação do ambiente virtual de forma

detalhada.

3.4.2 CRIANDO O AMBIENTE VIRTUAL

 Logo após a instalação do Miniconda3, foi gerado um diretório na pasta usada

para a instalação, a qual foi “/home/user/miniconda3”. Esse diretório continha todos

os executáveis importantes para se executar o Anaconda. Para começar, foi conferido

se o comando “conda” estava funcionando, com o uso de “miniconda3/bin/conda –

version”, indicado na Figura 3:

Figura 3 - Conferindo a versão

 Fonte: Próprios autores a partir do VirtualBox

44

 Ao se confirmar o funcionamento do comando “conda”, ele foi inicializado o

para a interação com o shell, usando-se “miniconda3/bin/conda init”, processo exibido

na Figura 4:

Figura 4 – Inicialização

Fonte: Próprios autores fazendo uso do VirtualBox

 A seguir, foi adicionado algumas linhas de configuração no arquivo

“/home/user/.bashrc” e, para que essas modificações funcionassem, ele foi

recarregado com o comando “source ~/.bashrc”, mostrado na Figura 5:

45

Figura 5 - Atualizando o .bashrc

 Fonte: Próprios autores usando o VirtualBox

 Ao atualizar-se o “~/.bashrc”, o ambiente padrão do Conda, de nome “base” é

inicializado. Como a metodologia requer módulos em determinadas versões além do

próprio Python, para que não houvesse conflitos entre as dependências a serem

instaladas, os ambientes e seus módulos utilizados foram criados de forma isolada,

assim evitando possíveis conflitos e problemas.

 Realizada essa parte, foi executado o primeiro comando para sair do ambiente

padrão do Conda e criar o ambiente: “conda deactivate”.

Se os passos anteriores foram executados corretamente, os comandos que

começavam com “miniconda3/bin/conda” foram descartados. No entanto, caso os

termos de uso não tenham sido aceitos previamente, foi gerado um erro ao tentar criar

o primeiro ambiente. Esse erro solicitava a aceitação dos termos de uso, que pôde ser

feita com a execução do comando sugerido pelo próprio Anaconda. Tal situação é

ilustrada na Figura 6:

46

Figura 6 – Termos de uso

 Fonte: Próprios autores a partir do VirtualBox

 Ao executar o comando para sair do ambiente base, foi possível confirmar a

mudança observando o terminal antes e depois da execução. Durante a criação do

primeiro ambiente sem a aceitação prévia dos termos, foi retornado um erro. Esse

erro, no entanto, apresentou uma solução simples, bastando executar os comandos

sugeridos pelo próprio Anaconda “conda tos accept --override-channels --channel

https://repo.anaconda.com/pkgs/main“ e “conda tos accept --override-channels –

channel https://repo.anaconda.com/pkg/r” .

 Logo após se aceitar os termos, foi usado novamente o comando para criar o

ambiente, nesse momento a versão do Python que será instalada foi escolhida, um

passo que é fundamental para o funcionamento do trabalho. Caso a versão do Python

não seja passada no comando, ou caso se altere a versão, isso pode acabar

comprometendo a execução do projeto. O ambiente foi criado usando: “conda create

-n ember python=3.6 -y”.

 O parâmetro “-n” especifica o nome do ambiente que será criado, enquanto o

parâmetro “-y” instrui o instalador a confirmar automaticamente todas as solicitações

durante o processo de instalação. A seguir iniciou-se a criação do ambiente virtual,

conforme mostrado na Figura 7:

https://repo.anaconda.com/pkgs/main
https://repo.anaconda.com/pkg/r

47

Figura 7 - Criando o ambiente virtual

Fonte: Próprios autores se usando o VirtualBox

 Após a criação do ambiente, foi instalado tudo o que é necessário para o

funcionamento. Em seguida, foi verificado se o ambiente havia sido criado

corretamente por meio do comando: “conda env list”, processo exibido na Figura 8 e

9:

Figura 8 – Criando o ambiente virtual e conferindo

Fonte: Próprios autores fazendo uso do VirtualBox

48

Figura 9 - Ativando o ambiente

Fonte: Próprios autores com o uso do VirtualBox

 Após a execução correta do comando, foi observado, por meio do terminal, que

o ambiente EMBER havia sido ativado com sucesso. Agora será abordado a respeito

do seu repositório oficial.

3.4.3 REPOSITÓRIO EMBER

 O módulo EMBER, que faz uso do Dataset EMBER, abordado anteriormente,

juntamente com suas dependências, está disponível no repositório oficial da Elastic

no GitHub, acessível por meio do seguinte endereço: “https://github.com/

elastic/ember”, conforme exibido na Figura 10.

Figura 10 - Github EMBER

Fonte: Próprios autores a partir da página oficial do EMBER

49

 Por meio do terminal, foi utilizado o comando “git” para clonar o repositório do

EMBER. Caso o Git não estivesse previamente instalado, isso poderia ser feito com o

comando: “sudo apt update && sudo apt install git”.

 A partir deste ponto, como os comandos passaram a manipular arquivos e

diretórios específicos, foi necessário ter atenção redobrada quanto aos caminhos

utilizados. Para verificar o diretório atual, utilizou-se o comando: “pwd”.

 Feito isso, foi conferido se o Git foi instalado com sucesso e em seguida

clonado o repositório “git –help” e do EMBER, por meio do comando ”git clone

https://github.com/elastic/ember.git“, indicado na Figura 11 e 12:

Figura 11 - Conferindo o Git

Fonte: Próprios autores a partir do VirtualBox

 O procedimento se segue na Figura 12:

https://github.com/elastic/ember.git

50

Figura 12 - Clonando o repositório

Fonte: Próprios autores a partir do VirtualBox

 Agora, no próximo subtópico, será instalado o módulo do EMBER juntamente

com suas dependências.

3.4.4 INSTALANDO MÓDULO EMBER E DEPENDÊNCIAS

 Nesta etapa, foi realizada a instalação do módulo EMBER para Python,

juntamente com suas dependências. A correta execução desse procedimento foi

fundamental, uma vez que a ausência de alguma dependência, ou a utilização de

versões incompatíveis, comprometeria a execução do projeto.

 Dentro do ambiente EMBER, verificou-se se o repositório havia sido clonado

corretamente, utilizando o comando “ls -l“ e em seguida acessado o diretório do

repositório com ”cd ember/”, conforme demonstrado na Figura 13:

51

Figura 13 – Diretório EMBER

 Fonte: Próprios autores usando o VirtualBox

 Foi então conferido o conteúdo do diretório com “ls -l”, exibido na Figura 14:

Figura 14 – Conteúdo do diretório

Fonte: Próprios autores usando-se o VirtualBox

52

 No diretório do EMBER, encontram-se três arquivos essenciais:

“requirements_conda.txt”, “requirements_notebook.txt” e “setup.py”, sendo o último o

principal responsável pela instalação do módulo EMBER, enquanto os dois arquivos

restantes especificam as dependências necessárias. Estes arquivos de dependências

incluem módulos essenciais para o treinamento do modelo e algoritmos de árvore de

decisão, como LightGBM, Scikit-learn, Matplotlib, entre outros. A seguir, na Tabela 12,

descritos alguns dos comandos utilizados para se instalar as dependências do

ambiente e o módulo EMBER.

Tabela 12 - Comandos utilizados na instalação do módulo EMBER e dependências

Comando Descrição

conda config --add channels

conda-forge

Adiciona o repositório Conda-forge como fonte de

pacotes. Ele é uma comunidade que mantém pacotes

atualizados e mais variados do que os disponíveis no

canal padrão.

conda install --file

requirements_conda.txt

Instala todos os módulos contidos no arquivo

“requirements_conda.txt”.

conda install --file

requirements_notebook.txt

Instala todos os módulos existentes no arquivo

“requirements_notebook.txt”.

python setup.py install Instala o projeto EMBER como um pacote Python.

Fonte: Roth, 2022

 Na Figura 15 e 16, é ilustrado o processo de instalação das dependências

necessárias descritas anteriormente na Tabela 12, com o intuito de garantir o

funcionamento correto do ambiente:

53

Figura 15 - Instalando dependências

Fonte: Próprios autores fazendo uso do VirtualBox

Figura 16 - Instalando as demais dependências

Fonte: Próprios autores a partir do VirtualBox

Após a instalação correta dos pacotes essenciais, foi instalado o módulo

EMBER, processo exibido na Figura 17:

54

Figura 17 – Instalação do módulo EMBER

Fonte: Próprios autores no VirtualBox

 Após a instalação dos arquivos de dependências e do pacote EMBER, foi

instalada a interface de programação Jupyter Notebook por meio do comando ”conda

install jupyter -y”, conforme a Figura 18:

Figura 18 - Instalando o Jupyter Notebook

Fonte: Próprios autores

55

 A seguir, será abordado sobre o dataset escolhido e utilizado na realização do

trabalho, juntamente com outros detalhes sobre ele.

3.4.5 DATASET UTILIZADO

 Após instalado o pacote EMBER, além das dependências, foi feito o download

do dataset localizado no próprio Github ”https://ember.elastic.co/

ember_dataset_2018_2.tar.bz2”.

 O dataset usado neste trabalho é a segunda versão, de 2018, devido ao fato

de ele ser de código aberto e gratuito para uso. Para garantir o correto funcionamento

dos códigos desenvolvidos nos tópicos seguintes, o dataset foi mantido no diretório

em que esses códigos estavam localizados. Agora será iniciada a extração de vetores

numéricos.

3.5 EXTRAINDO VETORES NÚMERICOS

 A partir desse ponto, iniciou-se a utilização dos códigos desenvolvidos. Foi

verificado que todos os procedimentos anteriores foram executados corretamente.

Dentro do ambiente virtual, o Jupyter Notebook foi aberto dentro do diretório onde o

para facilitar a execução dos scripts. Para isso, o comando foi executado no terminal

no diretório onde o dataset havia sido baixado: “jupyter notebook”.

 Após digitar o comando, foi aberto uma guia no navegador com o Jupyter

Notebook, conforme mostrado na Figura 19:

Figura 19 – Guia no navegador com Jupyter Notebook

Fonte: Próprios autores

https://ember.elastic.co/

56

 Após aberto o Jupyter Notebook, foi selecionada a opção “Python 3” no menu

“New”, criando-se um documento para a inserção dos códigos. Em seguida, verificou-

se se os procedimentos anteriores de configuração foram executados corretamente

por meio do comando “!python –version”, usado para verificar a versão do Python, que

nesse cenário foi a 3.6, conforme a Figura 20:

Figura 20 - Testando versão e módulo EMBER

Fonte: Próprios autores a partir da tela do Jupyter Notebook

Agora, dentro de uma nova célula, foi extraído o dataset com o seguinte

comando: “!tar -xvjf <dataset>”. Este processo levou algum tempo, devido ao tamanho

considerável do dataset, conforme exibido na Figura 21:

Figura 21 - Extraindo o dataset

Fonte: Próprios autores na tela do Jupyter Notebook

57

 Após se extrair, foi executada a seguinte célula de código exibida na Figura 22:

Figura 22 - Vetorização e Geração de Metadados

Fonte: Próprios autores a partir do Jupyter Notebook

Esse passo é obrigatório antes de treinar qualquer modelo, pois os dados

precisam estar "vetorizados" (transformados de arquivos binários em vetores

numéricos). Os diretórios usados dentro das funções devem ser os mesmos onde o

dataset estava localizado.

Figura 23 – Dataframe obtido após a vetorização

Fonte: Próprios autores no Jupyter Notebook

58

 A Figura 23 representa o principal dataframe com um milhão de amostras que

é exibida após a vetorização dos dados. Agora será abordado o carregamento de

dados vetorizados e metadados no subtópico a seguir.

3.6 CARREGAMENTO DOS DADOS VETORIZADOS E METADADOS

 Nesta etapa, foram carregados os vetores de características “(X_train, X_test)”

e os rótulos “(y_train, y_test)” previamente extraídos, além do dataframe de metadados

contendo informações como hash, data de aparecimento, rótulo e tipo de malware,

conforme exibido na Figura 24:

Figura 24 - Carregamento dos Dados Vetorizados e Metadados

Fonte: Próprios autores fazendo uso do Jupyter Notebook

 Agora, com toda a preparação do ambiente concluída, será iniciado o

treinamento de um modelo para teste.

3.7 TREINANDO O MODELO

 Para treinar o modelo preditivo, foi utilizado a função “train_model” do pacote

EMBER, que implementa um classificador LightGBM. O conjunto de treinamento

contém seiscentas mil amostras balanceadas entre arquivos maliciosos e benignos,

com mais de duas mil características extraídas de cada arquivo PE. Isso pode ser

visto na Figura 25:

Figura 25 – Treinando o modelo

Fonte: Próprios autores

59

 A função realizou o ajuste dos parâmetros internos do modelo, otimizando sua

capacidade de identificar padrões que discriminam malwares. No próximo subtópico,

será abordada a árvore de decisão gerada a partir do modelo treinado.

3.8 ÁRVORE DE DECISÃO

 Foi gerada uma árvore de decisão, ilustrada nas Figuras 26, 27 e 28, a partir

do modelo treinado, que explica a maneira como ele faz sua escolha de maneira

gráfica e permitindo melhor compreensão. Cada nó da árvore de decisão representa

uma “regra” ou “teste” que o modelo faz sobre os dados. Esses nós mostram várias

informações importantes, cujas informações são explicadas na Tabela 13:

60

Tabela 13 - Informações dos campos da árvore de decisão

Campo Significado Exemplo na árvore

feature

Qual característica foi usada para

dividir os dados, representa

característica (ou atributo do dado).

Cada número (feature_637) é uma

coluna da sua matriz “X_train”.

Então, “feature_637” é a 637ª coluna

do vetor de características (dos

milhares gerados pelo EMBER).

feature_637 <= -0.5

gini

Impureza do nó (mistura de classes),

ou seja, o quão misturadas estão as

classes dentro dele. Gini = 0 → nó puro

(todas as amostras são da mesma

classe).

Gini alto (ex: 0.65) → o nó tem mistura

de classes (malware e benignos

juntos).

gini = 0.656

samples
É o número de amostras (linhas) do
dataset que chegaram até esse nó

durante o treinamento.

samples = 800000

value
Quantas amostras de cada classe

estão no nó. class_names =
["unlabeled", "benign", "malware"]

[200000, 300000, 300000]

class Classe predominante no nó (resultado).
decisão final do nó

benign

Fonte: Próprios autores

61

Figura 26 – Sub-árvore de decisão gerada contendo o primeiro nó e sua primeira decisão

Fonte: Próprios autores a partir do código presente no Jupyter Notebook

 A Figura 26 contém o primeiro nó, de onde se inicia a decisão do modelo, e a primeira

decisão que ele deve tomar. A seguir, será exibido o restante das decisões e seus nós em

forma de sub-árvores, com a Figura 27 se iniciando a partir da primeira decisão considerando

o arquivo malicioso e a Figura 28 o considerando benigno.

Figura 27 – Sub-árvore de decisão gerada considerando o arquivo malicioso

Fonte: Próprios autores a partir do código presente no Jupyter Notebook

62

Figura 28 – Sub-árvore de decisão gerada considerando o arquivo benigno

Fonte: Próprios autores a partir do código presente no Jupyter Notebook

 Agora será finalmente iniciada a classificação de executáveis fazendo uso do

modelo treinado para isso.

3.9 CLASSIFICANDO EXECUTÁVEIS

 Para realizar a predição em um arquivo binário individual, foi carregado o

modelo LightGBM previamente treinado pelo EMBER e aplicando função

“predict_sample” que processou o conteúdo bruto do arquivo executável. Isso pode

ser observado na Figura 29:

Figura 29 – Classificação do executável

Fonte: Próprios autores usando o Jupyter Notebook

 O executável usado foi o “putty.exe”, um cliente SSH bem conhecido e

claramente benigno. O resultado apresentado foi uma pontuação que representa a

63

probabilidade de o arquivo ser malicioso, onde valores próximos a zero indicam alta

probabilidade de benignidade, e valores próximos a um indicam maior suspeita de

malware. Agora será feita a mesma análise, porém em um ransomware real. No

próximo subtópico será abordada a amostra de malware escolhida para o

experimento.

3.10 AMOSTRA DE RANSOWARE

 Para a amostra de ransomware, foi utilizado o WannaCry, muito conhecido

pelos ataques realizados no passado fazendo uso dele. Após carregar-se o modelo

em “ember_model_2018.txt” realizou-se a predição do malware. A saída representou

um número muito próximo de um, indicando que ele foi detectado como altamente

malicioso, eventos exibidos na Figura 30:

Figura 30 – Predição do Ransomware WannaCry

Fonte: Próprios autores

 Agora, no tópico a seguir, será feita a análise de resultados obtidos.

64

4 ANÁLISE DE RESULTADOS

 Nesta seção, foram expostos e analisados os resultados derivados da

utilização do modelo EMBER na identificação de arquivos maliciosos. Examinando as

métricas gerais de classificação, e elementos específicos, a finalidade foi analisar a

capacidade do modelo em diversas situações.

 Para análise de resultados, foi utilizado um código em Python, utilizando o

Jupyter Notebook. Para iniciar a análise, foram carregados os módulos mostrados na

Figura 31:

Figura 31 – Carregamento dos módulos para análise

Fonte: Próprios autores do Jupyter Notebook

 Após se importar os módulos, foi definida uma variável para armazenar o

diretório do dataset, conforme demonstrado na Figura 32:

Figura 32 - Variável do diretório do dataset

 Fonte: Próprios autores fazendo uso do Jupiter Notebook

 Realizada essa etapa, foi feita a vetorização dos dados novamente, utilizando

as funções do módulo EMBER. Esse processo extrai características como seções do

binário, imports, export tables, entropia etc. Em seguida, os metadados (hash, data,

label e subset) são gerados, passo ilustrado na Figura 33:

65

Figura 33 – Vetorização gerada novamente

Fonte: Próprios autores a partir do Jupyter Notebook

 Nesse ponto, o dataset já vetorizado foi carregado na memória. “emberdf”

recebeu o dataframe de metadados, enquanto “X_train”, “X_test”, “y_train” e “y_test”

receberam os vetores numéricos e seus respectivos rótulos. O modelo LightGBM pré-

treinado também foi carregado, permitindo gerar predições imediatamente. O

carregamento das features é demonstrado na Figura 34:

Figura 34 – Carregando Features

Fonte: Próprios autores

 A seguir será abordada a distribuição do Dataset EMBER além de algumas

informações importante sobre ele.

4.1 DISTRIBUIÇÃO DO DATASET EMBER

 A base de dados utilizada neste trabalho foi o EMBER 2018, contendo um

grande volume de amostras destinadas tanto ao treinamento quanto à validação de

modelos de aprendizado de máquina, o que torna possível avaliar o desempenho de

detecção em um cenário próximo ao ambiente real.

 O primeiro gráfico demonstra a divisão em train e test totalizando

aproximadamente um milhão. Foi possível observar que o subset de treino contém a

66

maior parte dos dados. Cada subset foi dividido em três categorias: amostras

benignas, maliciosas e não rotuladas, onde as não rotuladas refletem uma

característica muito importante, pois aborda a realidade de muitos ambientes de

segurança, onde nem todos os arquivos capturados possuem rótulo imediato. Para

gerar o primeiro gráfico, na Figura 36, foi usado a célula de código presente na Figura

35:

Figura 35 – Código da divisão de amostras

Fonte: Próprios autores a partir do Jupyter Notebook

 Ao rodar a célula de código, o gráfico foi gerado logo em sequência, assim,

representou visualmente a divisão:

Figura 36 - Divisão de amostras

Fonte: Próprios autores usando a célula de código descrita no Jupyter Notebook

67

 A existência de uma quantidade significativa de amostras “unlabeled” é

especialmente importante, pois aproxima o processo de classificação de um cenário

real, onde diversas ameaças emergentes ainda não foram totalmente analisadas.

 O segundo gráfico apresenta a distribuição por mês das amostras,

evidenciando o mês de aparecimento das amostras durante todo o ano de 2018, além

de um conjunto adicional de amostras, anteriores a 2018. Esse gráfico foi gerado

através da seguinte célula de comando, conforme a Figura 37:

Figura 37 - Código do aparecimento de amostras

Fonte: Próprios autores a partir do Jupyter Notebook

Feito isso, foi gerado a imagem a seguir que demonstra visualmente o

aparecimento das amostras:

68

Figura 38 - Aparecimento de amostras

Fonte: Próprios autores com uso do Jupyter Notebook

 O gráfico exibido na Figura 38 é muito importante, pois evidencia que o dataset

não é estático, mas sim uma base que contempla uma evolução temporal, o que

melhora a capacidade do modelo em reconhecer diferentes padrões de

comportamento de malware ao longo do tempo. No próximo subtópico será discutido

o desempenho com a taxa de falso positivo controlado.

4.2 DESEMPENHO COM FPR CONTROLADO (ENTRE 1% E 0.1)

 Nesta etapa, foi feita uma avaliação da taxa de falso positivos. O objetivo dessa

análise é observar como o modelo se comporta ao alcançar diferentes níveis de

tolerância a falsos positivos.

 O threshold define o ponto de corte da pontuação de probabilidade predita pelo

modelo, determinando se uma amostra será classificada como maliciosa (próximo de

um) ou benigna (próximo de zero). Um limiar mais baixo implica em uma detecção

mais agressiva (maior taxa de detecção, porém mais falsos positivos), enquanto limiar

mais alto torna o modelo mais conservador (menos falsos positivos, mas maior chance

69

de não detectar alguns malwares). Foi usado a seguinte célula de código, conforme

exibido na Figura 39, que iniciou a fase de geração das previsões do modelo:

Figura 39 - Previsões

Fonte: Próprios autores fazendo uso do Jupyter Notebook

 Geradas as previsões, foi usado a seguinte célula de código, presente na

Figura 40, para a avaliação do modelo:

Figura 40 - Código da avaliação do modelo

Fonte: Próprios autores a partir do Jupyter Notebook

70

 Logo após usar o código para avaliação do modelo, foi gerado em sequência a

saída com informações para a avaliação, conforme exibido na Figura 41:

Figura 41 – Resultado da avaliação do modelo

Fonte: Próprios autores com uso do Jupyter Notebook

 Na saída com "ROC AUC: 0.9964" foi observado que o modelo tem a

possibilidade de distinguir perfeitamente amostras malignas e benignas. Apenas um

de cada cem arquivos benignos foi classificado erroneamente como malware com 1%

de Falsos Positivos (FPR = 0.01), o modelo detectou cerca de 96,5% dos malwares,

com 1% de Falsos Positivos. Já o modelo mais conservador com 0.1% (FPR = 0.001),

apenas um de cada mil arquivos benignos é incorretamente alertado, porém, a taxa

de detecção caiu para cerca de 87%.

 Com base nos resultados obtidos, diminuir a FPR (ser mais rígido com falsos

positivos) aumenta o limiar e reduz a taxa de detecção, sendo o comportamento

esperado em qualquer modelo de classificação binária. Agora será abordada a

classificação da amostra de ransomware realizada.

4.3 CLASSIFICAÇÃO DE AMOSTRA DE RANSOMWARE

 Para avaliar a capacidade do modelo em identificar ransomware, foi utilizada

uma amostra real do WannaCry, conhecida por criptografar arquivos do sistema e

exigir pagamento para sua liberação, além de um executável legítimo para

comparação de resultados, o Putty, um cliente SSH. O modelo LightGBM,

71

previamente treinado com o Dataset EMBER, foi carregado a partir do arquivo

“ember_model_2018.txt”. Em seguida, a função “predict_sample” do módulo EMBER

foi aplicada diretamente sobre o conteúdo binário do executável, processando suas

características estáticas e retornando uma pontuação de probabilidade de ser

malware.

 A execução das duas classificações resultou em uma pontuação de 0.9999 na

classificação do WannaCry, valor muito próximo de um, indicando alta probabilidade

de comportamento malicioso. Durante a classificação do Putty, o resultado retornado

foi um valor extremamente baixo, muito próximo de zero. Esse resultado demonstra

que o modelo treinado foi capaz de identificar corretamente a amostra WannaCry

como um ransomware, confirmando sua eficácia na detecção de ameaças conhecidas

e perigosas. Agora será comentado sobre algumas limitações identificadas no dataset

utilizado no trabalho.

4.4 LIMITAÇÕES OBSERVADAS

 Durante os testes complementares, foi avaliada uma amostra recente de

ransomware, não presente no conjunto de dados original EMBER 2018.

Ao realizar a predição com o mesmo modelo LightGBM, observou-se que o valor

retornado foi muito próximo de zero, o que indica alta probabilidade de benignidade.

 Esse comportamento demonstra uma limitação importante do modelo em

detectar variantes novas ou amostras de malware que não compartilham

características estáticas similares com aquelas utilizadas durante o treinamento.

 Como o Dataset EMBER 2018 foi construído com amostras coletadas até o ano

de 2018, o modelo tende a apresentar redução de desempenho frente a ameaças

mais recentes, especialmente quando o ransomware adota técnicas modernas de

ofuscação, empacotamento, ou assinaturas de código alteradas. A seguir serão

abordadas as considerações finais sobre os resultados obtidos.

5 RESULTADOS E CONSIDERAÇÕES FINAIS

 O presente trabalho de conclusão de curso teve como objetivo principal aplicar

técnicas de aprendizado de máquina na classificação de executáveis maliciosos

utilizando o Dataset EMBER de 2018. Com ele, os testes feitos demostraram que o

72

modelo treinado teve um ótimo desempenho, alcançando um ROC AUC de 0.9964, o

que mostrou alta capacidade de separação entre amostras benignas e maliciosas.

 Observou-se que nos testes com controle de taxa de falsos positivos (FPR), o

modelo manteve taxas de detecção elevadas mesmo em cenários mais restritivos, a

1% de FPR, o modelo alcançou 96,5% de taxa de detecção. A 0,1% de FPR, ainda

obteve 86,8% de taxa de detecção. Os dados apontam que o classificador é eficiente

e resistente na detecção de ameaças conhecidas, incluindo amostras de ransomware

clássico, como o WannaCry, que foi classificado corretamente com uma probabilidade

quase igual a um, confirmando que se tratava de um malware.

 Entretanto, em testes com amostras recentes, o modelo teve limitações em

realizar a classificação do executável como malwares de maneira adequada e, nesses

casos, foram obtidas pontuações muito próximas de zero, indicando falsos negativos

e refletindo a dependência temporal e estática do modelo. Dessa forma, conclui-se

que, embora o modelo tenha apresentado excelente desempenho na detecção de

malwares conhecidos, sua eficácia pode ser comprometida frente a ameaças

modernas ou variações inéditas.

 Com isso em mente, fica evidente a necessidade de mais estudos na área além

da criação de novos métodos e tecnologias para tornar a abordagem mais confiável e

eficaz na classificação de malwares mais sofisticados.

Em suma, este trabalho respondeu a questão de pesquisa "como aplicar

técnicas de aprendizado de máquina para identificar e classificar executáveis

maliciosos de forma eficaz, utilizando o Dataset EMBER como base de treinamento e

teste?" e, mesmo com as limitações encontradas, o objetivo geral “aplicar técnicas de

aprendizado de máquina na classificação de executáveis maliciosos utilizando o

Dataset EMBER” pôde ser alcançado.

73

REFERÊNCIAS

ABELIUK, A.; GUTIÉRREZ, C. Historia y evoluación de la inteligencia
artificial. Revista Bits de Ciencia, n. 21, p. 14-21, 2021.

BASTOS, Athena. Quais são os pilares e as funções da segurança da
informação? Alura Para Empresas, [s. d.]. Disponível em:
https://www.alura.com.br/empresas/artigos/seguranca-da-informacao. Acesso em: 28
out. 2025.

BISHOP, C. M. Pattern recognition and machine learning. [S.l.]: Springer, 2006.

Cloudflare. O que foi o ataque de ransomware WannaCry?. 2025. Disponível em:
https://www.cloudflare.com/pt-br/learning/security/ransomware/wannacry-
ransomware/. Acesso em: 24 out. 2025

CREVIER, D. AI: The tumultuous history of the search for artificial intelligence. [S.l.]:
Basic Books, 1993.

DEMETRIO, Rodrigo. Estatísticas de IA: 500+ fatos que impulsionam a inovação
global. Bureal Works, [S.l], [s.d]. https://www.bureauworks.com/fr/blog/ai-
estatisticas-500-fatos-impulsionando-a-inovacao-global. Acesso em: 02 set. 2025

DICIONÁRIO PRIBERAM. Computar. 2025. Disponível em:
https://dicionario.priberam.org/computar. Acesso em: 30 ago. 2025.

DONDA, Daniel. Estrutura de arquivos executáveis (Formato PE). Daniel Donda,
[S.l.], [s.d.]. Disponível em: https://danieldonda.com/estrutura-de-arquivos-
executaveis-formato-pe/. Acesso em: 15 out. 2025.

DONDA, Daniel. Hunting com notebook do Jupyter. [s.d]. Disponível em:
https://danieldonda.com/. Acesso em 10 out. 2025.

DYSON, G. Turing's cathedral: the origins of the digital universe. [S.l.]: Vintage,
2012.

ESET. História e evolução do malware desde 1986. OverBR, [S.l.], [s.d.].
Disponível em: https://overbr.com.br/artigos/historia-e-evolucao-do-malware-desde-
1986. Acesso em: 1 out. 2025.

FERLAINO, Pierpaolo. El Ajadrecista: the mechanical chess player by Leonardo
Torres Y Quevedo, 2022. Disponível em: https://pierpaoloferlaino.medium.com/el-
ajadrecista-the-mechanical-chess-player-by-leonardo-torres-y-quevedo-
ed8de8a3c06e. Acesso em: 20 out. 2025.

FOUNDERS FORUM GROUP. AI statistics 2024–2025: global trends, market
growth & adoption data. Londres: Founders Forum Group, 23 jun. 2025. Disponível
em: https://ff.co/ai-statistics-trends-global-market/. Acesso em: 01 set. 2025.

https://www.cloudflare.com/pt-br/learning/security/ransomware/wannacry-ransomware/
https://www.cloudflare.com/pt-br/learning/security/ransomware/wannacry-ransomware/
https://www.bureauworks.com/fr/blog/ai-estatisticas-500-fatos-impulsionando-a-inovacao-global
https://www.bureauworks.com/fr/blog/ai-estatisticas-500-fatos-impulsionando-a-inovacao-global
https://dicionario.priberam.org/computar
https://danieldonda.com/hunting-com-notebook-do-jupyter/
https://danieldonda.com/
https://pierpaoloferlaino.medium.com/el-ajadrecista-the-mechanical-chess-player-by-leonardo-torres-y-quevedo-ed8de8a3c06e
https://pierpaoloferlaino.medium.com/el-ajadrecista-the-mechanical-chess-player-by-leonardo-torres-y-quevedo-ed8de8a3c06e
https://pierpaoloferlaino.medium.com/el-ajadrecista-the-mechanical-chess-player-by-leonardo-torres-y-quevedo-ed8de8a3c06e
https://ff.co/ai-statistics-trends-global-market/

74

FRIEDMAN, J.; HASTIE, T.; TIBSHIRANI, R. The elements of statistical learning:
Data Mining, Inference, and Prediction. 2. ed. [S.l]: Springer, 2009.

GÉRON, A. Hands-on machine learning with Scikit-learn, Keras & TensorFlow.
3. ed. [S.l.]: O'Reilly Media, 2019.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep learning: Adaptive
Computation and Machine Learning. [S.l.]: The MIT Press, 2016.

KELLY, M. C. et al. Computer: a history of the information machine. 3. ed. [S.l.]:
Westview Press, 2013.

KOSINSKI, Matthew. O que é ransomware? IBM Think, [S.l.]: IBM Corporation,
[2023]. Disponível em: https://www.ibm.com/br-pt/think/topics/ransomware. Acesso
em: 1 out. 2025.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. [S.l.]: HAL Open Science,
2023.

MICROSOFT. O que é malware? Definição e tipos. Segurança da Microsoft,
[2025]. Disponível em: https://www.microsoft.com/pt-br/security/business/security-
101/what-is-malware. Acesso em: 30 set. 2025.

MITCHELL, M. Artificial intelligence: A Guide for Thinking Humans. [S.l]: Farrar,
Straus and Giroux, 2019.

MUCCI, T. A história da IA. IBM, 2024. Disponível em: https://www.ibm.com/br-
pt/think/topics/history-of-artificial-intelligence. Acesso em: 26 set. 2025.

RAMOS, Marien. Uso de inteligência artificial aumenta e alcança 72% das
empresas, diz pesquisa. CNN Brasil, 08 jun. 2024. Disponível em:
https://www.cnnbrasil.com.br/economia/negocios/uso-de-inteligencia-artificial-
aumenta-e-alcanca-72-das-empresas-diz-pesquisa/. Acesso em: 02 set. 2025.

ROHR, Altieres. Primeiro vírus de PCs, 'Brain' completa 25 anos. G1, 2025.
Disponível em: https://g1.globo.com/tecnologia/noticia/2011/01/primeiro-virus-de-
pcs-brain-completa-25-anos.html. Acesso em: 12 set. 2025.

ROTH, Phil. Elastic Malware Benchmark For Empowering Researchers. Github,
2022. Disponível em: https://github.com/elastic/ember. Acesso em: 30 out. 2025.

ROTH, Phil. Introducing Ember: An Open Source Classifier And Dataset. elastic,
2018. Disponível em: https://www.elastic.co/blog/introducing-ember-open-source-
classifier-and-dataset. Acesso em: 30 out. 2025.

RUSSEL, S.; NORVIG, P. Artificial intelligence: A Modern Approach. 3. ed. [S.l.]:
Pearson, 2009.

SANTOS, J. A incrível saga da inteligência artificial na história da humanidade
em 2025. Disponível em: https://pmp.com.br/sociais/inteligencia-artificial/. Acesso
em: 25 ago. 2025.

https://www.ibm.com/br-pt/think/topics/history-of-artificial-intelligence
https://www.ibm.com/br-pt/think/topics/history-of-artificial-intelligence
https://www.cnnbrasil.com.br/economia/negocios/uso-de-inteligencia-artificial-aumenta-e-alcanca-72-das-empresas-diz-pesquisa/
https://www.cnnbrasil.com.br/economia/negocios/uso-de-inteligencia-artificial-aumenta-e-alcanca-72-das-empresas-diz-pesquisa/
https://g1.globo.com/tecnologia/noticia/2011/01/primeiro-virus-de-pcs-brain-completa-25-anos.html
https://g1.globo.com/tecnologia/noticia/2011/01/primeiro-virus-de-pcs-brain-completa-25-anos.html
https://github.com/elastic/ember
https://www.elastic.co/blog/introducing-ember-open-source-classifier-and-dataset
https://www.elastic.co/blog/introducing-ember-open-source-classifier-and-dataset
https://pmp.com.br/sociais/inteligencia-artificial/

75

SOUSA, Priscila. Segurança da informação - O que é, importância, conceito e
definição. Conceito.de, 2024. Disponível em: https://conceito.de/seguranca-da-
informacao. Acesso em: 27 out. 2025.

SCHMIDHUBER, J. Annotated history of modern AI and deep learning. [S.l.]:
IDSIA, 2022.

SHETTERLY, L. S. Hidden figures: the american dream and the untold story of the
black women mathematicians who helped win the space race. [S.l.]: William Morrow
Paperbacks, 2016.

SULEYMAN, M.; BHASKAR, M. A próxima onda: inteligência artificial, poder e o
maior dilema do século XXI. [S.l.]: Record, 2023.

TECNOLAN. Computadores humanos: as mulheres da NASA, 2025. Disponível
em: https://www.tecnolan.com.br/2019/04/26/computadores-humanos-as-mulheres-
da-nasa/. Acesso em: 24 out. 2025.

TELEFÔNICA BRASIL S.A. Entenda o que é malware, os tipos e como se
proteger. São Paulo: Vivo, 2024. Disponível em: https://vivo.com.br/para-voce/por-
que-vivo/vivo-explica/para-descomplicar/malware. Acesso em: 7 out. 2025.

THUNDERBIT. 140 estatísticas essenciais de inteligência artificial para 2025.
São Paulo: Thunderbit, 23 maio 2025. Disponível em:
https://thunderbit.com/pt/blog/top-artificial-intelligence-stats. Acesso em: 02 set.
2025.

WOILER, S. Computador: conceitos e aplicações. Revista de Administração de
Empresas, p. 2-5, 1970. Disponível em:
https://www.scielo.br/j/rae/a/8FX5tDznG349WPxMJM6Kz7s/. Acesso em: 30 ago.
2025.

https://www.tecnolan.com.br/2019/04/26/computadores-humanos-as-mulheres-da-nasa/?utm_source=chatgpt.com
https://www.tecnolan.com.br/2019/04/26/computadores-humanos-as-mulheres-da-nasa/?utm_source=chatgpt.com
https://thunderbit.com/pt/blog/top-artificial-intelligence-stats
https://www.scielo.br/j/rae/a/8FX5tDznG349WPxMJM6Kz7s/

