

FACULDADE DE TECNOLOGIA DE AMERICANA “Ministro Ralph Biasi”
Curso Superior de Tecnologia em Segurança da Informação

Felipe Antonio Santos da Silva

ANÁLISE DE RESULTADOS DE FERRAMENTAS SAST EM PIPELINES CI

Americana, SP

2025

FACULDADE DE TECNOLOGIA DE AMERICANA “Ministro Ralph Biasi”
Curso Superior de Tecnologia em Segurança da Informação

Felipe Antonio Santos da Silva

ANÁLISE DE RESULTADOS DE FERRAMENTAS SAST EM PIPELINES CI

Trabalho de Conclusão de Curso desenvolvido
em cumprimento à exigência curricular do Curso
Superior de Tecnologia em Segurança da
Informação sob a orientação do Prof. Esp. José
William Pinto Gomes

Área de concentração: Segurança da
Informação.

Americana, SP

2025

RESUMO

Este trabalho propõe uma análise comparativa da eficiência, cobertura e precisão de
três ferramentas de Análise Estática de Código (SAST): Semgrep, Bandit e CodeQL.
As ferramentas foram integradas a pipelines de Integração Contínua (CI) utilizando a
plataforma GitHub Actions, com o objetivo de detectar vulnerabilidades em um
repositório Python propositalmente vulnerável. A metodologia empregou um ambiente
controlado com workflow automatizado, executando as ferramentas sobre o mesmo
código-fonte. A análise comparativa considerou a severidade e tipo de falha detectada,
além da taxa de falsos positivos. Os resultados evidenciaram que o Bandit se mostrou
eficaz para verificações rápidas e diretas; o Semgrep proporcionou ampla cobertura
contextual; e o CodeQL alcançou a maior profundidade analítica ao rastrear fluxos de
dados, resultando em menor incidência de falsos positivos. Conclui-se que a
combinação dessas ferramentas amplia significativamente a eficácia das análises de
segurança, reforçando o conceito de DevSecOps e promovendo a integração contínua
da segurança ao ciclo de desenvolvimento de software.

Palavras-chave: Teste de segurança, DevSecOps, Integração Contínua.

ABSTRACT

This study presents a comparative analysis of three Static Application Security Testing
(SAST) tools Semgrep, Bandit, and CodeQL integrated into Continuous Integration (CI)
pipelines using GitHub Actions. The goal was to evaluate their efficiency, coverage,
and accuracy in detecting vulnerabilities within a purposely vulnerable Python source
code. An experimental approach was adopted, executing each tool on the same
repository and comparing results regarding severity, types of detections, and false-
positive rates. The results demonstrated that Bandit excels in fast and direct
detections, Semgrep offers broader contextual coverage, and CodeQL provides
deeper semantic analysis through data flow tracking and reduced false positives. The
study concludes that combining multiple SAST tools enhances detection precision and
reinforces DevSecOps practices by embedding security consistently throughout the
software development lifecycle.

Keywords: Security Testing; DevSecOps; Continuous Integration.

LISTA DE ILUSTRAÇÕES

Figura 1 - Contagem de repositórios por linguagem de programação. 14

Figura 2 - Contagem de repositórios por linguagem de programação. 17

Figura 3 - Contagem de repositórios por linguagem de programação. 17

Figura 4 - Exemplo de configuração Bandit no GitHub Actions. 18

Figura 5 -Linguagens disponiveis CodeQl. 20

Figura 6 - Versão utilizada do Bandit. 22

Figura 7 - Versão utilizada do Semgrep. 23

Figura 8 - Credenciais Hardcoded. 26

Figura 9 - Injeção SQL. 27

Figura 10 - Vulnerabilidade Command Injection. 28

Figura 11 - Vulnerabilidade path traversal. 28

Figura 12 - Código desserialização insegura. 29

Figura 13 - Código vulnerabilidade eval. 30

Figura 14 - Criptografia fraca. 31

Figura 15 - Input de dados no banco sem validação. 31

Figura 16 - Detecção hardcoded credentials Bandit. 32

Figura 17 - Detecção SQL Injection Bandit. 33

Figura 18 - Detecção SQL Injection Semgrep. 34

Figura 19 - Detecção SQL Injection CodeQl. 35

Figura 20 - Detecção Command Injection Bandit. 36

Figura 21 - Detecção Command Injection Semgrep. 37

Figura 22 - Detecção Command Injection CodeQl. 38

Figura 23 - Detecção Path Traversal Semgrep. 39

Figura 24 - Detecção Path Traversal CodeQl. 40

Figura 25 - Detecção Insecure Deserialization Bandit. 42

Figura 26 - Detecção Insecure Deserialization CodeQl. 44

Figura 27 - Detecção Uso de eval Bandit. 45

Figura 28 - Detecção Uso de eval Bandit. 46

Figura 29 -Detecção Uso de eval Bandit. 47

Figura 30 - Detecção de criptografia fraca Bandit. 48

Figura 31 - Detecção de criptografia fraca Semgrep. 48

Figura 32 - Detecção de criptografia fraca CodeQl. 49

Figura 33 - Detecção de sem validação de input Bandit. 51

Figura 34 - Detecção de sem validação de input Semgrep. 51

LISTA DE QUADROS

Quadro 1 - Mapeamento das vulnerabilidades segundo OWASP 2021 e CWE. 25

SUMÁRIO

INTRODUÇÃO .. 11

1 FUNDAMENTAÇÃO TEÓRICA ... 13

1.1 Continuous Integration .. 13

1.2 Benefícios da utilização de CI ... 13

1.3 Static Application Security Testing (SAST) ... 14

1.4 Benefícios da implantação de ferramentas SAST 15

1.5 Semgrep .. 16

1.6 Bandit .. 17

1.7 CodeQL ... 19

2 DESENVOLVIMENTO .. 21

2.1 Estrutura do workflow ... 21

2.2 Configuração Inicial do Workflow. .. 21

2.3 Configuração do Ambiente de Execução ... 22

2.4 Análise com Bandit. ... 22

2.5 Análise com Semgrep .. 23

2.6 Análise com CodeQL ... 23

2.7 Armazenamento dos Artefatos ... 24

2.8 Geração do código vulnerável e metodologia de teste. 24

2.8.1 Armazenamento de senhas em texto plano. 25

2.8.2 Injeção SQL .. 26

2.8.3 Execução de comandos de sistema sem sanitização 27

2.8.4 Path traversal ... 28

2.8.5 Desserialização insegura. ... 29

2.8.6 Uso inseguro da função eval. ... 29

2.8.7 Criptografia fraca. .. 30

2.8.8 Ausência de tratamento de exceções e validação de entrada 31

3 RESULTADOS ... 32

3.1 Hardcoded Credentials .. 32

3.2 SQL Injection .. 33

3.2.1 SQL Injection Bandit ... 33

3.2.2 SQL Injection Semgrep ... 33

3.2.3 SQL Injection CodeQl .. 34

3.2.4 Conclusão SQL Injection .. 35

3.3 Command Injection .. 35

3.3.1 Command Injection Bandit ... 36

3.3.2 Command Injection Semgrep ... 36

3.3.3 Command Injection CodeQl .. 38

3.3.4 Conclusão Command Injection .. 38

3.4 Path traversal ... 39

3.4.1 Path traversal Semgrep ... 39

3.4.2 Path Traversal CodeQl .. 40

3.4.3 Conclusão path traversal .. 41

3.5 Insecure Deserialization .. 42

3.5.1 Insecure Deserialization Bandit .. 42

3.5.2 Insecure Deserialization Semgrep ... 42

3.5.3 CodeQl .. 43

3.5.4 Conclusão Insecure Desserialization .. 44

3.6 Uso de Eval ... 44

3.6.1 Bandit ... 45

3.6.2 Semgrep ... 45

3.6.3 CodeQl .. 46

3.6.4 Conclusão CWE-94 .. 47

3.7 Criptografia Fraca .. 47

3.7.1 Bandit ... 48

3.7.2 Semgrep ... 48

3.7.3 CodeQl .. 49

3.7.4 Conclusão Criptografia Fraca. .. 50

3.8 Sem validação de input ... 50

3.8.1 Bandit ... 50

3.8.2 Semgrep ... 51

3.8.3 Conclusão sem validação de input .. 51

CONSIDERAÇÕES FINAIS .. 53

REFERÊNCIAS ... 55

11

INTRODUÇÃO

Conforme o tempo passa, cada vez mais o ser humano se torna dependente

da tecnologia e, com ela, vêm também os seus riscos. A todo momento, as pessoas

estão expostas, seja navegando na internet ou utilizando um aplicativo, por exemplo,

vivendo à mercê de que as empresas cuidem devidamente da segurança dos dados

de suas aplicações.

Uma área que vem ganhando cada vez mais espaço no âmbito tecnológico e

de desenvolvimento de sistemas é Development Security and Operations

(DevSecOps), setor que enfatiza o desenvolvimento seguro e a importância de olhar

para a infraestrutura e segurança de uma aplicação desde o início de sua construção

até o momento em que ela é publicada, podendo usufruir de metodologias como

Continuous Integration (CI).

A segurança cibernética tem se mostrado uma necessidade central para

organizações ao redor do mundo, o quão complexas e escaláveis as aplicações estão

se tornando. Consequentemente, técnicas de ataques cada vez mais sofisticadas

surgem com o objetivo de explorar vulnerabilidades, podendo causar enormes

impactos financeiros, de reputação e influenciar diretamente na privacidade de dados.

No cenário atual de desenvolvimento, em que práticas de CI são amplamente

utilizadas pelas equipes para agilizar o processo de integração de soluções, é

fundamental garantir a segurança durante toda a pipeline.

Este trabalho, portanto, se justifica pela necessidade constante e crescente de

avaliar as ferramentas de segurança dentro dessas pipelines. Mostrar as principais

diferenças quanto aos resultados obtidos por ferramentas Static Application Security

Testing (SAST), por exemplo, é essencial para compreender a efetividade da

segurança no desenvolvimento de sistemas, contribuindo para a melhoria dos

processos e da efetividade das operações, visto que a utilização desses meios de

testes de segurança é fortemente recomendada por padrões de segurança como o

Open Web Application Security Project (OWASP).

No contexto da cibersegurança, é fundamental analisar o desenvolvimento das

aplicações e garantir que elas sejam devidamente testadas antes de serem

disponibilizadas para clientes. Seguindo essa ideia, tem-se como problema de

12

pesquisa: quais seriam as possíveis diferenças nos resultados obtidos por

ferramentas de teste de software estático?

Tem-se como objetivo geral, neste trabalho, analisar os resultados obtidos

através da integração de ferramentas SAST em pipelines CI, com o intuito de melhorar

a segurança no setor de desenvolvimento de sistemas, otimizando a detecção

antecipada de vulnerabilidades e problemas nas aplicações, a fim de promover

práticas de desenvolvimento seguro, bem como a integração contínua.

Dito isso, pode-se levantar algumas hipóteses relacionadas ao uso das

ferramentas SAST. Elas influenciam positivamente o desenvolvimento de sistemas,

pois, com elas, é possível manter um controle melhor sobre vulnerabilidades e erros

dentro do ambiente de desenvolvimento, a incidência desses riscos e podendo

melhorar significativamente a qualidade do código desenvolvido, garantindo assim o

desenvolvimento eficaz da aplicação, com ênfase na segurança e na agilidade da

metodologia CI.

O percurso metodológico deste trabalho foi realizar um estudo de caso que

permitiu a análise prática das ferramentas SAST em um ambiente de pipeline CI. Os

dados foram coletados por meio da execução e configuração destas ferramentas no

pipeline que simularam também o processo de integração contínua. A partir dos

resultados observados nas simulações, foi realizado uma análise comparativa, onde

pôde ser levado em consideração a precisão e capacidade de identificação de

vulnerabilidades. A escolha desse método justifica-se pela necessidade de um

ambiente controlado que permita observar diretamente o desempenho das

ferramentas no contexto de automação CI.

13

1 FUNDAMENTAÇÃO TEÓRICA

1.1 Continuous Integration

Segundo Shahin, Babar e Zhu (2017), a Integração Contínua (CI) é uma prática

do desenvolvimento de software na qual os membros de uma equipe integram

frequentemente seus códigos em um mesmo repositório, podendo realizar múltiplas

integrações ao longo de um único dia. Essa metodologia contribui para um

desenvolvimento mais rápido, com maior qualidade, aumentando a produtividade das

equipes, uma vez que está fortemente associada à execução de testes

automatizados.

1.2 Benefícios da utilização de CI

Jani (2023), traz uma lista de benefícios que devem ser considerados ao decidir

entre utilizar ou não a metodologia CI.

1. Tempo de lançamento no mercado: Realizar a automatização de tarefas

como Build, testes, processos de implantação e otimização do

desenvolvimento de novas soluções e atualizações, consequentemente,

permite que as empresas atendam as rápidas mudanças do mercado.

2. Qualidade Melhorada: Tarefas automatizadas e integração contínua de

novos códigos no ambiente de desenvolvimento, permitem a detecção e

resolução precoce de problemas, garantindo uma melhor qualidade e

confiança no sistema.

3. Redução de riscos: A implantação contínua permite mudanças mais ágeis,

com isso, consegue-se reduzir os riscos em grandes lançamentos, onde

nestes casos, a complexidade da aplicação se torna muito maior.

Conforme a pesquisa feita por Cunha, Gião, Pereira e Flores (2024), onde

foram analisados dados de criação de repositórios no GitHub entre 2012 e 2023,

realiza-se a análise de 612.557 repositórios, destes, 200.023, ou seja, 32.7% possuem

a metodologia CI integrada. Os autores também complementam dizendo sobre a

14

usabilidade desta metodologia integrado a diferentes linguagens de programação,

onde mostra um cenário vasto de oportunidades de uso, sendo que Python e

JavaScript são as linguagens que aparecem no topo do gráfico.

Figura 1 - Contagem de repositórios por linguagem de programação.

Fonte: Gião et al. (2024).

1.3 Static Application Security Testing (SAST)

“O teste de segurança é conhecido como um processo destinado a
revelar falhas nos mecanismos de segurança de um sistema de
informação que protegem os dados e mantêm a funcionalidade
conforme o esperado. Existem dois tipos principais de teste de
segurança: o teste estático e o teste dinâmico. O SAST utiliza uma
ferramenta de análise de código estático para examinar o código-fonte
e identificar possíveis vulnerabilidades ou falhas de software”
(Nguyen-Duc et al, 2021, p. 3).

A respeito de técnicas comuns utilizadas por ferramentas SAST, os autores

complementam dizendo:

1- Análise sintática, como chamadas a funções de API inseguras ou uso de

opções de configuração inseguras. Um exemplo dessa categoria seria a

15

análise de programas em Java que chamam java.util.random (que não

fornece um gerador de números aleatórios criptográficos seguro).

2- Análise semântica, que exige o entendimento das semânticas do programa,

como o fluxo de dados ou o controle de fluxo de um programa. Essa análise

começa representando o código-fonte por meio de um modelo abstrato (por

exemplo, grafo de chamadas, grafo de controle de fluxo ou diagrama de

classe/sequência UML). Um exemplo dessa categoria seria uma verificação

de fluxos diretos de dados de uma entrada de formulário de usuário para

uma instrução SQL (indicando uma vulnerabilidade potencial de injeção de

SQL).

1.4 Benefícios da implantação de ferramentas SAST

Nutalapati (2023), traz uma série de benefícios a respeito da implantação desse

tipo de ferramentas, a seguir:

1- Eficiência e velocidade

a. Como base dos benefícios estão a eficiência e velocidade da SAST,

que possui a capacidade de executar diversos testes de forma

rápida, reduzindo significativamente o tempo de descoberta de falhas

no código, prevenindo vulnerabilidades e aumentando, de modo

geral, a segurança no ambiente da aplicação.

2- Cobertura abrangente

a. As ferramentas de teste de segurança automatizado cobrem uma

ampla gama de cenários e vulnerabilidades de segurança, permitindo

testes sistemáticos contra problemas como XSS, injeção SQL,

armazenamento inseguro de dados e controles de acesso

inadequados. Isso garante uma avaliação completa da segurança do

aplicativo, reduzindo a chance de falhas críticas passarem

despercebidas.

3- Consistência e confiabilidade

a. Automatizados, esses testes oferecem resultados padronizados e

reproduzíveis, evitando os erros humanos dos testes manuais e

garantindo avaliações de vulnerabilidades confiáveis ao longo do

desenvolvimento.

16

4- Escalabilidade

a. Essas ferramentas são escaláveis, suportando testes extensivos e

repetitivos conforme a complexidade e o tamanho das aplicações

crescem, particularmente em ambientes de CI.

5- Detecção precoce de vulnerabilidade

a. Ao integrar testes de segurança desde o início do desenvolvimento,

é possível identificar e corrigir vulnerabilidades antes do lançamento,

reduzindo riscos de exploração e facilitando a correção.

6- Custo-benefício

a. Embora requeira um investimento inicial, o teste automatizado reduz

a necessidade de extensos testes manuais e os custos de incidentes

de segurança, como esforços de remediação e danos reputacionais.

7- Integração com processos de desenvolvimento

a. Esses testes podem ser integrados aos fluxos de trabalho de

desenvolvimento, especialmente em pipelines de CI, assegurando

uma avaliação contínua da segurança em tempo real.

1.5 Semgrep

Com base na documentação da ferramenta, Semgrep (2025), Semgrep Code

é um mecanismo de análise estática de códigos com uma vasta gama de linguagens

de programação possíveis de se utilizar e tem a capacidade de detecção tanto de

falhas de segurança quanto a aplicação de regras customizadas de estilo e

vulnerabilidade, caso necessário. O site da ferramenta também deixa de forma muito

explícita dizendo “You can use Semgrep Code to scan local repositories or integrate it

into your CI/CD pipeline to automate the continuous scanning of your code”

(SEMGREP, 2025), ou seja, ressaltando a capacidade e um ponto forte, que é

justamente a integração com pipelines CI para a melhora de processos de segurança

durante o desenvolvimento de software.

Para a linguagem Python, a documentação de Semgrep (2025), traz uma vasta

capacidade de detecções, como por exemplo, a Figura 2 mostra os frameworks

disponíveis para que Semgrep Code consiga realizar scans.

17

Figura 2 - Contagem de repositórios por linguagem de programação.

Fonte: Documentação Semgrep. (2025).

A ferramenta também apresenta constante evolução no contexto de melhorias

para segurança quando diz: “Semgrep's benchmarking process involves scanning

open source repositories, triaging the findings, and making iterative rule updates. This

process was developed and is used internally by the Semgrep security research team

to monitor and improve rule performance.” (Semgrep, 2025) ou seja, as equipes de

desenvolvimento de Semgrep buscam realizar scans de forma periódica em

repositórios open source a fim de melhorar os padrões de regras do Semgrep. Na

Figura 3 é apresentada uma tabela disponibilizada pela desenvolvedora do Semgrep

referente à última execução dos testes de melhoria da ferramenta.

Figura 3 - Contagem de repositórios por linguagem de programação.

Fonte: Documentação Semgrep. (2025).

1.6 Bandit

De acordo com a documentação oficial do Bandit (2024), diz que é uma

ferramenta desenvolvida com o intuito de identificar problemas e falhas em códigos

18

Python por meio da análise da árvore sintática abstrata (AST) utilizando plugins que

analisam o código com base em padrão conhecidos de segurança da informação e

geram relatórios detalhados após as verificações. A documentação mostra que, a

ferramenta é capaz de ser configurada via arquivos de configuração como YAML, e

integrado em ferramentas de pipelines CI, como o Github Actions.

O Bandit também suporta a configuração de plugins de teste de forma

individual, nos quais o usuário pode ajustar parâmetros internos de cada verificação.

Essa abordagem justamente implementada nestes arquivos de configuração em

formato YAML, possibilita alterar o comportamento de regras específicas, como o

tratamento de chamadas a comandos do sistema operacional (os.system, entre

outros) permitindo ajustar o nível de rigor da análise conforme a necessidade de

verificação por parte do usuário.

A documentação da ferramenta Bandit (2024) também traz explicações sobre

a capacidade de integrações possíveis em ambientes de pipelines CI. Onde também

é explicitado com um exemplo de código, a possibilidade do uso integrado ao Github

Actions, como mostra a Figura 4:

Figura 4 - Exemplo de configuração Bandit no GitHub Actions.

Fonte: Documentação oficial do Bandit (2025).

19

Para os resultados, a documentação Bandit (2024) traz uma ampla gama de

formatos possíveis para se exportar relatórios do Bandit após análises. Nesta lista

estão presentes os formatos csv, html, json, sarif, screen, text, xml, yaml.

1.7 CodeQL

A documentação CodeQL (2025), traz informações dizendo a respeito o foco

da ferramenta é ajudar desenvolvedores a automatização checagens de segurança e

integrar isto a seus respectivos workflows de desenvolvimento. É também uma

ferramenta altamente vasta quando se diz a quais linguagens ela pode abranger, por

exemplo JavaScript, C, C++, C#, Java e claro, Python. Sob cada linguagem, é bem

importante também notar a capacidade da ferramenta de ser aplicada frameworks,

que no caso do python nota-se uma lista com mais de 30 bibliotecas, mas por exemplo

dentre os mais conhecidos destacam-se Django, FastAPI, Flask, Pycurl, requests etc.

CodeQL funciona com base em queries que são utilizadas para encontrar

problemas em códigos fontes, problemas estes que podem estar associados a

vulnerabilidades e falhas de segurança. De acordo com a documentação oficial da

CodeQL (2025), cada query é responsável por identificar padrões de vulnerabilidades,

falhas lógicas ou comportamentos suspeitos em um determinado trecho de código. As

consultas são divididas em dois tipos principais: alert queries e path queries. As

primeiras servem para destacar trechos de código que apresentam problemas

pontuais, enquanto as segundas descrevem o fluxo de dados entre uma origem

(source) e um destino (sink), permitindo detectar vulnerabilidades de fluxo, como SQL

Injection e Cross-Site Scripting (XSS).

Para as linguagens, como mostra a Figura 5, CodeQl possui várias das mais

famosas linguagens disponíveis para uso.

20

Figura 5 -Linguagens disponiveis CodeQl.

Fonte: Documentação oficial do CodeQL (2025).

21

2 DESENVOLVIMENTO

Nesta etapa, será contextualizado o formato do desenvolvimento prático deste

trabalho. Será utilizada a ferramenta GitHub para realizar a configuração de um

repositório e através da ferramenta nativa do GitHub, chamada GitHub Actions será

construído e configurado o workflow CI.

Utilizou-se um único repositório Git com branch principal main, assegurando

que Bandit, Semgrep e CodeQL analisassem sempre o mesmo snapshot de código.

A partir deste repositório será realizado push requests para ativar os workflows.

Importante destacar que, propositalmente a fim de testes, estas push requests terá

códigos altamente vulneráveis que foram desenvolvidos na linguagem python.

2.1 Estrutura do workflow

Para a condução dos experimentos, foi definido um workflow dentro do diretório

.github/workflows/ do repositório, utilizando a ferramenta GitHub Actions para

automação das execuções.

Denominado sast_all.yml, o workflow foi estruturado com o propósito de simular

um ambiente real de integração contínua (CI) em um contexto DevSecOps, no qual

múltiplas ferramentas de análise de segurança são executadas de forma

automatizada a cada alteração no código-fonte. Esse workflow é acionado

automaticamente por eventos de push request na branch principal, e executa em

sequência as ferramentas Bandit, Semgrep e CodeQL. Ao término da execução, os

resultados são consolidados em artefatos (arquivos JSON e TXT). Tal abordagem

representa o cenário de uma pipeline corporativa, onde diferentes testes de segurança

operam simultaneamente, permitindo avaliar a integração prática dessas ferramentas

no ciclo de desenvolvimento.

2.2 Configuração Inicial do Workflow.

1. Nome e Triggers: O workflow é denominado "SAST - CodeQL + Semgrep +

Bandit" e é acionado automaticamente em três situações: quando há um push

22

para a branch main, quando uma pull request é aberta para a branch main, ou

manualmente através do workflow_dispatch.

2. Permissões: O workflow define permissões específicas de leitura para

conteúdo e ações do repositório, além de permissão de escrita para eventos

de segurança, essencial para o registro de vulnerabilidades identificadas.

3. Controle de Concorrência: Implementa um mecanismo que garante que

apenas uma execução do workflow ocorra por vez para cada referência

(branch), cancelando execuções anteriores ainda em andamento quando uma

nova é iniciada.

2.3 Configuração do Ambiente de Execução

4. Ambiente do Job: O job é executado em um ambiente Ubuntu na versão mais

recente, com um tempo limite de 30 minutos para evitar execuções indefinidas

que possam consumir recursos desnecessariamente.

5. Checkout do Código: Utiliza a action checkout@v4 para clonar o repositório e

disponibilizar o código-fonte para análise pelas ferramentas de segurança.

6. Configuração do Python: Instala o Python na versão 3.11, estabelecendo o

ambiente necessário para execução das ferramentas de análise estática que

serão utilizadas.

7. Criação do Diretório de Relatórios: Cria uma pasta dedicada chamada

"reports" onde todos os relatórios gerados pelas diferentes ferramentas serão

armazenados de forma organizada.

2.4 Análise com Bandit.

8. Instalação e Verificação: O Bandit, ferramenta especializada em identificar

problemas de segurança comuns em código Python, é instalado via pip e sua

versão é verificada para garantir a instalação correta.

Figura 6 - Versão utilizada do Bandit.

Fonte: GitHub Action (2025).

23

9. Execução da Análise: Executa o Bandit recursivamente em todo o diretório do

projeto, gerando dois formatos de relatório: JSON para processamento

automatizado e TXT para leitura humana. O comando utiliza "|| true" para

garantir que falhas não interrompam o workflow.

2.5 Análise com Semgrep

10. Instalação e Verificação: Instala o Semgrep junto com a ferramenta já para

processamento de JSON. O Semgrep é uma ferramenta de análise estática

que utiliza padrões customizáveis para identificar vulnerabilidades.

Figura 7 - Versão utilizada do Semgrep.

Fonte: GitHub Action (2025).

11. Execução com Múltiplas Configurações: Executa o Semgrep utilizando três

conjuntos de regras: regras específicas para Python (p/python), auditoria de

segurança (p/security-audit) e as dez principais vulnerabilidades da OWASP

(p/owasp-top-ten).

12. Processamento dos Resultados: Gera um relatório inicial em formato JSON

e, em seguida, utiliza o jq para extrair e formatar as informações relevantes em

um arquivo TXT legível, incluindo ID da verificação, severidade, localização e

mensagem.

2.6 Análise com CodeQL

13. Inicialização: Utiliza a action oficial do GitHub para inicializar o CodeQL,

especificando Python como linguagem alvo. O CodeQL é uma ferramenta

avançada de análise semântica de código desenvolvida pelo GitHub.

24

14. Verificação de Metadados: Executa um comando para exibir a versão da

action do CodeQL utilizada, auxiliando na rastreabilidade e resolução de

possíveis problemas.

15. Execução da Análise: Realiza a análise completa do código utilizando o

CodeQL, configurado para não fazer upload automático dos resultados e

armazenar a saída localmente no diretório de relatórios.

16. Conversão de Formatos: Converte o arquivo SARIF (formato padrão de saída

do CodeQL) para JSON e extrai informações em formato TXT, processando o

ID da regra violada e a mensagem correspondente para cada vulnerabilidade

identificada.

2.7 Armazenamento dos Artefatos

17. Upload dos Relatórios: Utiliza a action upload-artifact@v4 para armazenar

todos os relatórios gerados no workflow. A condição "if: always()" garante que

os artefatos sejam salvos mesmo se etapas anteriores falharem.

18. Configuração de Retenção: Define que os artefatos serão mantidos por 7

dias, permitindo análise posterior dos resultados enquanto gerencia o espaço

de armazenamento de forma eficiente. O artefato é nomeado "sast-reports" e

inclui todo o conteúdo do diretório reports.

2.8 Geração do código vulnerável e metodologia de teste.

Para a execução prática deste trabalho, foi desenvolvido um conjunto de

códigos propositalmente vulneráveis, com o objetivo de testar a capacidade de

detecção das ferramentas SAST integradas à pipeline. A linguagem escolhida foi

Python, por ser amplamente suportada por todas as ferramentas utilizadas (Bandit,

Semgrep e CodeQL) e possuir um ecossistema consolidado de bibliotecas e práticas

de segurança documentadas.

O código vulnerável foi criado de forma controlada, buscando representar

vulnerabilidades reais encontradas no contexto de desenvolvimento de aplicações. A

tabela 1 mostrará todas as vulnerabilidades selecionadas e as respectivas

identificadores de acordo com OWASP e CWE.

25

Quadro 1 - Mapeamento das vulnerabilidades segundo OWASP 2021 e CWE.

Vulnerabilidades OWASP 2021 CWE

Hardcoded Credentials A02:2021 Sensitive Data

Exposure

CWE-798

SQL Injection (Query por

concatenação)

A03:2021 Injection CWE-89

Command Injection A03:2021 Injection CWE-78

Path traversal A05:2021 Security

Misconfiguration

CWE-22

Insecure Deserialization A05:2021 Security

Misconfiguration

CWE-502

Uso de eval() - RCE A03:2021 Injection CWE-94

Criptografia fraca A02:2021 Sensitive Data

Exposure

CWE-327

Sem validação de input A01:2021 Input Validation CWE-20

Fonte: Adaptado de OWASP (2021) e MITRE CWE (2024)

2.8.1 Armazenamento de senhas em texto plano.

Manter credenciais diretamente no código-fonte expõe informações sensíveis

e facilita o vazamento de segredos em repositórios públicos, logs ou pipelines. A

OWASP (2025), explica que essa vulnerabilidade pode comprometer ambientes de

produção caso o código seja compartilhado ou comprometido.

De acordo com a OWASP (2025), credenciais nunca devem ser armazenadas

em código-fonte. Recomenda-se utilizar secret managers (como AWS Secrets

Manager, Hashicorp Vault ou GitHub Actions Secrets) e aplicar rotação periódica de

segredos.

26

Figura 8 - Credenciais Hardcoded.

Fonte: Desenvolvido pelo autor (2025).

2.8.2 Injeção SQL

A OWASP (2025) explica que a vulnerabilidade de SQL Injection ocorre quando

comandos SQL são construídos dinamicamente a partir de entradas do usuário sem

qualquer validação ou parametrização, permitindo que um atacante modifique a

consulta original e execute comandos arbitrários no banco de dados. No código

utilizado neste estudo, o endpoint /user constrói a query por concatenação direta

("SELECT * FROM users WHERE id = {user_id}") e o endpoint /update atualiza

registros concatenando user_input, demonstrando cenários clássicos de injeção

(OWASP A03:2021 — Injection; CWE-89). O impacto inclui vazamento massivo de

dados, alteração ou exclusão de registros, elevação de privilégios e possível tomada

completa do servidor de banco de dados.

Como mitigação, a OWASP (2025) recomenda o uso de prepared

statements/queries parametrizadas (por exemplo, cursor.execute("SELECT * FROM

users WHERE id = ?", (user_id,))), validação estrita de tipos/formatos de entrada (ex.:

aceitar somente inteiros para id) e políticas de mínimos privilégios no usuário do

banco. Essas medidas reduzem drasticamente a superfície de ataque e permitem

atribuir com precisão qualquer achado da ferramenta SAST ao trecho vulnerável.

27

Figura 9 - Injeção SQL.

Fonte: Desenvolvido pelo autor (2025).

2.8.3 Execução de comandos de sistema sem sanitização

Determinadas funções, de acordo com a OWASP, permitem a execução de

comandos do sistema operacional. Quando combinadas com entradas externas não

validadas, tornam-se vetores para Command Injection, permitindo que o atacante

execute comandos arbitrários no servidor. Essa vulnerabilidade é classificada pela

OWASP como Injection (A03:2021).

A OWASP recomenda evitar a execução direta de comandos, preferindo APIs

de alto nível. Se for inevitável, deve-se usar lista de argumentos totalmente

controladas, sanitização rigorosa, e nunca concatenar strings vindas do usuário.

28

Figura 10 - Vulnerabilidade Command Injection.

Fonte: Desenvolvido pelo autor (2025).

2.8.4 Path traversal

É a falha que permite que um invasor acesse arquivos arbitrários do sistema

ao manipular entradas que representam caminhos de ficheiros (por exemplo,

../../etc/passwd). No exemplo prático do repositório, o endpoint /file abre diretamente

o caminho informado por filename sem normalização ou confinamento, expondo assim

qualquer arquivo legível pelo processo da aplicação (OWASP A05:2021 — Security

Misconfiguration; CWE-22). As consequências incluem divulgação de arquivos

sensíveis (configurações, chaves, credenciais), informação que facilita ataques

subsequentes e, em casos extremos, modificação de arquivos se houver escrita.

A mitigação recomendada envolve restringir a leitura/escrita a um diretório

específico (chroot-like ou verificar os.path.commonpath), normalizar e validar o

caminho (remover .. e caracteres inesperados) e, quando possível, mapear nomes

lógicos (IDs) para arquivos reais em vez de aceitar caminhos arbitrários. Implementar

essas proteções também facilita a detecção de falsos positivos nas ferramentas

SAST, pois o padrão inseguro fica mais simples de identificar.

Figura 11 - Vulnerabilidade path traversal.

Fonte: Desenvolvido pelo autor (2025).

29

2.8.5 Desserialização insegura.

Ocorre quando um objeto serializado recebido de fonte externa é desserializado

sem validação, possibilitando a execução de código arbitrário ou instância de classes

maliciosas no contexto da aplicação. No código analisado, o endpoint /load chama

pickle.loads(data.encode()) sobre dados recebidos externamente — uso que é

notoriamente perigoso em Python, já que pickle pode executar funções arbitrárias

durante a desserialização (OWASP A05:2021 — Security Misconfiguration; CWE-

502). O impacto típico inclui execução remota de código (RCE), escalonamento de

privilégios e comprometimento total do servidor da aplicação.

As principais mitigações de acordo com a OWASP, consistem em não utilizar

pickle para dados não confiáveis, optar por formatos seguros (JSON, por exemplo),

aplicar whitelist de tipos esperados ao desserializar, ou utilizar mecanismos de

desserialização com validação e sandboxing. Quando a aplicação exige serialização

rica, é recomendado empregar bibliotecas que implementem mecanismos explícitos

de segurança e exigir assinatura/assinatura HMAC dos blobs serializados para

garantir integridade e origem.

Figura 12 - Código desserialização insegura.

Fonte: Desenvolvido pelo autor (2025).

2.8.6 Uso inseguro da função eval.

A vulnerabilidade de Code Injection ocorre quando código malicioso é injetado

e executado pela aplicação, explorando o tratamento inadequado de dados não

confiáveis. Segundo a OWASP, este tipo de ataque é possível devido à falta de

validação adequada de entrada e saída de dados, incluindo verificação de caracteres

permitidos, formato de dados e quantidade esperada de informações.

30

A função eval é particularmente perigosa, pois executa dinamicamente uma

string como código na linguagem de programação utilizada. Quando essa função

recebe dados controlados pelo usuário sem validação apropriada, abre-se caminho

para RCE, permitindo que atacantes executem comandos arbitrários no sistema.

Figura 13 - Código vulnerabilidade eval.

Fonte: Desenvolvido pelo autor (2025).

2.8.7 Criptografia fraca.

A OWASP (2025), explica que o uso de algoritmos criptográficos fracos para

hashing de senhas ou proteção de dados sensíveis compromete a resistência a

ataques de força bruta e a tabelas arco-íris. No código disponibilizado, a função

weak_hash utiliza hashlib.md5 para derivar um “hash” de senha, prática inadequada

para armazenamento de credenciais (OWASP A02:2021 — Sensitive Data Exposure;

CWE-327). MD5 é considerado criptograficamente quebrável e não provê resistência

suficiente contra ataques modernos; senhas hashed com MD5 são rapidamente

recuperáveis.

A mitigação adequada, de acordo com a OWASP é empregar algoritmos e

derivações de chave projetados para senhas: bcrypt, scrypt, argon2 ou, quando

necessário, pbkdf2_hmac com salt único por senha e parâmetros de iteração

elevados. Além disso, nunca se deve armazenar segredos hardcoded (ver parágrafo

já existente) e é importante combinar hashing seguro com políticas de salting,

throttling de tentativas de login e armazenamento em repositórios protegidos.

31

Figura 14 - Criptografia fraca.

Fonte: Desenvolvido pelo autor (2025).

2.8.8 Ausência de tratamento de exceções e validação de entrada

A falta de validação dos dados fornecidos pelo usuário pode resultar em

crashes, vazamento de informações e comportamentos inesperados. Além disso, a

ausência de tratamento de exceções (try/except) facilita a exposição de erros internos

ao usuário, o que pode ser explorado para engenharia reversa ou ataques de

enumeração. Essa categoria está relacionada ao Security Misconfiguration

(A05:2021) e à Input Validation (A01:2021 – Broken Access Control).

Para mitigação, a OWASP recomenda:

 validação positiva (“allowlist”),

 verificação de tipos, tamanhos e formatos,

 tratamento adequado de exceções,

 mensagens de erro genéricas para o usuário.

Figura 15 - Input de dados no banco sem validação.

Fonte: Desenvolvido pelo autor (2025).

32

3 Resultados

Neste capítulo, foi abordada a execução das ferramentas mencionadas no

capítulo anterior, sobre o código malicioso que foi desenvolvido para teste. O objetivo

principal é adicionar os resultados obtidos por cada ferramenta em cada uma das

vulnerabilidades propostas.

A abordagem tomada neste capítulo será na mesma sequência que foi

desenvolvido o capítulo anterior, será passado por cada vulnerabilidade de forma

única e dissertado sobre cada resultado obtido por cada ferramenta.

3.1 Hardcoded Credentials

O uso de credenciais escritas diretamente no código-fonte representa um alto

risco à segurança. De acordo com os testes feitos, apenas a ferramenta Bandit foi

capaz de detectá-lo, como é possível observar na Figura 16.

Figura 16 - Detecção hardcoded credentials Bandit.

Fonte: Desenvolvido pelo autor (2025).

O Bandit possui regras nativas hardcoded_password_string para detectar

strings sensíveis. Semgrep e CodeQL não sinalizaram, possivelmente por ausência

de regras específicas de secrets scanning no ruleset usado. A partir da análise dos

arquivos de resultados, pode-se concluir que o Bandit apresentou uma classificação

true positive (TP), enquanto Semgrep e CodeQl resultaram em false negative (FN).

33

3.2 SQL Injection

Dentro das análises para SQL Injection, todas as três ferramentas obtiveram

sucesso na detecção. Podendo-se confirmar com base nas Figuras 17, 18 e 19 sendo

que, são os resultados de Bandit, Semgrep e CodeQl, respectivamente.

3.2.1 SQL Injection Bandit

De acordo com a Figura 17, o Bandit detectou com o identificador interno da

ferramenta B608, identificador este que está diretamente ligado à possibilidade do

vetor de ataque de SQL Injection. Severidade média e confiança baixa, conclui-se que,

apesar da detecção, a ferramenta atribuiu um certo grau de incerteza quanto ao

contexto deste teste executado.

Figura 17 - Detecção SQL Injection Bandit.

Fonte: Desenvolvido pelo autor (2025).

3.2.2 SQL Injection Semgrep

Semgrep por sua vez gerou duas detecções para esta vulnerabilidade, como

mostra a figura 18.

A primeira foi denominada python.django.security.injection.sql.sql-injection-

using-db-cursor-execute.sql-injection-db-cursor-execute e foi detectada na linha 47 do

código, justamente o trecho que foi mostrado no capítulo 3 e foi classificada como

Warning e corresponde a um alerta genérico para situações em que dados

controlados pelo usuário são passados diretamente ao método execute.

Essa regra tem como foco aplicações Django, porém, por falar sobre um padrão

comum em consultas SQL quando são construídas manualmente, também acabou se

aplicando no caso de teste do código analisado. O aviso enfatiza o risco de exposição

de informações sensíveis devido à ausência de parametrização e recomenda o uso

34

do método QuerySet ou mecanismos ORM com query parameterization, que eliminam

a vulnerabilidade.

Já a segunda detecção foi denominada python.flask.security.injection.tainted-

sql-string.tainted-sql-string, apresentou nível de severidade Error, que é uma

característica de um risco mais alto. Essa detecção refere-se ao uso explícito de

interpolação de strings (via f-string) na construção de uma query SQL no contexto de

uma aplicação Flask, prática considerada insegura por permitir que dados não

sanitizados sejam incorporados diretamente ao comando SQL.

O relatório sugere como mitigação o uso de consultas parametrizadas —

disponíveis por padrão em diversos motores de banco de dados — ou a adoção de

bibliotecas ORM, como o SQLAlchemy, que abstraem e previnem esse tipo de falha.

Figura 18 - Detecção SQL Injection Semgrep.

Fonte: Desenvolvido pelo autor (2025).

3.2.3 SQL Injection CodeQl

O CodeQL também identificou a vulnerabilidade de injeção de SQL no código

de teste, classificando-a sob o identificador de regra py/sql-injection.

Essa regra pertence ao conjunto de consultas de segurança para Python e tem

como objetivo detectar situações em que consultas SQL são construídas a partir de

dados controlados pelo usuário, sem o devido processo de sanitização ou uso de

parâmetros preparados.

Na prática, o CodeQL analisou o fluxo de dados desde a origem (função que

recebe a requisição do usuário) até o ponto em que o valor é interpolado na string

SQL. Esse mecanismo de rastreamento de tainted data flow permite identificar

vulnerabilidades que não dependem apenas de pattern matching, mas da propagação

real de variáveis inseguras dentro da aplicação.

O relatório gerado aponta que a consulta SQL é construída diretamente com

dados não tratados, utilizando interpolação de string (f-string) e o método execute, o

que torna possível a injeção de comandos arbitrários por um atacante.

35

Além de apresentar a vulnerabilidade, a própria consulta py/sql-injection

fornece uma explicação detalhada e recomendações de mitigação, destacando a

importância de utilizar parâmetros de consulta (prepared statements) ou bibliotecas

ORM, como o SQLAlchemy, para evitar que o dado do usuário seja concatenado

diretamente ao comando SQL.

Figura 19 - Detecção SQL Injection CodeQl.

Fonte: Desenvolvido pelo autor (2025).

3.2.4 Conclusão SQL Injection

Com estas informações, é possível classificar os resultados obtidos como TP,

dado que, todas as 3 ferramentas foram devidamente capazes de detectar a

vulnerabilidade, e devidamente explicadas cada um dentro dos critérios da

ferramenta.

3.3 Command Injection

Para esta vulnerabilidade, as três ferramentas obtiveram sucesso no teste e

foram capazes de detectá-la. Neste parágrafo será destrinchado e dissertado de forma

individual cada resultado.

36

3.3.1 Command Injection Bandit

O relatório do Bandit identificou um problema de Command Injection na

chamada a um processo do sistema operacional a partir de dados controlados pelo

usuário. No log do Bandit o achado aparece da seguinte forma como mostra a Figura

20:

Figura 20 - Detecção Command Injection Bandit.

Fonte: Desenvolvido pelo autor (2025).

O Bandit classifica esse tipo de detecção como alta severidade por se tratar de

um vetor clássico de command injection (CWE-78). A regra B605 detecta chamadas

que executam comandos em shell (por exemplo os.system, subprocess.call com

shell=True, os.popen) em que o comando contém valores interpolados diretamente

vindos do usuário. Nesse caso, a variável host (proveniente de uma requisição) é

concatenada/interpolada numa f-string e passada ao os.system, permitindo que um

atacante injete argumentos ou comandos adicionais (por exemplo rm -rf / ou && curl

http://malicious), com potencial execução arbitrária no servidor. O alto nível de

confiança informado pelo Bandit indica que o padrão detectado é claro (uso direto de

os.system com entrada dinâmica) e dificilmente se trata de um falso positivo no

contexto apresentado.

3.3.2 Command Injection Semgrep

O Semgrep produziu quatro alertas relacionados ao trecho que executa

comandos do sistema operacional com dados controlados pelo usuário (linhas 64–67

de app.py). As regras cobrem tanto contextos específicos de framework

(Django/Flask) quanto verificações genéricas da linguagem. A figura 14 mostra

exatamente como foi estas detecções:

37

Figura 21 - Detecção Command Injection Semgrep.

Fonte: Desenvolvido pelo autor (2025).

3.3.2.1 Detecções

A detecção um de Semgrep para esta vulnerabilidade verifica o uso da

biblioteca “os” utilizando o comando os.system e recebendo dados da requisição. Esta

detecção ocorre justamente por conta da variável proveniente do request fluir

diretamente para o os.system, o que caracteriza a possibilidade de command

injection, o que foi caracterizada como alto risco de acordo com a CWE-78. Semgrep

deixa como recomendação caso isso realmente precise ser feito, utilizar o módulo

“subprocess” e passar os argumentos em formato de lista.

A detecção dois observou o mesmo padrão inseguro para a vulnerabilidade

CWE-78, porém agora com o ruleset específico para o framework flask, novamente

deixando como recomendação caso isso seja necessário, utilizar o módulo

subprocess e os dados serem passados em formato de lista.

A terceira detecção segue o mesmo padrão, contudo, esta foi feita com base

no ruleset do Semgrep feita para a linguagem python, diferentemente das outras que

são rulesets para frameworks especificos (django e flask respectivamente). E

repetindo as recomendações de mitigação com uso de subprocess.

Já a quarta detecção diz que, se o conteúdo formatado vier (ou puder vir) de

usuário, pode abrir margem para XSS; aqui aparece como audit (aviso) porque

depende do contexto. Deixa-se como recomendação renderizar a resposta via

template engine ao invés de render_template.

O Semgrep cobriu o caso com redundância saudável (regras Django, Flask e

linguagem) e classificou corretamente com ERROR os pontos que expõem execução

de comando. Essa multiplicidade de regras aumenta a cobertura e a confiabilidade da

detecção, apontando tanto o ponto crítico (os.system) quanto a boa prática de saída

(evitar formatar e retornar strings diretamente).

38

3.3.3 Command Injection CodeQl

O CodeQL sinalizou o uso de cadeias de comando controladas externamente,

classificado como error (nível alto). A regra py/command-line-injection detecta pontos

do código onde dados de usuário fluem para funções que executam comandos ou

interpretam código (por exemplo, os.system, subprocess.* com entrada dinâmica,

exec/eval), permitindo que o atacante altere o significado do comando. A

vulnerabilidade se relaciona diretamente às classificações CWE-78 (OS Command

Injection) e CWE-88 (Argument Injection).

Figura 22 - Detecção Command Injection CodeQl.

Fonte: Desenvolvido pelo autor (2025).

A query py/command-line-injection do CodeQL demonstrou elevada precisão

por rastrear o dado contaminado até o ponto de execução do comando, oferecendo

recomendações prescritivas (allowlist, subprocess sem shell e validação). Isso reduz

falsos positivos típicos de regras puramente sintáticas e reforça o CodeQL como

ferramenta muito eficaz para detectar Command Injection em aplicações Python.

3.3.4 Conclusão Command Injection

Pode-se conclui que a vulnerabilidade Command Injection, correlacionada pela

CWE-78, foi plenamente identificada pelas três soluções de análise estática, com o

39

CodeQL destacando-se pela profundidade da inspeção e rastreamento de fluxo, o

Semgrep pela cobertura de regras contextualizadas por framework, e o Bandit pela

simplicidade e precisão na identificação de padrões diretos.

Esse resultado evidencia que a combinação das ferramentas potencializa a

detecção e validação cruzada de falhas críticas de segurança em pipelines de CI/CD

voltados a aplicações Python.

3.4 Path traversal

Neste parágrafo será dissertado sobre os resultados das três soluções de

análise estática para a vulnerabilidade path traversal. Pôde-se observar que apenas

Semgrep e CodeQl obtiveram algum tipo de resultado quanto a presença desta falha

de segurança, enquanto nos testes com Bandit, ela passou de forma despercebida

pela ferramenta.

3.4.1 Path traversal Semgrep

O Semgrep gerou dois alertas distintos referentes à vulnerabilidade de Path

Traversal, ambos relacionados ao uso da função open com dados provenientes

diretamente da requisição do usuário. Os avisos estão localizados nas linhas 74 e 76

do arquivo app.py, e foram classificados respectivamente como Warning e Error.

Figura 23 - Detecção Path Traversal Semgrep.

Fonte: Desenvolvido pelo autor (2025).

3.4.1.1 Detecções

A primeira detecção registrada, tem foco em aplicações Django e foi

categorizada como Warning. Ela mostra que o código realiza a abertura de um arquivo

(open) utilizando valores controlados externamente, sem qualquer mecanismo de

validação ou sanitização. Esse padrão expõe a aplicação ao risco de leitura de

40

arquivos arbitrários no sistema, especialmente quando o usuário consegue manipular

o caminho do arquivo (por exemplo, utilizando o padrão ../../etc/passwd).

A segunda detecção foi classificada como Error, corresponde ao mesmo

problema, mas no contexto de aplicações Flask. Essa redundância de regras é

proposital e reflete a capacidade do Semgrep de aplicar políticas específicas para

diferentes frameworks, aumentando a cobertura e a precisão de detecção.

Ambas as regras trazem recomendações diretas de mitigação, sugerindo o uso

de funções como os.path.abspath(), os.path.realpath() ou da biblioteca pathlib para

normalizar e restringir os caminhos acessíveis, além de validar rigorosamente os

nomes de arquivos permitidos antes de realizar a leitura.

3.4.2 Path Traversal CodeQl

O CodeQL identificou a vulnerabilidade de Path Traversal no código de teste

através da regra py/path-injection, classificada com nível Error.

Figura 24 - Detecção Path Traversal CodeQl.

Fonte: Desenvolvido pelo autor (2025).

41

Essa query faz parte do conjunto de análises voltadas à integridade de acesso

ao sistema de arquivos em aplicações Python e tem como objetivo detectar o uso de

dados não controlados na construção de caminhos de arquivo.

De acordo com a descrição do arquivo gerado pela ferramenta, o alerta é

emitido quando informações fornecidas por usuários são utilizadas diretamente na

formação de um caminho de arquivo, sem validação, sanitização ou normalização

adequadas. Essa prática permite que um atacante acesse, modifique ou exponha

recursos inesperados do servidor, como diretórios fora da área permitida da aplicação.

O comportamento foi corretamente identificado nas linhas 74–76 do arquivo

app.py, onde o parâmetro recebido da requisição é utilizado na função open() sem

qualquer tipo de restrição.

 Esse cenário representa o risco descrito pelo CWE-22 (Improper Limitation of

a Pathname to a Restricted Directory) e pelo CWE-23 (Relative Path Traversal),

ambos relacionados à manipulação indevida de caminhos de arquivos.

A query py/path-injection recomenda explicitamente validar o input do usuário

antes de utilizá-lo na construção do caminho. Entre as práticas sugeridas estão:

1. Usar funções de validação como werkzeug.utils.secure_filename, amplamente

empregada em aplicações Flask;

2. Restringir caracteres e símbolos proibidos, como "/", "\", ".." e múltiplos pontos;

3. Evitar depender apenas de substituição de sequências (../), pois ainda podem

permitir travessias relativas;

4. Implementar allowlists de nomes de arquivos ou extensões válidas;

5. Normalizar o caminho antes de validar, utilizando os.path.normpath() ou

pathlib.Path.resolve().

3.4.3 Conclusão path traversal

A vulnerabilidade de Path Traversal foi corretamente identificada por duas das

três ferramentas analisadas Semgrep e CodeQL, enquanto o Bandit não apresentou

qualquer detecção relacionada a esse tipo de falha. De modo geral, a combinação dos

resultados obtidos indica que, para vulnerabilidades do tipo Path Traversal,

ferramentas baseadas em análise semântica e contextual, como o Semgrep e o

CodeQL, oferecem desempenho superior e maior profundidade de análise. Já o

42

Bandit, apesar de eficiente para casos mais diretos, não apresentou cobertura

suficiente para esse tipo de falha.

Conclui-se, portanto, que as ferramentas Semgrep e CodeQL apresentaram

TPs consistentes para o caso de Path Traversal, enquanto o Bandit apresentou FN,

não reconhecendo a vulnerabilidade existente.

3.5 Insecure Deserialization

Para esta vulnerabilidade, as três ferramentas obtiveram sucesso na detecção

e neste parágrafo será mostrado de forma unitária o que cada uma retornou.

3.5.1 Insecure Deserialization Bandit

O Bandit identificou a vulnerabilidade de desserialização insegura por meio da

regra B301:blacklist, classificada com severidade média e alta confiança, conforme

trecho localizado na linha 87 do arquivo app.py.

Figura 25 - Detecção Insecure Deserialization Bandit.

Fonte: Desenvolvido pelo autor (2025).

O alerta faz referência direta ao CWE-502 (Deserialization of Untrusted Data),

indicando que o uso da função pickle.loads() com dados provenientes de fontes

externas representa um risco elevado de execução arbitrária de código.

 A regra B301 pertence à categoria de blacklists de chamadas inseguras, que

identificam o uso de funções e bibliotecas conhecidas por introduzir vulnerabilidades

críticas, mesmo sem análise contextual do fluxo de dados.

O Bandit destaca que módulos como pickle permitem que objetos arbitrários

sejam reconstruídos a partir de dados serializados, o que possibilita que um atacante

injete instruções maliciosas executadas durante o processo de desserialização.

3.5.2 Insecure Deserialization Semgrep

43

O Semgrep também detectou a vulnerabilidade em duas regras distintas,

ambas na linha 87 de app.py.

A primeira regra foi classificada como Error, identifica a presença de uma

biblioteca de desserialização insegura utilizada em uma rota Flask. Ela alerta que

bibliotecas como pickle podem permitir RCE se dados de usuário forem passados

diretamente à função loads().

Já a segunda regra foi categorizada como Warning, reforça a recomendação

de evitar o uso de pickle e sugere o emprego de alternativas seguras como

json.loads() ou yaml.safe_load().

A existência de duas regras sobre o mesmo ponto demonstra a abordagem

redundante e detalhada do Semgrep, que visa cobrir tanto contextos de frameworks

específicos quanto práticas inseguras da linguagem em geral.

Em ambas as detecções, o Semgrep também forneceu orientações claras de

mitigação: substituir a biblioteca de desserialização por alternativas seguras, restringir

a entrada de dados e, se necessário, validar rigorosamente o conteúdo recebido antes

do processamento.

3.5.3 CodeQl

O CodeQL detectou a mesma vulnerabilidade através da query py/unsafe-

deserialization, classificada com nível Error e mapeada para o CWE-502.

A regra identifica cenários em que dados controlados por usuário são

desserializados diretamente usando frameworks que permitem reconstruir objetos

arbitrários, como Pickle, Marshal e YAML, resultando em alto risco de execução de

código arbitrário. Diferente das outras ferramentas, o CodeQL realiza uma análise

semântica de fluxo de dados, rastreando o valor recebido de fontes externas até o

ponto de desserialização. O relatório do CodeQL inclui uma explicação detalhada e

um exemplo prático, mostrando o caso inseguro pickle.loads e a alternativa segura

json.loads(request_data).

44

Figura 26 - Detecção Insecure Deserialization CodeQl.

Fonte: Desenvolvido pelo autor (2025).

 A ferramenta recomenda, sempre que possível, evitar completamente a

desserialização de dados não confiáveis. Caso o uso de bibliotecas seja

indispensável, deve-se preferir funções seguras como yaml.safe_load() e aplicar

validações rígidas.

3.5.4 Conclusão Insecure Desserialization

As três ferramentas analisada, Bandit, Semgrep e CodeQL identificaram

corretamente a vulnerabilidade de desserialização insegura, presente na linha 87 do

arquivo app.py, onde a função pickle.loads() é utilizada para processar dados

recebidos de forma direta e sem validação. demonstrando maturidade e eficácia tanto

das regras baseadas em padrões de Bandit e Semgrep quanto da análise semântica

aprofundada oferecida pelo CodeQL, que se destaca na interpretação do fluxo de

dados e na precisão da análise contextual.

3.6 Uso de Eval

Para a vulnerabilidade apontada como CWE-94, foi obtido resultado de todas

as três ferramentas, e neste parágrafo será explicado qual resultado foi obtido por

estas ferramentas.

45

3.6.1 Bandit

O Bandit identificou a vulnerabilidade associada ao uso da função eval() na

linha 97 do arquivo app.py, classificando-a pela regra B307:blacklist, com severidade

média e alta confiança.

Figura 27 - Detecção Uso de eval Bandit.

Fonte: Desenvolvido pelo autor (2025).

Essa regra alerta para o uso de funções potencialmente inseguras como eval()

e exec(), estas falhas podem permitem a execução dinâmica de expressões

controladas externamente. O Bandit associa esse comportamento ao CWE-78, pois,

embora o eval() execute código Python e não comandos do sistema diretamente, o

impacto final é equivalente a uma injeção de comando, já que o invasor pode executar

instruções arbitrárias que comprometem a integridade do sistema. No trecho

analisado, o conteúdo da variável expression, proveniente de entrada de usuário, é

avaliado diretamente pela função eval(), sem qualquer sanitização ou validação

prévia. Isso abre a possibilidade de RCE, uma das falhas mais críticas em aplicações

Python.

3.6.2 Semgrep

O Semgrep também identificou a vulnerabilidade de execução arbitrária por

meio de três regras distintas, localizadas nas linhas 95 e 97 do arquivo app.py.

Por meio de duas destas três regras, o Semgrep notificou como Warning a

possibilidade de existência desta vulnerabilidade, pois apenas detectando o eval ele

já foi capaz de identificar o risco. Por outro lado, na terceira regra, e de mais

necessidade de visibilidade, ele gerou um alerta como Error dado que, identificou

46

dados externos fluindo para dentro do método eval, justamente gerou como Error pois

isto se caracteriza a presença nítida da vulnerabilidade.

Figura 28 - Detecção Uso de eval Bandit.

Fonte: Desenvolvido pelo autor (2025).

Conclui-se como TP o resultado de Semgrep para esta vulnerabilidade dado

que, ele foi capaz não apenas de notificar a possibilidade e com isso recomendações

para evitá-la, como também notificar de forma clara a presença dela no código.

3.6.3 CodeQl

O CodeQL detectou a mesma vulnerabilidade por meio da query py/code-

injection, classificada como Error e mapeada para os identificadores CWE-94 (Code

Injection) e CWE-95 (Improper Neutralization of Directives in Dynamically Evaluated

Code). A regra define o problema como a interpretação de entrada não sanitizada

como código, o que permite que usuários maliciosos executem comandos arbitrários.

Segundo a descrição oficial, isso ocorre quando a aplicação inclui diretamente

dados de usuário em uma expressão avaliada por funções como eval() ou exec(), sem

qualquer tratamento.

47

Figura 29 -Detecção Uso de eval Bandit.

Fonte: Desenvolvido pelo autor (2025).

O exemplo fornecido na documentação demonstra como um valor passado ao

exec() pode ser manipulado para executar instruções arbitrárias, reforçando o risco

de RCE.

Assim, a detecção do CodeQL também foi classificada como TP, confirmando

a presença e gravidade da vulnerabilidade.

3.6.4 Conclusão CWE-94

As três ferramentas Bandit, Semgrep e CodeQL identificaram corretamente a

vulnerabilidade de execução de código arbitrário no uso da função eval() com dados

externos. As três ferramentas convergiram quanto à natureza e à gravidade da

vulnerabilidade, classificando-a como TP.

 Essa coerência reforça que o uso de eval() com dados não validados constitui

uma falha crítica de segurança e deve ser totalmente evitado em ambientes de

produção, sendo substituído por métodos seguros e restritivos como ast.literal_eval()

ou por lógicas de conversão controladas.

3.7 Criptografia Fraca

48

Para esta vulnerabilidade, as três ferramentas foram capazes de realizar

detecções, será destrinchado individualmente neste parágrafo sobre estes resultados

obtidos e quais conclusões pôde-se tomar.

3.7.1 Bandit

Por meio da regra B324:hashlib interna da ferramenta, o Bandit detectou o

algoritmo hash MD5 sendo utilizado no código-fonte, algo que já é considerado

ultrapassado quando o assunto é segurança em senhas. Este evento detectado foi

considerado de alta confiança, alta severidade e associado à CWE-327 pela

ferramenta.

Figura 30 - Detecção de criptografia fraca Bandit.

Fonte: Desenvolvido pelo autor (2025).

A função hashlib.md5(password.encode()).hexdigest() é utilizada para calcular

o hash de uma senha, conforme indicado pelo comentário do próprio código. O Bandit

considerou esta prática insegura, dado o fato que este algoritmo atualmente, já é

obsoleto e vulnerável a ataques de colisão e força bruta. Sendo assim, incapaz de

garantir a base da segurança, confidencialidade e integridade destes dados.

3.7.2 Semgrep

O Semgrep por meio de duas de suas regras internas, observou o uso desta

fraca criptografia presente no código:

Figura 31 - Detecção de criptografia fraca Semgrep.

Fonte: Desenvolvido pelo autor (2025).

49

A primeira regra detectou a presença de um algoritmo MD5 e foi sinalizada

como warning, pois até então, o Semgrep apenas o analisou como um algoritmo

inseguro, e por enquanto não levou em consideração que ele estaria sendo utilizado

como método de criptografia para senhas. Como recomendação a ferramenta trouxe

os modelos SHA 256 ou SHA 3.

Por outro lado, na segunda regra, o Semgrep foi direto ao ponto principal da

questão, a utilização deste algoritmo na criptografia de senhas, trazendo pontos

importantes sobre a vulnerabilidade em questão, no caso, dizendo que este algoritmo

não é seguro o suficiente contra ataques simples como o de colisão e pode ser

quebrado facilmente pelo atacante em um período curto. Para recomendações, a

ferramenta trouxe a possibilidade de usar funções hashes especificas e seguras para

senhas como a scrypt podendo utilizar a biblioteca “hashlib.scrypt”.

3.7.3 CodeQl

O CodeQL foi capaz de identificar a vulnerabilidade por meio da regra interna

da ferramenta py/weak-sensitive-data-hashing, classificada como Warning e

classificada para os identificadores CWE-327 e CWE-328.

Figura 32 - Detecção de criptografia fraca CodeQl.

Fonte: Desenvolvido pelo autor (2025).

50

Esta regra explica como o uso de algoritmos fracos podem comprometer a

integridade de dados altamente sensíveis, neste caso ele explica a fraqueza quando

são utilizados em contextos de autenticação, assinaturas digitais e no caso utilizado

como exemplo neste trabalho, armazenamento de senhas. O CodeQL faz uma análise

contextual que distingue usos de hashes seguros e inseguros, sinalizando apenas

quando o algoritmo é aplicado sobre dados sensíveis.

A ferramenta recomenda o uso de funções criptográficas robustas como SHA-

256, SHA-3 e, para senhas, o uso de algoritmos ainda mais seguros para estes tipos

de dados, como Argon2, bcrypt, scrypt ou PBKDF2.

3.7.4 Conclusão Criptografia Fraca.

Pôde-se concluir por meio das análises dos relatórios destas ferramentas

testadas, que todas obtiveram o resultado TP, ainda que, cada ferramenta trouxe sua

forma individual de explicação e recomendação.

O Bandit apresentou a detecção direta ao ponto, com alta severidade e

confiança, destacando o uso indevido de MD5 como função de hash para senhas. O

Semgrep reforçou o achado por meio de duas regras complementares, abordando

tanto a fragilidade do algoritmo quanto o contexto de uso em senhas

CodeQl além de trazer recomendações de outros algoritmos para criptografia,

foi capaz ainda de realizar recomendações de algoritmos ainda mais robustos quando

o assunto tratar de senhas e outros tipos de dados altamente sensíveis.

3.8 Sem validação de input

Nesta vulnerabilidade duas das três ferramentas foram capazes de realizar

detecções quanto a vulnerabilidades no trecho do código, contudo, ocorreram

algumas detecções diferentes por partes de cada uma, onde será dissertado de forma

individual quais foram.

3.8.1 Bandit

O Bandit realizou a detecção de uma construção de instrução SQL via

interpolação de strings com conteúdo controlado pelo usuário.

51

Figura 33 - Detecção de sem validação de input Bandit.

Fonte: Desenvolvido pelo autor (2025).

Este padrão foi classificado pela ferramenta como possível SQL injection, pois

o usuário pode manipular diretamente o conteúdo da variável “user_input” que será

passado diretamente na query de update do SQL.

3.8.2 Semgrep

O semgrep por meio de duas regras internas foi capaz de detectar

vulnerabilidades neste mesmo trecho de código:

Figura 34 - Detecção de sem validação de input Semgrep.

Fonte: Desenvolvido pelo autor (2025).

A primeira regra sinalizou que dados controlados pelo usuário chegam a

execute() é um alerta genérico com sugestão de usar QuerySets/ORM do Django para

parametrização automática. A classificação Warning indica que é um padrão perigoso,

mas depende do contexto.

Já a segunda regra detectou especificamente a construção manual da string

SQL usando o input do usuário. Essa regra é mais decisiva quanto à vulnerabilidade

existente e classifica como Error, que identifica a prática de montar a query

manualmente.

3.8.3 Conclusão sem validação de input

Houve resultados significativos por parte de Bandit e Semgrep para os trechos

de códigos com esta vulnerabilidade, contudo, ambas as ferramentas detectaram as

52

falhas como possível SQL injection, CWE-89. Resultando ainda assim como TPs, por

mais que a vulnerabilidade proposta CWE-20 não tenha sido identificada, as

ferramentas foram capazes de detectar as falhas ali por meio de outra vulnerabilidade

altamente conhecida.

CodeQl, por outro lado, não detectou nenhuma incidência de falha neste trecho

do código, nas linhas 115 a 124 do app.py, resultando assim em um FN.

53

Considerações finais

Este trabalho teve como foco principal analisar os resultados obtidos por três

ferramentas SAST, sendo elas Bandit, Semgrep e CodeQL. Por meio do

desenvolvimento e teste de códigos propositalmente vulneráveis na linguagem

Python. O objetivo específico foi verificar a capacidade dessas ferramentas em

identificar vulnerabilidades conhecidas e compreender como cada uma as descreve e

classifica em seus relatórios de análise.

Durante o desenvolvimento, obteve-se sucesso tanto na implementação dos

códigos vulneráveis quanto na execução das ferramentas dentro de uma pipeline CI,

configurada no ambiente GitHub Actions. As execuções resultaram em achados

distintos para cada vulnerabilidade, apresentando diferenças significativas na forma

de detecção e no nível de detalhamento apresentado por cada ferramenta.

O Bandit demonstrou-se eficaz e direto em suas análises, identificando com

precisão diversas vulnerabilidades e correlacionando-as de forma explícita aos

identificadores CWE. Sua abordagem baseada em padrões fixos e regras simples o

torna ágil e confiável para detecções clássicas, como hardcoded credentials, uso de

eval() e algoritmos criptográficos obsoletos. Contudo, sua limitação está na ausência

de uma análise contextual mais profunda, o que pode reduzir sua eficácia em casos

mais complexos de fluxo de dados.

O Semgrep, por sua vez, apresentou maior flexibilidade e amplitude, sendo

capaz de detectar vulnerabilidades por diferentes caminhos de análise. Ele se

destacou ao aplicar regras específicas para frameworks, como Flask e Django, além

de regras genéricas da linguagem Python, o que ampliou consideravelmente sua

cobertura. Essa característica permitiu que uma mesma vulnerabilidade fosse

identificada sob diferentes perspectivas, resultando em uma análise mais rica e

contextualizada. Um grande fator positivo também desta ferramenta foi sempre trazer

recomendações diretas sobre como evitar aquela vulnerabilidade em um código.

Já o CodeQL apresentou um altíssimo nível de profundidade analítica. Por meio

de sua abordagem semântica, foi capaz de rastrear o fluxo de dados contaminados

desde a origem até o ponto de exploração, identificando vulnerabilidades com grande

precisão. Além disso, seus relatórios se destacaram por conter explicações

detalhadas, exemplos de mitigação da vulnerabilidade e referências diretas aos

54

identificadores CWE, fornecendo uma visão bastante completa e didática do problema

de segurança.

De modo geral, observou-se que algumas vulnerabilidades foram detectadas

por apenas uma ou duas ferramentas, enquanto a grande maioria foi identificada pelas

três, permitindo uma análise comparativa aprofundada sobre o comportamento, a

precisão e a abrangência de cada solução no contexto de segurança de aplicações

em pipelines automatizados.

55

REFERÊNCIAS

BANDIT. Configuration - Bandit Documentation. OpenStack Security Project.
Disponível em: <https://bandit.readthedocs.io/en/latest/config.html>. Acesso em: 7
set. 2025.

CODEQL. About CodeQL queries. CodeQL Documentation. Disponível em:
<https://codeql.github.com/docs/writing-codeql-queries/about-codeql-queries/>.
Acesso em: 20 set. 2025.

COMMUNICATION TEAM. Como integrar o Semgrep no CI/CD e enviar os
resultados para a Conviso Platform. Conviso Blog, 25 maio 2023. Disponível em:
<https://blog.convisoappsec.com/como-integrar-o-semgrep-no-ci-cd-e-enviar-os-
resultados-para-a-conviso-platform/\>. Acesso em: 23 set. 2025.

GIÃO, Hugo da; FLORES, André; PEREIRA, Rui; CUNHA, Jácome. Chronicles of
CI/CD: A Deep Dive into its Usage Over Time. 2024. Disponível em:
<https://doi.org/10.48550/arXiv.2402.17588>. Acesso em: 17 out. 2024.

JANI, Yash. Implementing Continuous Integration and Continuous Deployment
(CI/CD) in Modern Software Development. International Journal of Science and
Research (IJSR), v. 12, n. 6, p. 2984-2987, jun. 2023. Disponível em:
<https://www.ijsr.net>. Acesso em: 17 out. 2024. DOI: 10.21275/SR24716120535.
Acesso em: 17 out. 2024.

MAAYAN, David Gilad. Dynamic Application Security Testing. Computer.org, 2023.
Disponível em: <https://www.computer.org/publications/tech-news/trends/dynamic-
application-security-testing>. Acesso em: 29 out. 2024.

NGUYEN, Bao Quan. Improving the quality of CodeGrade testing system using
Semgrep. Bachelor’s thesis – Lappeenranta-Lahti University of Technology LUT,
2025. Disponível em: <https://urn.fi/URN:NBN:fi-fe2025051442634\>. Acesso em: 23
set. 2025.

NGUYEN-DUC, Anh; DO, Manh Viet; HONG, Quan Luong; KHAC, Kiem Nguyen;
QUANG, Anh Nguyen. On the adoption of static analysis for software security
assessment: A case study of an open-source e-government project. Computers &
Security, v. 111, p. 102470, 2021. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S0167404821002947>. Acesso
em: 28 out. 2024.

NIST. SP 800-63B – Digital Identity Guidelines. Disponível em:
<https://pages.nist.gov/800-63-3/>. Acesso em: 16 out. 2025.

NUTALAPATI, Venkat. Automated Security Testing for Mobile Apps: Tools,
Techniques, and Best Practices. International Research Journal of Engineering &
Applied Sciences (IRJEAS), v. 11, n. 1, p. 26-31, jan.-mar. 2023. Disponível em:
<https://doi.org/10.55083/irjeas.2023.v11i01004>. Acesso em: 28 out. 2024.

56

OWASP Foundation. Code Injection. Disponível em: <https://owasp.org/www-
community/attacks/Code_Injection>. Acesso em: 22 out. 2025.

OWASP. Command Injection. Disponível em: <https://owasp.org/www-
community/attacks/Command_Injection>. Acesso em: 15 out. 2025.

OWASP. Deserialization Cheatsheet. Disponível em:
<https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html>
. Acesso em: 16 out. 2025.

OWASP. Input Validation Cheat Sheet. Disponível em:
<https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
>. Acesso em: 22 out. 2025.

OWASP. Password Storage Cheat Sheet. Disponível em:
<https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.h
tml>. Acesso em: 16 out. 2025.

OWASP. Path Traversal. Disponível em: <https://owasp.org/www-
community/attacks/Path_Traversal>. Acesso em: 15 out. 2025.

OWASP. Secrets Management Guidelines. Disponível em:
<https://cheatsheetseries.owasp.org/cheatsheets/Secrets_Management_Cheat_She
et.html>. Acesso em: 15 out. 2025.

OWASP. SQL Injection Prevention Cheat Sheet. Disponível em:
<https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_
Sheet.html>. Acesso em: 15 out. 2025.

SEMGREP. Writing rules (Documentação oficial). 2025. Disponível em:
<https://semgrep.dev/docs/writing-rules/overview\>. Acesso em: 23 set. 2025.

SHAHIN, Mojtaba; BABAR, Muhammad Ali; ZHU, Liming. Continuous Integration,
Delivery and Deployment: A Systematic Review on Approaches, Tools, Challenges
and Practices. IEEE Access, v. 5, p. 3909-3943, 2017. Disponível em:
<https://ieeexplore.ieee.org/document/7884954>. Acesso em: 25 set. 2024.

SMARTTECS. Code Security with Semgrep. SmartTECS Cyber Security Blog, 10
fev. 2025. Disponível em: <https://blog.smarttecs.com/posts/2024-006-semgrep/\>.
Acesso em: 23 set. 2025.

THULIN, Pontus. Evaluation of the applicability of security testing techniques in
continuous integration environments. 2015. 83 f. Master’s Thesis (Master’s degree
in Computer and Information Science) – Linköpings Universitet, Linköping, 2015.
Disponível em: <http://www.diva-
portal.org/smash/get/diva2:784545/FULLTEXT01.pdf>. Acesso em 01 out 2024

