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RESUMO 

 

 

Este trabalho propõe uma análise comparativa da eficiência, cobertura e precisão de 
três ferramentas de Análise Estática de Código (SAST): Semgrep, Bandit e CodeQL. 
As ferramentas foram integradas a pipelines de Integração Contínua (CI) utilizando a 
plataforma GitHub Actions, com o objetivo de detectar vulnerabilidades em um 
repositório Python propositalmente vulnerável. A metodologia empregou um ambiente 
controlado com workflow automatizado, executando as ferramentas sobre o mesmo 
código-fonte. A análise comparativa considerou a severidade e tipo de falha detectada, 
além da taxa de falsos positivos. Os resultados evidenciaram que o Bandit se mostrou 
eficaz para verificações rápidas e diretas; o Semgrep proporcionou ampla cobertura 
contextual; e o CodeQL alcançou a maior profundidade analítica ao rastrear fluxos de 
dados, resultando em menor incidência de falsos positivos. Conclui-se que a 
combinação dessas ferramentas amplia significativamente a eficácia das análises de 
segurança, reforçando o conceito de DevSecOps e promovendo a integração contínua 
da segurança ao ciclo de desenvolvimento de software. 
 
Palavras-chave: Teste de segurança, DevSecOps, Integração Contínua. 
 



 

 

ABSTRACT 

 

 

This study presents a comparative analysis of three Static Application Security Testing 
(SAST) tools Semgrep, Bandit, and CodeQL integrated into Continuous Integration (CI) 
pipelines using GitHub Actions. The goal was to evaluate their efficiency, coverage, 
and accuracy in detecting vulnerabilities within a purposely vulnerable Python source 
code. An experimental approach was adopted, executing each tool on the same 
repository and comparing results regarding severity, types of detections, and false-
positive rates. The results demonstrated that Bandit excels in fast and direct 
detections, Semgrep offers broader contextual coverage, and CodeQL provides 
deeper semantic analysis through data flow tracking and reduced false positives. The 
study concludes that combining multiple SAST tools enhances detection precision and 
reinforces DevSecOps practices by embedding security consistently throughout the 
software development lifecycle. 
 
Keywords: Security Testing; DevSecOps; Continuous Integration. 
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INTRODUÇÃO 

 

 

Conforme o tempo passa, cada vez mais o ser humano se torna dependente 

da tecnologia e, com ela, vêm também os seus riscos. A todo momento, as pessoas 

estão expostas, seja navegando na internet ou utilizando um aplicativo, por exemplo, 

vivendo à mercê de que as empresas cuidem devidamente da segurança dos dados 

de suas aplicações. 

Uma área que vem ganhando cada vez mais espaço no âmbito tecnológico e 

de desenvolvimento de sistemas é Development Security and Operations 

(DevSecOps), setor que enfatiza o desenvolvimento seguro e a importância de olhar 

para a infraestrutura e segurança de uma aplicação desde o início de sua construção 

até o momento em que ela é publicada, podendo usufruir de metodologias como 

Continuous Integration (CI). 

A segurança cibernética tem se mostrado uma necessidade central para 

organizações ao redor do mundo, o quão complexas e escaláveis as aplicações estão 

se tornando. Consequentemente, técnicas de ataques cada vez mais sofisticadas 

surgem com o objetivo de explorar vulnerabilidades, podendo causar enormes 

impactos financeiros, de reputação e influenciar diretamente na privacidade de dados. 

No cenário atual de desenvolvimento, em que práticas de CI são amplamente 

utilizadas pelas equipes para agilizar o processo de integração de soluções, é 

fundamental garantir a segurança durante toda a pipeline. 

Este trabalho, portanto, se justifica pela necessidade constante e crescente de 

avaliar as ferramentas de segurança dentro dessas pipelines. Mostrar as principais 

diferenças quanto aos resultados obtidos por ferramentas Static Application Security 

Testing (SAST), por exemplo, é essencial para compreender a efetividade da 

segurança no desenvolvimento de sistemas, contribuindo para a melhoria dos 

processos e da efetividade das operações, visto que a utilização desses meios de 

testes de segurança é fortemente recomendada por padrões de segurança como o 

Open Web Application Security Project (OWASP). 

No contexto da cibersegurança, é fundamental analisar o desenvolvimento das 

aplicações e garantir que elas sejam devidamente testadas antes de serem 

disponibilizadas para clientes. Seguindo essa ideia, tem-se como problema de 
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pesquisa: quais seriam as possíveis diferenças nos resultados obtidos por 

ferramentas de teste de software estático? 

Tem-se como objetivo geral, neste trabalho, analisar os resultados obtidos 

através da integração de ferramentas SAST em pipelines CI, com o intuito de melhorar 

a segurança no setor de desenvolvimento de sistemas, otimizando a detecção 

antecipada de vulnerabilidades e problemas nas aplicações, a fim de promover 

práticas de desenvolvimento seguro, bem como a integração contínua. 

Dito isso, pode-se levantar algumas hipóteses relacionadas ao uso das 

ferramentas SAST. Elas influenciam positivamente o desenvolvimento de sistemas, 

pois, com elas, é possível manter um controle melhor sobre vulnerabilidades e erros 

dentro do ambiente de desenvolvimento, a incidência desses riscos e podendo 

melhorar significativamente a qualidade do código desenvolvido, garantindo assim o 

desenvolvimento eficaz da aplicação, com ênfase na segurança e na agilidade da 

metodologia CI. 

O percurso metodológico deste trabalho foi realizar um estudo de caso que 

permitiu a análise prática das ferramentas SAST em um ambiente de pipeline CI. Os 

dados foram coletados por meio da execução e configuração destas ferramentas no 

pipeline que simularam também o processo de integração contínua. A partir dos 

resultados observados nas simulações, foi realizado uma análise comparativa, onde 

pôde ser levado em consideração a precisão e capacidade de identificação de 

vulnerabilidades. A escolha desse método justifica-se pela necessidade de um 

ambiente controlado que permita observar diretamente o desempenho das 

ferramentas no contexto de automação CI. 
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1 FUNDAMENTAÇÃO TEÓRICA 

 

 

1.1 Continuous Integration 

 

Segundo Shahin, Babar e Zhu (2017), a Integração Contínua (CI) é uma prática 

do desenvolvimento de software na qual os membros de uma equipe integram 

frequentemente seus códigos em um mesmo repositório, podendo realizar múltiplas 

integrações ao longo de um único dia. Essa metodologia contribui para um 

desenvolvimento mais rápido, com maior qualidade, aumentando a produtividade das 

equipes, uma vez que está fortemente associada à execução de testes 

automatizados. 

 

1.2 Benefícios da utilização de CI 

 

Jani (2023), traz uma lista de benefícios que devem ser considerados ao decidir 

entre utilizar ou não a metodologia CI. 

 

1. Tempo de lançamento no mercado: Realizar a automatização de tarefas 

como Build, testes, processos de implantação e otimização do 

desenvolvimento de novas soluções e atualizações, consequentemente, 

permite que as empresas atendam as rápidas mudanças do mercado. 

2. Qualidade Melhorada: Tarefas automatizadas e integração contínua de 

novos códigos no ambiente de desenvolvimento, permitem a detecção e 

resolução precoce de problemas, garantindo uma melhor qualidade e 

confiança no sistema. 

3. Redução de riscos: A implantação contínua permite mudanças mais ágeis, 

com isso, consegue-se reduzir os riscos em grandes lançamentos, onde 

nestes casos, a complexidade da aplicação se torna muito maior. 

 

Conforme a pesquisa feita por Cunha, Gião, Pereira e Flores (2024), onde 

foram analisados dados de criação de repositórios no GitHub entre 2012 e 2023, 

realiza-se a análise de 612.557 repositórios, destes, 200.023, ou seja, 32.7% possuem 

a metodologia CI integrada. Os autores também complementam dizendo sobre a 
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usabilidade desta metodologia integrado a diferentes linguagens de programação, 

onde mostra um cenário vasto de oportunidades de uso, sendo que Python e 

JavaScript são as linguagens que aparecem no topo do gráfico. 

 

Figura 1 - Contagem de repositórios por linguagem de programação. 

 

Fonte: Gião et al. (2024). 
 

1.3 Static Application Security Testing (SAST) 

 

“O teste de segurança é conhecido como um processo destinado a 
revelar falhas nos mecanismos de segurança de um sistema de 
informação que protegem os dados e mantêm a funcionalidade 
conforme o esperado. Existem dois tipos principais de teste de 
segurança: o teste estático e o teste dinâmico. O SAST utiliza uma 
ferramenta de análise de código estático para examinar o código-fonte 
e identificar possíveis vulnerabilidades ou falhas de software” 
(Nguyen-Duc et al, 2021, p. 3). 

 

A respeito de técnicas comuns utilizadas por ferramentas SAST, os autores 

complementam dizendo: 

1- Análise sintática, como chamadas a funções de API inseguras ou uso de 

opções de configuração inseguras. Um exemplo dessa categoria seria a 
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análise de programas em Java que chamam java.util.random (que não 

fornece um gerador de números aleatórios criptográficos seguro). 

2- Análise semântica, que exige o entendimento das semânticas do programa, 

como o fluxo de dados ou o controle de fluxo de um programa. Essa análise 

começa representando o código-fonte por meio de um modelo abstrato (por 

exemplo, grafo de chamadas, grafo de controle de fluxo ou diagrama de 

classe/sequência UML). Um exemplo dessa categoria seria uma verificação 

de fluxos diretos de dados de uma entrada de formulário de usuário para 

uma instrução SQL (indicando uma vulnerabilidade potencial de injeção de 

SQL). 

 

1.4 Benefícios da implantação de ferramentas SAST 

 

Nutalapati (2023), traz uma série de benefícios a respeito da implantação desse 

tipo de ferramentas, a seguir: 

1- Eficiência e velocidade 

a. Como base dos benefícios estão a eficiência e velocidade da SAST, 

que possui a capacidade de executar diversos testes de forma 

rápida, reduzindo significativamente o tempo de descoberta de falhas 

no código, prevenindo vulnerabilidades e aumentando, de modo 

geral, a segurança no ambiente da aplicação. 

2- Cobertura abrangente 

a. As ferramentas de teste de segurança automatizado cobrem uma 

ampla gama de cenários e vulnerabilidades de segurança, permitindo 

testes sistemáticos contra problemas como XSS, injeção SQL, 

armazenamento inseguro de dados e controles de acesso 

inadequados. Isso garante uma avaliação completa da segurança do 

aplicativo, reduzindo a chance de falhas críticas passarem 

despercebidas. 

3- Consistência e confiabilidade 

a. Automatizados, esses testes oferecem resultados padronizados e 

reproduzíveis, evitando os erros humanos dos testes manuais e 

garantindo avaliações de vulnerabilidades confiáveis ao longo do 

desenvolvimento. 
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4- Escalabilidade 

a. Essas ferramentas são escaláveis, suportando testes extensivos e 

repetitivos conforme a complexidade e o tamanho das aplicações 

crescem, particularmente em ambientes de CI. 

5- Detecção precoce de vulnerabilidade 

a. Ao integrar testes de segurança desde o início do desenvolvimento, 

é possível identificar e corrigir vulnerabilidades antes do lançamento, 

reduzindo riscos de exploração e facilitando a correção. 

6- Custo-benefício 

a. Embora requeira um investimento inicial, o teste automatizado reduz 

a necessidade de extensos testes manuais e os custos de incidentes 

de segurança, como esforços de remediação e danos reputacionais. 

7- Integração com processos de desenvolvimento 

a. Esses testes podem ser integrados aos fluxos de trabalho de 

desenvolvimento, especialmente em pipelines de CI, assegurando 

uma avaliação contínua da segurança em tempo real. 

 

1.5 Semgrep 

 

Com base na documentação da ferramenta, Semgrep (2025), Semgrep Code 

é um mecanismo de análise estática de códigos com uma vasta gama de linguagens 

de programação possíveis de se utilizar e tem a capacidade de detecção tanto de 

falhas de segurança quanto a aplicação de regras customizadas de estilo e 

vulnerabilidade, caso necessário. O site da ferramenta também deixa de forma muito 

explícita dizendo “You can use Semgrep Code to scan local repositories or integrate it 

into your CI/CD pipeline to automate the continuous scanning of your code” 

(SEMGREP, 2025), ou seja, ressaltando a capacidade e um ponto forte, que é 

justamente a integração com pipelines CI para a melhora de processos de segurança 

durante o desenvolvimento de software. 

Para a linguagem Python, a documentação de Semgrep (2025), traz uma vasta 

capacidade de detecções, como por exemplo, a Figura 2 mostra os frameworks 

disponíveis para que Semgrep Code consiga realizar scans. 
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Figura 2 - Contagem de repositórios por linguagem de programação. 

 
Fonte: Documentação Semgrep. (2025). 

 
 

A ferramenta também apresenta constante evolução no contexto de melhorias 

para segurança quando diz: “Semgrep's benchmarking process involves scanning 

open source repositories, triaging the findings, and making iterative rule updates. This 

process was developed and is used internally by the Semgrep security research team 

to monitor and improve rule performance.” (Semgrep, 2025) ou seja, as equipes de 

desenvolvimento de Semgrep buscam realizar scans de forma periódica em 

repositórios open source a fim de melhorar os padrões de regras do Semgrep. Na 

Figura 3 é apresentada uma tabela disponibilizada pela desenvolvedora do Semgrep 

referente à última execução dos testes de melhoria da ferramenta. 

 

Figura 3 - Contagem de repositórios por linguagem de programação. 

Fonte: Documentação Semgrep. (2025). 

 

1.6 Bandit 

 

De acordo com a documentação oficial do Bandit (2024), diz que é uma 

ferramenta desenvolvida com o intuito de identificar problemas e falhas em códigos 
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Python por meio da análise da árvore sintática abstrata (AST) utilizando plugins que 

analisam o código com base em padrão conhecidos de segurança da informação e 

geram relatórios detalhados após as verificações. A documentação mostra que, a 

ferramenta é capaz de ser configurada via arquivos de configuração como YAML, e 

integrado em ferramentas de pipelines CI, como o Github Actions. 

O Bandit também suporta a configuração de plugins de teste de forma 

individual, nos quais o usuário pode ajustar parâmetros internos de cada verificação. 

Essa abordagem justamente implementada nestes arquivos de configuração em 

formato YAML, possibilita alterar o comportamento de regras específicas, como o 

tratamento de chamadas a comandos do sistema operacional (os.system, entre 

outros) permitindo ajustar o nível de rigor da análise conforme a necessidade de 

verificação por parte do usuário.  

A documentação da ferramenta Bandit (2024) também traz explicações sobre 

a capacidade de integrações possíveis em ambientes de pipelines CI. Onde também 

é explicitado com um exemplo de código, a possibilidade do uso integrado ao Github 

Actions, como mostra a Figura 4: 

 

Figura 4 - Exemplo de configuração Bandit no GitHub Actions. 

Fonte: Documentação oficial do Bandit (2025). 
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Para os resultados, a documentação Bandit (2024) traz uma ampla gama de 

formatos possíveis para se exportar relatórios do Bandit após análises. Nesta lista 

estão presentes os formatos csv, html, json, sarif, screen, text, xml, yaml. 

 

1.7 CodeQL 

 

A documentação CodeQL (2025), traz informações dizendo a respeito o foco 

da ferramenta é ajudar desenvolvedores a automatização checagens de segurança e 

integrar isto a seus respectivos workflows de desenvolvimento. É também uma 

ferramenta altamente vasta quando se diz a quais linguagens ela pode abranger, por 

exemplo JavaScript, C, C++, C#, Java e claro, Python. Sob cada linguagem, é bem 

importante também notar a capacidade da ferramenta de ser aplicada frameworks, 

que no caso do python nota-se uma lista com mais de 30 bibliotecas, mas por exemplo 

dentre os mais conhecidos destacam-se Django, FastAPI, Flask, Pycurl, requests etc. 

CodeQL funciona com base em queries que são utilizadas para encontrar 

problemas em códigos fontes, problemas estes que podem estar associados a 

vulnerabilidades e falhas de segurança. De acordo com a documentação oficial da 

CodeQL (2025), cada query é responsável por identificar padrões de vulnerabilidades, 

falhas lógicas ou comportamentos suspeitos em um determinado trecho de código. As 

consultas são divididas em dois tipos principais: alert queries e path queries. As 

primeiras servem para destacar trechos de código que apresentam problemas 

pontuais, enquanto as segundas descrevem o fluxo de dados entre uma origem 

(source) e um destino (sink), permitindo detectar vulnerabilidades de fluxo, como SQL 

Injection e Cross-Site Scripting (XSS). 

Para as linguagens, como mostra a Figura 5, CodeQl possui várias das mais 

famosas linguagens disponíveis para uso. 
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Figura 5 -Linguagens disponiveis CodeQl. 

 
Fonte: Documentação oficial do CodeQL (2025). 
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2 DESENVOLVIMENTO 

 

 

Nesta etapa, será contextualizado o formato do desenvolvimento prático deste 

trabalho. Será utilizada a ferramenta GitHub para realizar a configuração de um 

repositório e através da ferramenta nativa do GitHub, chamada GitHub Actions será 

construído e configurado o workflow CI. 

Utilizou-se um único repositório Git com branch principal main, assegurando 

que Bandit, Semgrep e CodeQL analisassem sempre o mesmo snapshot de código. 

A partir deste repositório será realizado push requests para ativar os workflows. 

Importante destacar que, propositalmente a fim de testes, estas push requests terá 

códigos altamente vulneráveis que foram desenvolvidos na linguagem python. 

 

2.1 Estrutura do workflow 

 

Para a condução dos experimentos, foi definido um workflow dentro do diretório 

.github/workflows/ do repositório, utilizando a ferramenta GitHub Actions para 

automação das execuções. 

Denominado sast_all.yml, o workflow foi estruturado com o propósito de simular 

um ambiente real de integração contínua (CI) em um contexto DevSecOps, no qual 

múltiplas ferramentas de análise de segurança são executadas de forma 

automatizada a cada alteração no código-fonte. Esse workflow é acionado 

automaticamente por eventos de push request na branch principal, e executa em 

sequência as ferramentas Bandit, Semgrep e CodeQL. Ao término da execução, os 

resultados são consolidados em artefatos (arquivos JSON e TXT). Tal abordagem 

representa o cenário de uma pipeline corporativa, onde diferentes testes de segurança 

operam simultaneamente, permitindo avaliar a integração prática dessas ferramentas 

no ciclo de desenvolvimento. 

 

2.2 Configuração Inicial do Workflow. 

1. Nome e Triggers: O workflow é denominado "SAST - CodeQL + Semgrep + 

Bandit" e é acionado automaticamente em três situações: quando há um push 
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para a branch main, quando uma pull request é aberta para a branch main, ou 

manualmente através do workflow_dispatch. 

2. Permissões: O workflow define permissões específicas de leitura para 

conteúdo e ações do repositório, além de permissão de escrita para eventos 

de segurança, essencial para o registro de vulnerabilidades identificadas. 

3. Controle de Concorrência: Implementa um mecanismo que garante que 

apenas uma execução do workflow ocorra por vez para cada referência 

(branch), cancelando execuções anteriores ainda em andamento quando uma 

nova é iniciada. 

2.3 Configuração do Ambiente de Execução 

4. Ambiente do Job: O job é executado em um ambiente Ubuntu na versão mais 

recente, com um tempo limite de 30 minutos para evitar execuções indefinidas 

que possam consumir recursos desnecessariamente. 

5. Checkout do Código: Utiliza a action checkout@v4 para clonar o repositório e 

disponibilizar o código-fonte para análise pelas ferramentas de segurança. 

6. Configuração do Python: Instala o Python na versão 3.11, estabelecendo o 

ambiente necessário para execução das ferramentas de análise estática que 

serão utilizadas. 

7. Criação do Diretório de Relatórios: Cria uma pasta dedicada chamada 

"reports" onde todos os relatórios gerados pelas diferentes ferramentas serão 

armazenados de forma organizada. 

2.4 Análise com Bandit. 

8. Instalação e Verificação: O Bandit, ferramenta especializada em identificar 

problemas de segurança comuns em código Python, é instalado via pip e sua 

versão é verificada para garantir a instalação correta. 

 

Figura 6 - Versão utilizada do Bandit. 

 
Fonte: GitHub Action (2025). 
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9. Execução da Análise: Executa o Bandit recursivamente em todo o diretório do 

projeto, gerando dois formatos de relatório: JSON para processamento 

automatizado e TXT para leitura humana. O comando utiliza "|| true" para 

garantir que falhas não interrompam o workflow. 

2.5 Análise com Semgrep 

10. Instalação e Verificação: Instala o Semgrep junto com a ferramenta já para 

processamento de JSON. O Semgrep é uma ferramenta de análise estática 

que utiliza padrões customizáveis para identificar vulnerabilidades. 

 

Figura 7 - Versão utilizada do Semgrep. 

 
Fonte: GitHub Action (2025). 

 

11. Execução com Múltiplas Configurações: Executa o Semgrep utilizando três 

conjuntos de regras: regras específicas para Python (p/python), auditoria de 

segurança (p/security-audit) e as dez principais vulnerabilidades da OWASP 

(p/owasp-top-ten). 

12. Processamento dos Resultados: Gera um relatório inicial em formato JSON 

e, em seguida, utiliza o jq para extrair e formatar as informações relevantes em 

um arquivo TXT legível, incluindo ID da verificação, severidade, localização e 

mensagem. 

 

2.6 Análise com CodeQL 

13. Inicialização: Utiliza a action oficial do GitHub para inicializar o CodeQL, 

especificando Python como linguagem alvo. O CodeQL é uma ferramenta 

avançada de análise semântica de código desenvolvida pelo GitHub. 
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14. Verificação de Metadados: Executa um comando para exibir a versão da 

action do CodeQL utilizada, auxiliando na rastreabilidade e resolução de 

possíveis problemas. 

15. Execução da Análise: Realiza a análise completa do código utilizando o 

CodeQL, configurado para não fazer upload automático dos resultados e 

armazenar a saída localmente no diretório de relatórios. 

16. Conversão de Formatos: Converte o arquivo SARIF (formato padrão de saída 

do CodeQL) para JSON e extrai informações em formato TXT, processando o 

ID da regra violada e a mensagem correspondente para cada vulnerabilidade 

identificada. 

 

2.7 Armazenamento dos Artefatos 

17. Upload dos Relatórios: Utiliza a action upload-artifact@v4 para armazenar 

todos os relatórios gerados no workflow. A condição "if: always()" garante que 

os artefatos sejam salvos mesmo se etapas anteriores falharem. 

18. Configuração de Retenção: Define que os artefatos serão mantidos por 7 

dias, permitindo análise posterior dos resultados enquanto gerencia o espaço 

de armazenamento de forma eficiente. O artefato é nomeado "sast-reports" e 

inclui todo o conteúdo do diretório reports. 

 

2.8 Geração do código vulnerável e metodologia de teste. 

 

Para a execução prática deste trabalho, foi desenvolvido um conjunto de 

códigos propositalmente vulneráveis, com o objetivo de testar a capacidade de 

detecção das ferramentas SAST integradas à pipeline. A linguagem escolhida foi 

Python, por ser amplamente suportada por todas as ferramentas utilizadas (Bandit, 

Semgrep e CodeQL) e possuir um ecossistema consolidado de bibliotecas e práticas 

de segurança documentadas. 

O código vulnerável foi criado de forma controlada, buscando representar 

vulnerabilidades reais encontradas no contexto de desenvolvimento de aplicações. A 

tabela 1 mostrará todas as vulnerabilidades selecionadas e as respectivas 

identificadores de acordo com OWASP e CWE. 



25 

 

 

Quadro 1 - Mapeamento das vulnerabilidades segundo OWASP 2021 e CWE. 

Vulnerabilidades OWASP 2021 CWE 

Hardcoded Credentials A02:2021 Sensitive Data 

Exposure 

CWE-798 

SQL Injection (Query por 

concatenação) 

A03:2021 Injection CWE-89 

Command Injection A03:2021 Injection CWE-78 

Path traversal A05:2021 Security 

Misconfiguration 

CWE-22 

Insecure Deserialization A05:2021 Security 

Misconfiguration 

CWE-502 

Uso de eval() - RCE A03:2021 Injection CWE-94 

Criptografia fraca A02:2021 Sensitive Data 

Exposure 

CWE-327 

Sem validação de input A01:2021 Input Validation CWE-20 

Fonte: Adaptado de OWASP (2021) e MITRE CWE (2024) 

 

2.8.1 Armazenamento de senhas em texto plano. 

 

Manter credenciais diretamente no código-fonte expõe informações sensíveis 

e facilita o vazamento de segredos em repositórios públicos, logs ou pipelines. A 

OWASP (2025), explica que essa vulnerabilidade pode comprometer ambientes de 

produção caso o código seja compartilhado ou comprometido. 

De acordo com a OWASP (2025), credenciais nunca devem ser armazenadas 

em código-fonte. Recomenda-se utilizar secret managers (como AWS Secrets 

Manager, Hashicorp Vault ou GitHub Actions Secrets) e aplicar rotação periódica de 

segredos. 
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Figura 8 - Credenciais Hardcoded. 

 

Fonte: Desenvolvido pelo autor (2025). 

 

2.8.2 Injeção SQL 

 

A OWASP (2025) explica que a vulnerabilidade de SQL Injection ocorre quando 

comandos SQL são construídos dinamicamente a partir de entradas do usuário sem 

qualquer validação ou parametrização, permitindo que um atacante modifique a 

consulta original e execute comandos arbitrários no banco de dados. No código 

utilizado neste estudo, o endpoint /user constrói a query por concatenação direta 

("SELECT * FROM users WHERE id = {user_id}") e o endpoint /update atualiza 

registros concatenando user_input, demonstrando cenários clássicos de injeção 

(OWASP A03:2021 — Injection; CWE-89). O impacto inclui vazamento massivo de 

dados, alteração ou exclusão de registros, elevação de privilégios e possível tomada 

completa do servidor de banco de dados.  

Como mitigação, a OWASP (2025) recomenda o uso de prepared 

statements/queries parametrizadas (por exemplo, cursor.execute("SELECT * FROM 

users WHERE id = ?", (user_id,))), validação estrita de tipos/formatos de entrada (ex.: 

aceitar somente inteiros para id) e políticas de mínimos privilégios no usuário do 

banco. Essas medidas reduzem drasticamente a superfície de ataque e permitem 

atribuir com precisão qualquer achado da ferramenta SAST ao trecho vulnerável. 
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Figura 9 - Injeção SQL. 

Fonte: Desenvolvido pelo autor (2025). 

 

2.8.3 Execução de comandos de sistema sem sanitização 

Determinadas funções, de acordo com a OWASP, permitem a execução de 

comandos do sistema operacional. Quando combinadas com entradas externas não 

validadas, tornam-se vetores para Command Injection, permitindo que o atacante 

execute comandos arbitrários no servidor. Essa vulnerabilidade é classificada pela 

OWASP como Injection (A03:2021). 

A OWASP recomenda evitar a execução direta de comandos, preferindo APIs 

de alto nível. Se for inevitável, deve-se usar lista de argumentos totalmente 

controladas, sanitização rigorosa, e nunca concatenar strings vindas do usuário. 
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Figura 10 - Vulnerabilidade Command Injection. 

 
Fonte: Desenvolvido pelo autor (2025). 

 

2.8.4 Path traversal 

 

É a falha que permite que um invasor acesse arquivos arbitrários do sistema 

ao manipular entradas que representam caminhos de ficheiros (por exemplo, 

../../etc/passwd). No exemplo prático do repositório, o endpoint /file abre diretamente 

o caminho informado por filename sem normalização ou confinamento, expondo assim 

qualquer arquivo legível pelo processo da aplicação (OWASP A05:2021 — Security 

Misconfiguration; CWE-22). As consequências incluem divulgação de arquivos 

sensíveis (configurações, chaves, credenciais), informação que facilita ataques 

subsequentes e, em casos extremos, modificação de arquivos se houver escrita.  

A mitigação recomendada envolve restringir a leitura/escrita a um diretório 

específico (chroot-like ou verificar os.path.commonpath), normalizar e validar o 

caminho (remover .. e caracteres inesperados) e, quando possível, mapear nomes 

lógicos (IDs) para arquivos reais em vez de aceitar caminhos arbitrários. Implementar 

essas proteções também facilita a detecção de falsos positivos nas ferramentas 

SAST, pois o padrão inseguro fica mais simples de identificar. 

 

Figura 11 - Vulnerabilidade path traversal. 

 
Fonte: Desenvolvido pelo autor (2025). 
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2.8.5 Desserialização insegura. 

 

Ocorre quando um objeto serializado recebido de fonte externa é desserializado 

sem validação, possibilitando a execução de código arbitrário ou instância de classes 

maliciosas no contexto da aplicação. No código analisado, o endpoint /load chama 

pickle.loads(data.encode()) sobre dados recebidos externamente — uso que é 

notoriamente perigoso em Python, já que pickle pode executar funções arbitrárias 

durante a desserialização (OWASP A05:2021 — Security Misconfiguration; CWE-

502). O impacto típico inclui execução remota de código (RCE), escalonamento de 

privilégios e comprometimento total do servidor da aplicação.  

As principais mitigações de acordo com a OWASP, consistem em não utilizar 

pickle para dados não confiáveis, optar por formatos seguros (JSON, por exemplo), 

aplicar whitelist de tipos esperados ao desserializar, ou utilizar mecanismos de 

desserialização com validação e sandboxing. Quando a aplicação exige serialização 

rica, é recomendado empregar bibliotecas que implementem mecanismos explícitos 

de segurança e exigir assinatura/assinatura HMAC dos blobs serializados para 

garantir integridade e origem. 

 

Figura 12 - Código desserialização insegura. 

Fonte: Desenvolvido pelo autor (2025). 

 

2.8.6 Uso inseguro da função eval. 

 

A vulnerabilidade de Code Injection ocorre quando código malicioso é injetado 

e executado pela aplicação, explorando o tratamento inadequado de dados não 

confiáveis. Segundo a OWASP, este tipo de ataque é possível devido à falta de 

validação adequada de entrada e saída de dados, incluindo verificação de caracteres 

permitidos, formato de dados e quantidade esperada de informações. 
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A função eval é particularmente perigosa, pois executa dinamicamente uma 

string como código na linguagem de programação utilizada. Quando essa função 

recebe dados controlados pelo usuário sem validação apropriada, abre-se caminho 

para RCE, permitindo que atacantes executem comandos arbitrários no sistema. 

 

Figura 13 - Código vulnerabilidade eval. 

 
Fonte: Desenvolvido pelo autor (2025). 

 

2.8.7 Criptografia fraca. 

 

A OWASP (2025), explica que o uso de algoritmos criptográficos fracos para 

hashing de senhas ou proteção de dados sensíveis compromete a resistência a 

ataques de força bruta e a tabelas arco-íris. No código disponibilizado, a função 

weak_hash utiliza hashlib.md5 para derivar um “hash” de senha, prática inadequada 

para armazenamento de credenciais (OWASP A02:2021 — Sensitive Data Exposure; 

CWE-327). MD5 é considerado criptograficamente quebrável e não provê resistência 

suficiente contra ataques modernos; senhas hashed com MD5 são rapidamente 

recuperáveis. 

A mitigação adequada, de acordo com a OWASP é empregar algoritmos e 

derivações de chave projetados para senhas: bcrypt, scrypt, argon2 ou, quando 

necessário, pbkdf2_hmac com salt único por senha e parâmetros de iteração 

elevados. Além disso, nunca se deve armazenar segredos hardcoded (ver parágrafo 

já existente) e é importante combinar hashing seguro com políticas de salting, 

throttling de tentativas de login e armazenamento em repositórios protegidos. 
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Figura 14 - Criptografia fraca. 

 
Fonte: Desenvolvido pelo autor (2025). 

 

2.8.8 Ausência de tratamento de exceções e validação de entrada 

 

A falta de validação dos dados fornecidos pelo usuário pode resultar em 

crashes, vazamento de informações e comportamentos inesperados. Além disso, a 

ausência de tratamento de exceções (try/except) facilita a exposição de erros internos 

ao usuário, o que pode ser explorado para engenharia reversa ou ataques de 

enumeração. Essa categoria está relacionada ao Security Misconfiguration 

(A05:2021) e à Input Validation (A01:2021 – Broken Access Control). 

Para mitigação, a OWASP recomenda: 

 validação positiva (“allowlist”), 

 verificação de tipos, tamanhos e formatos, 

 tratamento adequado de exceções, 

 mensagens de erro genéricas para o usuário. 

 

Figura 15 - Input de dados no banco sem validação. 

 
Fonte: Desenvolvido pelo autor (2025).  
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3 Resultados 

 

 

Neste capítulo, foi abordada a execução das ferramentas mencionadas no 

capítulo anterior, sobre o código malicioso que foi desenvolvido para teste. O objetivo 

principal é adicionar os resultados obtidos por cada ferramenta em cada uma das 

vulnerabilidades propostas. 

A abordagem tomada neste capítulo será na mesma sequência que foi 

desenvolvido o capítulo anterior, será passado por cada vulnerabilidade de forma 

única e dissertado sobre cada resultado obtido por cada ferramenta. 

 

3.1 Hardcoded Credentials 

 

O uso de credenciais escritas diretamente no código-fonte representa um alto 

risco à segurança. De acordo com os testes feitos, apenas a ferramenta Bandit foi 

capaz de detectá-lo, como é possível observar na Figura 16. 

 

Figura 16 - Detecção hardcoded credentials Bandit. 

Fonte: Desenvolvido pelo autor (2025). 

 

O Bandit possui regras nativas hardcoded_password_string para detectar 

strings sensíveis. Semgrep e CodeQL não sinalizaram, possivelmente por ausência 

de regras específicas de secrets scanning no ruleset usado. A partir da análise dos 

arquivos de resultados, pode-se concluir que o Bandit apresentou uma classificação 

true positive (TP), enquanto Semgrep e CodeQl resultaram em false negative (FN). 
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3.2 SQL Injection 

 

Dentro das análises para SQL Injection, todas as três ferramentas obtiveram 

sucesso na detecção. Podendo-se confirmar com base nas Figuras 17, 18 e 19 sendo 

que, são os resultados de Bandit, Semgrep e CodeQl, respectivamente. 

 

3.2.1 SQL Injection Bandit 

 

De acordo com a Figura 17, o Bandit detectou com o identificador interno da 

ferramenta B608, identificador este que está diretamente ligado à possibilidade do 

vetor de ataque de SQL Injection. Severidade média e confiança baixa, conclui-se que, 

apesar da detecção, a ferramenta atribuiu um certo grau de incerteza quanto ao 

contexto deste teste executado. 

 

Figura 17 - Detecção SQL Injection Bandit. 

Fonte: Desenvolvido pelo autor (2025). 

 

3.2.2 SQL Injection Semgrep 

 

Semgrep por sua vez gerou duas detecções para esta vulnerabilidade, como 

mostra a figura 18.  

A primeira foi denominada python.django.security.injection.sql.sql-injection-

using-db-cursor-execute.sql-injection-db-cursor-execute e foi detectada na linha 47 do 

código, justamente o trecho que foi mostrado no capítulo 3 e foi classificada como 

Warning e corresponde a um alerta genérico para situações em que dados 

controlados pelo usuário são passados diretamente ao método execute.   

Essa regra tem como foco aplicações Django, porém, por falar sobre um padrão 

comum em consultas SQL quando são construídas manualmente, também acabou se 

aplicando no caso de teste do código analisado. O aviso enfatiza o risco de exposição 

de informações sensíveis devido à ausência de parametrização e recomenda o uso 
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do método QuerySet ou mecanismos ORM com query parameterization, que eliminam 

a vulnerabilidade. 

Já a segunda detecção foi denominada python.flask.security.injection.tainted-

sql-string.tainted-sql-string, apresentou nível de severidade Error, que é uma 

característica de um risco mais alto. Essa detecção refere-se ao uso explícito de 

interpolação de strings (via f-string) na construção de uma query SQL no contexto de 

uma aplicação Flask, prática considerada insegura por permitir que dados não 

sanitizados sejam incorporados diretamente ao comando SQL. 

O relatório sugere como mitigação o uso de consultas parametrizadas — 

disponíveis por padrão em diversos motores de banco de dados — ou a adoção de 

bibliotecas ORM, como o SQLAlchemy, que abstraem e previnem esse tipo de falha. 

 

Figura 18 - Detecção SQL Injection Semgrep. 

Fonte: Desenvolvido pelo autor (2025). 

 

3.2.3 SQL Injection CodeQl 

 

O CodeQL também identificou a vulnerabilidade de injeção de SQL no código 

de teste, classificando-a sob o identificador de regra py/sql-injection. 

Essa regra pertence ao conjunto de consultas de segurança para Python e tem 

como objetivo detectar situações em que consultas SQL são construídas a partir de 

dados controlados pelo usuário, sem o devido processo de sanitização ou uso de 

parâmetros preparados. 

Na prática, o CodeQL analisou o fluxo de dados desde a origem (função que 

recebe a requisição do usuário) até o ponto em que o valor é interpolado na string 

SQL. Esse mecanismo de rastreamento de tainted data flow permite identificar 

vulnerabilidades que não dependem apenas de pattern matching, mas da propagação 

real de variáveis inseguras dentro da aplicação. 

O relatório gerado aponta que a consulta SQL é construída diretamente com 

dados não tratados, utilizando interpolação de string (f-string) e o método execute, o 

que torna possível a injeção de comandos arbitrários por um atacante. 
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Além de apresentar a vulnerabilidade, a própria consulta py/sql-injection 

fornece uma explicação detalhada e recomendações de mitigação, destacando a 

importância de utilizar parâmetros de consulta (prepared statements) ou bibliotecas 

ORM, como o SQLAlchemy, para evitar que o dado do usuário seja concatenado 

diretamente ao comando SQL. 

 

Figura 19 - Detecção SQL Injection CodeQl. 

Fonte: Desenvolvido pelo autor (2025). 

 

3.2.4 Conclusão SQL Injection 

 

Com estas informações, é possível classificar os resultados obtidos como TP, 

dado que, todas as 3 ferramentas foram devidamente capazes de detectar a 

vulnerabilidade, e devidamente explicadas cada um dentro dos critérios da 

ferramenta. 

 

3.3 Command Injection 

 

Para esta vulnerabilidade, as três ferramentas obtiveram sucesso no teste e 

foram capazes de detectá-la. Neste parágrafo será destrinchado e dissertado de forma 

individual cada resultado. 
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3.3.1 Command Injection Bandit 

 

O relatório do Bandit identificou um problema de Command Injection na 

chamada a um processo do sistema operacional a partir de dados controlados pelo 

usuário. No log do Bandit o achado aparece da seguinte forma como mostra a Figura 

20: 

 

Figura 20 - Detecção Command Injection Bandit. 

Fonte: Desenvolvido pelo autor (2025). 

 

O Bandit classifica esse tipo de detecção como alta severidade por se tratar de 

um vetor clássico de command injection (CWE-78). A regra B605 detecta chamadas 

que executam comandos em shell (por exemplo os.system, subprocess.call com 

shell=True, os.popen) em que o comando contém valores interpolados diretamente 

vindos do usuário. Nesse caso, a variável host (proveniente de uma requisição) é 

concatenada/interpolada numa f-string e passada ao os.system, permitindo que um 

atacante injete argumentos ou comandos adicionais (por exemplo rm -rf / ou && curl 

http://malicious), com potencial execução arbitrária no servidor. O alto nível de 

confiança informado pelo Bandit indica que o padrão detectado é claro (uso direto de 

os.system com entrada dinâmica) e dificilmente se trata de um falso positivo no 

contexto apresentado. 

 

3.3.2 Command Injection Semgrep 

 

O Semgrep produziu quatro alertas relacionados ao trecho que executa 

comandos do sistema operacional com dados controlados pelo usuário (linhas 64–67 

de app.py). As regras cobrem tanto contextos específicos de framework 

(Django/Flask) quanto verificações genéricas da linguagem. A figura 14 mostra 

exatamente como foi estas detecções: 
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Figura 21 - Detecção Command Injection Semgrep. 

Fonte: Desenvolvido pelo autor (2025). 

 

3.3.2.1 Detecções 

 

A detecção um de Semgrep para esta vulnerabilidade verifica o uso da 

biblioteca “os” utilizando o comando os.system e recebendo dados da requisição. Esta 

detecção ocorre justamente por conta da variável proveniente do request fluir 

diretamente para o os.system, o que caracteriza a possibilidade de command 

injection, o que foi caracterizada como alto risco de acordo com a CWE-78. Semgrep 

deixa como recomendação caso isso realmente precise ser feito, utilizar o módulo 

“subprocess” e passar os argumentos em formato de lista.  

A detecção dois observou o mesmo padrão inseguro para a vulnerabilidade 

CWE-78, porém agora com o ruleset específico para o framework flask, novamente 

deixando como recomendação caso isso seja necessário, utilizar o módulo 

subprocess e os dados serem passados em formato de lista. 

A terceira detecção segue o mesmo padrão, contudo, esta foi feita com base 

no ruleset do Semgrep feita para a linguagem python, diferentemente das outras que 

são rulesets para frameworks especificos (django e flask respectivamente). E 

repetindo as recomendações de mitigação com uso de subprocess. 

Já a quarta detecção diz que, se o conteúdo formatado vier (ou puder vir) de 

usuário, pode abrir margem para XSS; aqui aparece como audit (aviso) porque 

depende do contexto. Deixa-se como recomendação renderizar a resposta via 

template engine ao invés de render_template. 

O Semgrep cobriu o caso com redundância saudável (regras Django, Flask e 

linguagem) e classificou corretamente com ERROR os pontos que expõem execução 

de comando. Essa multiplicidade de regras aumenta a cobertura e a confiabilidade da 

detecção, apontando tanto o ponto crítico (os.system) quanto a boa prática de saída 

(evitar formatar e retornar strings diretamente). 
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3.3.3 Command Injection CodeQl 

 

O CodeQL sinalizou o uso de cadeias de comando controladas externamente, 

classificado como error (nível alto). A regra py/command-line-injection detecta pontos 

do código onde dados de usuário fluem para funções que executam comandos ou 

interpretam código (por exemplo, os.system, subprocess.* com entrada dinâmica, 

exec/eval), permitindo que o atacante altere o significado do comando. A 

vulnerabilidade se relaciona diretamente às classificações CWE-78 (OS Command 

Injection) e CWE-88 (Argument Injection). 

 

Figura 22 - Detecção Command Injection CodeQl. 

Fonte: Desenvolvido pelo autor (2025). 

 

A query py/command-line-injection do CodeQL demonstrou elevada precisão 

por rastrear o dado contaminado até o ponto de execução do comando, oferecendo 

recomendações prescritivas (allowlist, subprocess sem shell e validação). Isso reduz 

falsos positivos típicos de regras puramente sintáticas e reforça o CodeQL como 

ferramenta muito eficaz para detectar Command Injection em aplicações Python. 

 

3.3.4 Conclusão Command Injection 

 

Pode-se conclui que a vulnerabilidade Command Injection, correlacionada pela 

CWE-78, foi plenamente identificada pelas três soluções de análise estática, com o 
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CodeQL destacando-se pela profundidade da inspeção e rastreamento de fluxo, o 

Semgrep pela cobertura de regras contextualizadas por framework, e o Bandit pela 

simplicidade e precisão na identificação de padrões diretos. 

Esse resultado evidencia que a combinação das ferramentas potencializa a 

detecção e validação cruzada de falhas críticas de segurança em pipelines de CI/CD 

voltados a aplicações Python. 

 

3.4 Path traversal 

 

Neste parágrafo será dissertado sobre os resultados das três soluções de 

análise estática para a vulnerabilidade path traversal. Pôde-se observar que apenas 

Semgrep e CodeQl obtiveram algum tipo de resultado quanto a presença desta falha 

de segurança, enquanto nos testes com Bandit, ela passou de forma despercebida 

pela ferramenta. 

 

3.4.1 Path traversal Semgrep 

 

O Semgrep gerou dois alertas distintos referentes à vulnerabilidade de Path 

Traversal, ambos relacionados ao uso da função open com dados provenientes 

diretamente da requisição do usuário. Os avisos estão localizados nas linhas 74 e 76 

do arquivo app.py, e foram classificados respectivamente como Warning e Error. 

 

Figura 23 - Detecção Path Traversal Semgrep. 

Fonte: Desenvolvido pelo autor (2025). 

 

3.4.1.1 Detecções 

 

A primeira detecção registrada, tem foco em aplicações Django e foi 

categorizada como Warning. Ela mostra que o código realiza a abertura de um arquivo 

(open) utilizando valores controlados externamente, sem qualquer mecanismo de 

validação ou sanitização. Esse padrão expõe a aplicação ao risco de leitura de 
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arquivos arbitrários no sistema, especialmente quando o usuário consegue manipular 

o caminho do arquivo (por exemplo, utilizando o padrão ../../etc/passwd). 

A segunda detecção foi classificada como Error, corresponde ao mesmo 

problema, mas no contexto de aplicações Flask. Essa redundância de regras é 

proposital e reflete a capacidade do Semgrep de aplicar políticas específicas para 

diferentes frameworks, aumentando a cobertura e a precisão de detecção. 

Ambas as regras trazem recomendações diretas de mitigação, sugerindo o uso 

de funções como os.path.abspath(), os.path.realpath() ou da biblioteca pathlib para 

normalizar e restringir os caminhos acessíveis, além de validar rigorosamente os 

nomes de arquivos permitidos antes de realizar a leitura. 

 

3.4.2 Path Traversal CodeQl 

 

O CodeQL identificou a vulnerabilidade de Path Traversal no código de teste 

através da regra py/path-injection, classificada com nível Error. 

 

Figura 24 - Detecção Path Traversal CodeQl. 

Fonte: Desenvolvido pelo autor (2025). 
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Essa query faz parte do conjunto de análises voltadas à integridade de acesso 

ao sistema de arquivos em aplicações Python e tem como objetivo detectar o uso de 

dados não controlados na construção de caminhos de arquivo. 

De acordo com a descrição do arquivo gerado pela ferramenta, o alerta é 

emitido quando informações fornecidas por usuários são utilizadas diretamente na 

formação de um caminho de arquivo, sem validação, sanitização ou normalização 

adequadas. Essa prática permite que um atacante acesse, modifique ou exponha 

recursos inesperados do servidor, como diretórios fora da área permitida da aplicação. 

O comportamento foi corretamente identificado nas linhas 74–76 do arquivo 

app.py, onde o parâmetro recebido da requisição é utilizado na função open() sem 

qualquer tipo de restrição. 

 Esse cenário representa o risco descrito pelo CWE-22 (Improper Limitation of 

a Pathname to a Restricted Directory) e pelo CWE-23 (Relative Path Traversal), 

ambos relacionados à manipulação indevida de caminhos de arquivos. 

A query py/path-injection recomenda explicitamente validar o input do usuário 

antes de utilizá-lo na construção do caminho. Entre as práticas sugeridas estão: 

1. Usar funções de validação como werkzeug.utils.secure_filename, amplamente 

empregada em aplicações Flask; 

2. Restringir caracteres e símbolos proibidos, como "/", "\", ".." e múltiplos pontos; 

3. Evitar depender apenas de substituição de sequências (../), pois ainda podem 

permitir travessias relativas; 

4. Implementar allowlists de nomes de arquivos ou extensões válidas; 

5. Normalizar o caminho antes de validar, utilizando os.path.normpath() ou 

pathlib.Path.resolve(). 

 

3.4.3 Conclusão path traversal 

 

A vulnerabilidade de Path Traversal foi corretamente identificada por duas das 

três ferramentas analisadas Semgrep e CodeQL, enquanto o Bandit não apresentou 

qualquer detecção relacionada a esse tipo de falha. De modo geral, a combinação dos 

resultados obtidos indica que, para vulnerabilidades do tipo Path Traversal, 

ferramentas baseadas em análise semântica e contextual, como o Semgrep e o 

CodeQL, oferecem desempenho superior e maior profundidade de análise. Já o 
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Bandit, apesar de eficiente para casos mais diretos, não apresentou cobertura 

suficiente para esse tipo de falha. 

Conclui-se, portanto, que as ferramentas Semgrep e CodeQL apresentaram 

TPs consistentes para o caso de Path Traversal, enquanto o Bandit apresentou FN, 

não reconhecendo a vulnerabilidade existente. 

 

3.5 Insecure Deserialization 

 

Para esta vulnerabilidade, as três ferramentas obtiveram sucesso na detecção 

e neste parágrafo será mostrado de forma unitária o que cada uma retornou. 

 

3.5.1 Insecure Deserialization Bandit 

 

O Bandit identificou a vulnerabilidade de desserialização insegura por meio da 

regra B301:blacklist, classificada com severidade média e alta confiança, conforme 

trecho localizado na linha 87 do arquivo app.py. 

 

Figura 25 - Detecção Insecure Deserialization Bandit. 

Fonte: Desenvolvido pelo autor (2025). 

 

O alerta faz referência direta ao CWE-502 (Deserialization of Untrusted Data), 

indicando que o uso da função pickle.loads() com dados provenientes de fontes 

externas representa um risco elevado de execução arbitrária de código. 

 A regra B301 pertence à categoria de blacklists de chamadas inseguras, que 

identificam o uso de funções e bibliotecas conhecidas por introduzir vulnerabilidades 

críticas, mesmo sem análise contextual do fluxo de dados. 

O Bandit destaca que módulos como pickle permitem que objetos arbitrários 

sejam reconstruídos a partir de dados serializados, o que possibilita que um atacante 

injete instruções maliciosas executadas durante o processo de desserialização. 

 

3.5.2 Insecure Deserialization Semgrep 
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O Semgrep também detectou a vulnerabilidade em duas regras distintas, 

ambas na linha 87 de app.py. 

A primeira regra foi classificada como Error, identifica a presença de uma 

biblioteca de desserialização insegura utilizada em uma rota Flask. Ela alerta que 

bibliotecas como pickle podem permitir RCE se dados de usuário forem passados 

diretamente à função loads(). 

Já a segunda regra foi categorizada como Warning, reforça a recomendação 

de evitar o uso de pickle e sugere o emprego de alternativas seguras como 

json.loads() ou yaml.safe_load(). 

A existência de duas regras sobre o mesmo ponto demonstra a abordagem 

redundante e detalhada do Semgrep, que visa cobrir tanto contextos de frameworks 

específicos quanto práticas inseguras da linguagem em geral. 

Em ambas as detecções, o Semgrep também forneceu orientações claras de 

mitigação: substituir a biblioteca de desserialização por alternativas seguras, restringir 

a entrada de dados e, se necessário, validar rigorosamente o conteúdo recebido antes 

do processamento. 

 

3.5.3 CodeQl 

 

O CodeQL detectou a mesma vulnerabilidade através da query py/unsafe-

deserialization, classificada com nível Error e mapeada para o CWE-502. 

A regra identifica cenários em que dados controlados por usuário são 

desserializados diretamente usando frameworks que permitem reconstruir objetos 

arbitrários, como Pickle, Marshal e YAML, resultando em alto risco de execução de 

código arbitrário. Diferente das outras ferramentas, o CodeQL realiza uma análise 

semântica de fluxo de dados, rastreando o valor recebido de fontes externas até o 

ponto de desserialização. O relatório do CodeQL inclui uma explicação detalhada e 

um exemplo prático, mostrando o caso inseguro pickle.loads e a alternativa segura  

json.loads(request_data). 
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Figura 26 - Detecção Insecure Deserialization CodeQl. 

Fonte: Desenvolvido pelo autor (2025). 

 

 A ferramenta recomenda, sempre que possível, evitar completamente a 

desserialização de dados não confiáveis. Caso o uso de bibliotecas seja 

indispensável, deve-se preferir funções seguras como yaml.safe_load() e aplicar 

validações rígidas. 

 

3.5.4 Conclusão Insecure Desserialization 

 

As três ferramentas analisada, Bandit, Semgrep e CodeQL identificaram 

corretamente a vulnerabilidade de desserialização insegura, presente na linha 87 do 

arquivo app.py, onde a função pickle.loads() é utilizada para processar dados 

recebidos de forma direta e sem validação. demonstrando maturidade e eficácia tanto 

das regras baseadas em padrões de Bandit e Semgrep quanto da análise semântica 

aprofundada oferecida pelo CodeQL, que se destaca na interpretação do fluxo de 

dados e na precisão da análise contextual. 

 

3.6 Uso de Eval 

 

Para a vulnerabilidade apontada como CWE-94, foi obtido resultado de todas 

as três ferramentas, e neste parágrafo será explicado qual resultado foi obtido por 

estas ferramentas. 
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3.6.1 Bandit 

 

O Bandit identificou a vulnerabilidade associada ao uso da função eval() na 

linha 97 do arquivo app.py, classificando-a pela regra B307:blacklist, com severidade 

média e alta confiança. 

 

Figura 27 - Detecção Uso de eval Bandit. 

Fonte: Desenvolvido pelo autor (2025). 

 

Essa regra alerta para o uso de funções potencialmente inseguras como eval() 

e exec(), estas falhas podem permitem a execução dinâmica de expressões 

controladas externamente. O Bandit associa esse comportamento ao CWE-78, pois, 

embora o eval() execute código Python e não comandos do sistema diretamente, o 

impacto final é equivalente a uma injeção de comando, já que o invasor pode executar 

instruções arbitrárias que comprometem a integridade do sistema. No trecho 

analisado, o conteúdo da variável expression, proveniente de entrada de usuário, é 

avaliado diretamente pela função eval(), sem qualquer sanitização ou validação 

prévia. Isso abre a possibilidade de RCE, uma das falhas mais críticas em aplicações 

Python. 

 

3.6.2 Semgrep 

 

O Semgrep também identificou a vulnerabilidade de execução arbitrária por 

meio de três regras distintas, localizadas nas linhas 95 e 97 do arquivo app.py. 

Por meio de duas destas três regras, o Semgrep notificou como Warning a 

possibilidade de existência desta vulnerabilidade, pois apenas detectando o eval ele 

já foi capaz de identificar o risco. Por outro lado, na terceira regra, e de mais 

necessidade de visibilidade, ele gerou um alerta como Error dado que, identificou 
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dados externos fluindo para dentro do método eval, justamente gerou como Error pois 

isto se caracteriza a presença nítida da vulnerabilidade. 

 

Figura 28 - Detecção Uso de eval Bandit. 

Fonte: Desenvolvido pelo autor (2025). 

 

Conclui-se como TP o resultado de Semgrep para esta vulnerabilidade dado 

que, ele foi capaz não apenas de notificar a possibilidade e com isso recomendações 

para evitá-la, como também notificar de forma clara a presença dela no código.  

 

3.6.3 CodeQl 

 

O CodeQL detectou a mesma vulnerabilidade por meio da query py/code-

injection, classificada como Error e mapeada para os identificadores CWE-94 (Code 

Injection) e CWE-95 (Improper Neutralization of Directives in Dynamically Evaluated 

Code). A regra define o problema como a interpretação de entrada não sanitizada 

como código, o que permite que usuários maliciosos executem comandos arbitrários. 

Segundo a descrição oficial, isso ocorre quando a aplicação inclui diretamente 

dados de usuário em uma expressão avaliada por funções como eval() ou exec(), sem 

qualquer tratamento. 
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Figura 29 -Detecção Uso de eval Bandit. 

Fonte: Desenvolvido pelo autor (2025). 

 

O exemplo fornecido na documentação demonstra como um valor passado ao 

exec() pode ser manipulado para executar instruções arbitrárias, reforçando o risco 

de RCE. 

Assim, a detecção do CodeQL também foi classificada como TP, confirmando 

a presença e gravidade da vulnerabilidade. 

 

3.6.4 Conclusão CWE-94 

 

As três ferramentas Bandit, Semgrep e CodeQL identificaram corretamente a 

vulnerabilidade de execução de código arbitrário no uso da função eval() com dados 

externos. As três ferramentas convergiram quanto à natureza e à gravidade da 

vulnerabilidade, classificando-a como TP. 

 Essa coerência reforça que o uso de eval() com dados não validados constitui 

uma falha crítica de segurança e deve ser totalmente evitado em ambientes de 

produção, sendo substituído por métodos seguros e restritivos como ast.literal_eval() 

ou por lógicas de conversão controladas. 

 

3.7 Criptografia Fraca 
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Para esta vulnerabilidade, as três ferramentas foram capazes de realizar 

detecções, será destrinchado individualmente neste parágrafo sobre estes resultados 

obtidos e quais conclusões pôde-se tomar. 

 

3.7.1 Bandit 

 

Por meio da regra B324:hashlib interna da ferramenta, o Bandit detectou o 

algoritmo hash MD5 sendo utilizado no código-fonte, algo que já é considerado 

ultrapassado quando o assunto é segurança em senhas. Este evento detectado foi 

considerado de alta confiança, alta severidade e associado à CWE-327 pela 

ferramenta. 

 

Figura 30 - Detecção de criptografia fraca Bandit. 

Fonte: Desenvolvido pelo autor (2025). 

 

A função hashlib.md5(password.encode()).hexdigest() é utilizada para calcular 

o hash de uma senha, conforme indicado pelo comentário do próprio código. O Bandit 

considerou esta prática insegura, dado o fato que este algoritmo atualmente, já é 

obsoleto e vulnerável a ataques de colisão e força bruta. Sendo assim, incapaz de 

garantir a base da segurança, confidencialidade e integridade destes dados. 

 

3.7.2 Semgrep 

 

O Semgrep por meio de duas de suas regras internas, observou o uso desta 

fraca criptografia presente no código: 

 

Figura 31 - Detecção de criptografia fraca Semgrep. 

Fonte: Desenvolvido pelo autor (2025). 

 



49 

 

A primeira regra detectou a presença de um algoritmo MD5 e foi sinalizada 

como warning, pois até então, o Semgrep apenas o analisou como um algoritmo 

inseguro, e por enquanto não levou em consideração que ele estaria sendo utilizado 

como método de criptografia para senhas. Como recomendação a ferramenta trouxe 

os modelos SHA 256 ou SHA 3. 

Por outro lado, na segunda regra, o Semgrep foi direto ao ponto principal da 

questão, a utilização deste algoritmo na criptografia de senhas, trazendo pontos 

importantes sobre a vulnerabilidade em questão, no caso, dizendo que este algoritmo 

não é seguro o suficiente contra ataques simples como o de colisão e pode ser 

quebrado facilmente pelo atacante em um período curto. Para recomendações, a 

ferramenta trouxe a possibilidade de usar funções hashes especificas e seguras para 

senhas como a scrypt podendo utilizar a biblioteca “hashlib.scrypt”. 

 

3.7.3 CodeQl 

 

O CodeQL foi capaz de identificar a vulnerabilidade por meio da regra interna 

da ferramenta py/weak-sensitive-data-hashing, classificada como Warning e 

classificada para os identificadores CWE-327 e CWE-328. 

 

Figura 32 - Detecção de criptografia fraca CodeQl. 

Fonte: Desenvolvido pelo autor (2025). 
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Esta regra explica como o uso de algoritmos fracos podem comprometer a 

integridade de dados altamente sensíveis, neste caso ele explica a fraqueza quando 

são utilizados em contextos de autenticação, assinaturas digitais e no caso utilizado 

como exemplo neste trabalho, armazenamento de senhas. O CodeQL faz uma análise 

contextual que distingue usos de hashes seguros e inseguros, sinalizando apenas 

quando o algoritmo é aplicado sobre dados sensíveis. 

A ferramenta recomenda o uso de funções criptográficas robustas como SHA-

256, SHA-3 e, para senhas, o uso de algoritmos ainda mais seguros para estes tipos 

de dados, como Argon2, bcrypt, scrypt ou PBKDF2. 

 

3.7.4 Conclusão Criptografia Fraca. 

 

Pôde-se concluir por meio das análises dos relatórios destas ferramentas 

testadas, que todas obtiveram o resultado TP, ainda que, cada ferramenta trouxe sua 

forma individual de explicação e recomendação.  

O Bandit apresentou a detecção direta ao ponto, com alta severidade e 

confiança, destacando o uso indevido de MD5 como função de hash para senhas. O 

Semgrep reforçou o achado por meio de duas regras complementares, abordando 

tanto a fragilidade do algoritmo quanto o contexto de uso em senhas 

CodeQl além de trazer recomendações de outros algoritmos para criptografia, 

foi capaz ainda de realizar recomendações de algoritmos ainda mais robustos quando 

o assunto tratar de senhas e outros tipos de dados altamente sensíveis. 

 

3.8 Sem validação de input 

 

Nesta vulnerabilidade duas das três ferramentas foram capazes de realizar 

detecções quanto a vulnerabilidades no trecho do código, contudo, ocorreram 

algumas detecções diferentes por partes de cada uma, onde será dissertado de forma 

individual quais foram. 

 

3.8.1 Bandit 

 

O Bandit realizou a detecção de uma construção de instrução SQL via 

interpolação de strings com conteúdo controlado pelo usuário. 
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Figura 33 - Detecção de sem validação de input Bandit. 

Fonte: Desenvolvido pelo autor (2025). 

 

Este padrão foi classificado pela ferramenta como possível SQL injection, pois 

o usuário pode manipular diretamente o conteúdo da variável “user_input” que será 

passado diretamente na query de update do SQL. 

 

3.8.2 Semgrep 

 

O semgrep por meio de duas regras internas foi capaz de detectar 

vulnerabilidades neste mesmo trecho de código: 

 

Figura 34 - Detecção de sem validação de input Semgrep. 

Fonte: Desenvolvido pelo autor (2025). 

 

A primeira regra sinalizou que dados controlados pelo usuário chegam a 

execute() é um alerta genérico com sugestão de usar QuerySets/ORM do Django para 

parametrização automática. A classificação Warning indica que é um padrão perigoso, 

mas depende do contexto. 

Já a segunda regra detectou especificamente a construção manual da string 

SQL usando o input do usuário. Essa regra é mais decisiva quanto à vulnerabilidade 

existente e classifica como Error, que identifica a prática de montar a query 

manualmente. 

 

3.8.3 Conclusão sem validação de input 

 

Houve resultados significativos por parte de Bandit e Semgrep para os trechos 

de códigos com esta vulnerabilidade, contudo, ambas as ferramentas detectaram as 
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falhas como possível SQL injection, CWE-89. Resultando ainda assim como TPs, por 

mais que a vulnerabilidade proposta CWE-20 não tenha sido identificada, as 

ferramentas foram capazes de detectar as falhas ali por meio de outra vulnerabilidade 

altamente conhecida. 

CodeQl, por outro lado, não detectou nenhuma incidência de falha neste trecho 

do código, nas linhas 115 a 124 do app.py, resultando assim em um FN. 
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Considerações finais 

 

 

Este trabalho teve como foco principal analisar os resultados obtidos por três 

ferramentas SAST, sendo elas Bandit, Semgrep e CodeQL. Por meio do 

desenvolvimento e teste de códigos propositalmente vulneráveis na linguagem 

Python. O objetivo específico foi verificar a capacidade dessas ferramentas em 

identificar vulnerabilidades conhecidas e compreender como cada uma as descreve e 

classifica em seus relatórios de análise. 

Durante o desenvolvimento, obteve-se sucesso tanto na implementação dos 

códigos vulneráveis quanto na execução das ferramentas dentro de uma pipeline CI, 

configurada no ambiente GitHub Actions. As execuções resultaram em achados 

distintos para cada vulnerabilidade, apresentando diferenças significativas na forma 

de detecção e no nível de detalhamento apresentado por cada ferramenta. 

O Bandit demonstrou-se eficaz e direto em suas análises, identificando com 

precisão diversas vulnerabilidades e correlacionando-as de forma explícita aos 

identificadores CWE. Sua abordagem baseada em padrões fixos e regras simples o 

torna ágil e confiável para detecções clássicas, como hardcoded credentials, uso de 

eval() e algoritmos criptográficos obsoletos. Contudo, sua limitação está na ausência 

de uma análise contextual mais profunda, o que pode reduzir sua eficácia em casos 

mais complexos de fluxo de dados. 

O Semgrep, por sua vez, apresentou maior flexibilidade e amplitude, sendo 

capaz de detectar vulnerabilidades por diferentes caminhos de análise. Ele se 

destacou ao aplicar regras específicas para frameworks, como Flask e Django, além 

de regras genéricas da linguagem Python, o que ampliou consideravelmente sua 

cobertura. Essa característica permitiu que uma mesma vulnerabilidade fosse 

identificada sob diferentes perspectivas, resultando em uma análise mais rica e 

contextualizada. Um grande fator positivo também desta ferramenta foi sempre trazer 

recomendações diretas sobre como evitar aquela vulnerabilidade em um código. 

Já o CodeQL apresentou um altíssimo nível de profundidade analítica. Por meio 

de sua abordagem semântica, foi capaz de rastrear o fluxo de dados contaminados 

desde a origem até o ponto de exploração, identificando vulnerabilidades com grande 

precisão. Além disso, seus relatórios se destacaram por conter explicações 

detalhadas, exemplos de mitigação da vulnerabilidade e referências diretas aos 
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identificadores CWE, fornecendo uma visão bastante completa e didática do problema 

de segurança. 

De modo geral, observou-se que algumas vulnerabilidades foram detectadas 

por apenas uma ou duas ferramentas, enquanto a grande maioria foi identificada pelas 

três, permitindo uma análise comparativa aprofundada sobre o comportamento, a 

precisão e a abrangência de cada solução no contexto de segurança de aplicações 

em pipelines automatizados.   
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