Fatec

Americana
Ministro Ralph Biasi

% p» SAO PAULO

GOVERNO DO ESTADO

Centro
Paula Souza

FACULDADE DE TECNOLOGIA DE AMERICANA “Ministro Ralph Biasi”
Curso Superior de Tecnologia em Seguranc¢a da Informacgao

Felipe Antonio Santos da Silva

ANALISE DE RESULTADOS DE FERRAMENTAS SAST EM PIPELINES ClI

Americana, SP
2025

Fatec

Americana
Ministro Ralph Biasi

% p» SAO PAULO

GOVERNO DO ESTADO

Centro
Paula Souza

FACULDADE DE TECNOLOGIA DE AMERICANA “Ministro Ralph Biasi”
Curso Superior de Tecnologia em Seguranc¢a da Informacgao

Felipe Antonio Santos da Silva

ANALISE DE RESULTADOS DE FERRAMENTAS SAST EM PIPELINES ClI

Trabalho de Concluséo de Curso desenvolvido
em cumprimento a exigéncia curricular do Curso
Superior de Tecnologia em Seguranga da
Informacgao sob a orientagao do Prof. Esp. José
William Pinto Gomes

Area de concentragdo: Seguranca da
Informacao.

Americana, SP
2025

FICHA CATALOGRAFICA - Biblioteca Fatec Americana
Ministro Ralph Biasi- CEETEPS Dados Internacionais de
Catalogacao-na-fonte

SILVA, Felipe Antonio Santos da

Analise deresultados de ferramenta SAST em pipeline Cl. /
Felipe Antonio Santos da Silva - Americana, 2025.

54f,

Monografia (Curso Superior de Tecnologia em Seguranga da
Informagao) - - Faculdade de Tecnologia de Americana Ministro
Ralph Biasi — Centro Estadual de Educagdo Tecnolégica Paula Souza

Orientador: Prof. Esp. José William Pinto Gomes

1. Algoritmos 2. Python - linguagem de programagao 3.
Seguranga em sistemas de informagado. I. SILVA, Felipe Antonio
Santos da Il. GOMES, José William Pinto lIl. Centro Estadual de
Educagao Tecnolégica Paula Souza - Faculdade de Tecnologia de
Americana Ministro Ralph Biasi

CDU: 501.5
681.3.061Python
681.518.5

Elaborada pelo autor por meio de sistema automatico gerador de
ficha catalografica da Fatec de Americana Ministro Ralph Biasi.

Felipe Antonio Santos da Silva

Anilise de resultados de ferramentas sast em pipelines ci

Trabalho de graduacdo apresentado como exigéncia
parcial para obtengéo do titulo de Tecndlogo em Curso
Superior de Tecnologia em Seguranga da Informagao
pelo Centro Paula Souza ~ FATEC Faculdade de
Tecnologia de Americana Ministro Ralph Biasi.

Area de concentragdo: Seguranga da informagao.

Americana, 02 de dezembro de 2025.

“Ministro Ralph Biasi”

/A7

Lidia Regina de Carvalho Freitas Barban
Especialista
Fatec Americana “Ministro Ralph Biasi"

”

Thiago ga Silva Vieira
Mestre
Fatec Americana "Ministro Ralph Biasi®

RESUMO

Este trabalho propde uma analise comparativa da eficiéncia, cobertura e precisao de
trés ferramentas de Analise Estatica de Codigo (SAST): Semgrep, Bandit e CodeQL.
As ferramentas foram integradas a pipelines de Integragdo Continua (Cl) utilizando a
plataforma GitHub Actions, com o objetivo de detectar vulnerabilidades em um
repositério Python propositalmente vulneravel. A metodologia empregou um ambiente
controlado com workflow automatizado, executando as ferramentas sobre 0 mesmo
cédigo-fonte. A analise comparativa considerou a severidade e tipo de falha detectada,
além da taxa de falsos positivos. Os resultados evidenciaram que o Bandit se mostrou
eficaz para verificagdes rapidas e diretas; o Semgrep proporcionou ampla cobertura
contextual; e o CodeQL alcangou a maior profundidade analitica ao rastrear fluxos de
dados, resultando em menor incidéncia de falsos positivos. Conclui-se que a
combinagao dessas ferramentas amplia significativamente a eficacia das analises de
seguranca, reforgcando o conceito de DevSecOps e promovendo a integragéo continua
da segurancga ao ciclo de desenvolvimento de software.

Palavras-chave: Teste de seguranca, DevSecOps, Integragcado Continua.

ABSTRACT

This study presents a comparative analysis of three Static Application Security Testing
(SAST) tools Semgrep, Bandit, and CodeQL integrated into Continuous Integration (Cl)
pipelines using GitHub Actions. The goal was to evaluate their efficiency, coverage,
and accuracy in detecting vulnerabilities within a purposely vulnerable Python source
code. An experimental approach was adopted, executing each tool on the same
repository and comparing results regarding severity, types of detections, and false-
positive rates. The results demonstrated that Bandit excels in fast and direct
detections, Semgrep offers broader contextual coverage, and CodeQL provides
deeper semantic analysis through data flow tracking and reduced false positives. The
study concludes that combining multiple SAST tools enhances detection precision and
reinforces DevSecOps practices by embedding security consistently throughout the
software development lifecycle.

Keywords: Security Testing; DevSecOps; Continuous Integration.

LISTA DE ILUSTRAGOES

Figura 1 - Contagem de repositorios por linguagem de programacéao.
Figura 2 - Contagem de repositorios por linguagem de programacéo.
Figura 3 - Contagem de repositorios por linguagem de programacéo.

Figura 4 - Exemplo de configuragao Bandit no GitHub Actions.

Figura 5 -Linguagens disponiveis CodeQl.

Figura 6 - Verséo utilizada do Bandit.

Figura 7 - Versao utilizada do Semgrep.

Figura 8 - Credenciais Hardcoded.

Figura 9 - Injecéo SQL.

Figura 10 - Vulnerabilidade Command Injection.
Figura 11 - Vulnerabilidade path traversal.

Figura 12 - Codigo desserializagéo insegura.
Figura 13 - Cddigo vulnerabilidade eval.

Figura 14 - Criptografia fraca.

Figura 15 - Input de dados no banco sem validagao.
Figura 16 - Deteccao hardcoded credentials Bandit.
Figura 17 - Deteccao SQL Injection Bandit.

Figura 18 - Deteccao SQL Injection Semgrep.
Figura 19 - Deteccao SQL /njection CodeQl.
Figura 20 - Deteccao Command Injection Bandit.
Figura 21 - Deteccado Command Injection Semgrep.
Figura 22 - Deteccdo Command Injection CodeQl.
Figura 23 - Deteccao Path Traversal Semgrep.

Figura 24 - Detecgcao Path Traversal CodeQl.

Figura 25 - Detecgao Insecure Deserialization Bandit.

Figura 26 - Deteccao Insecure Deserialization CodeQl.

Figura 27 - Detecg¢ao Uso de eval Bandit.
Figura 28 - Detecg¢ao Uso de eval Bandit.
Figura 29 -Deteccio Uso de eval Bandit.
Figura 30 - Deteccao de criptografia fraca Bandit.

Figura 31 - Deteccao de criptografia fraca Semgrep.

14
17
17
18
20
22
23
26
27
28
28
29
30
31
31
32
33
34
35
36
37
38
39
40
42
44
45
46
47
48
48

Figura 32 - Deteccao de criptografia fraca CodeQl.
Figura 33 - Deteccao de sem validagao de input Bandit.

Figura 34 - Deteccao de sem validagao de input Semgrep.

49
51
51

LISTA DE QUADROS

Quadro 1 - Mapeamento das vulnerabilidades segundo OWASP 2021 e CWE. 25

SUMARIO

INTRODUGAODooeueieirreessessessesessesessessssssssssessssessssssssssesssssssesssssssssssssssenssssssenes 11
1 FUNDAMENTAGAO TEORICA ... e ssessssesaensessssassenns 13
1.1 Continuous INteGration ... e 13
1.2 Beneficios da utilizagdo de Cl.........ceeueeiiiiiiiircccccr e 13
1.3 Static Application Security Testing (SAST) ...cuveeeeciiiiiiiirrrrrneersssssseerennens 14
1.4 Beneficios da implantagao de ferramentas SAST........cccciiiiiiiiiinineees 15
T T=1 4 T [(= o N 16
1.6 Bandit........oee s 17
R 0o 1= 6 | 19

2 DESENVOLVIMENTO........cciiriririiiismrsns s s s s ssssmsn s e s s ssmmn s e s s s 21
21 Estrutura do WOrKFIOW ... s s 21
2.2 Configuracao Inicial do Workflow...........cccvviiiiiiiiiiicn i, 21
2.3 Configuragdao do Ambiente de EXeCUGAO...........ccorrmrrrmmmmmnisssirrrrnnennnnnnnnns 22
24 Andlise com Bandit.........ccccoiiiiiiiii 22
2.5 Andlise COmM SeMQGrep......ccccviirimmimmmmnmrriir s 23
2.6 Anadlise com CodeQLccooiiiiiiiiiiiiiee e e e e e e s e e e e e e e e eeees 23
2.7 Armazenamento dos Artefatosccccciiiiiii 24
2.8 Geragao do cédigo vulneravel e metodologia de teste.ccceeeeueeee. 24
2.8.1 Armazenamento de senhas em texto plano.........cccommeniiiiiiiiiinnnnnaes 25
2.8.2 Injegao SQL......cccooeeeiiiiiiii e 26
2.8.3 Execucgao de comandos de sistema sem sanitizagao........cc............ 27
2.8.4 Path traversal........coooii e ——————— 28
2.8.5 Desserializagao iNnSegura..........ccccurrriirnnnnnnn i —————— 29
2.8.6 Usoinseguro da fungdo eval..........ccccoiiiiiiiiiiiiiiin 29
2.8.7 Criptografia fraca...........ccccimirmmmmciiiii i e 30
2.8.8 Auséncia de tratamento de excegodes e validagao de entrada......... 31

3 RESULTADOS ... oo ooeiiieeeeeeeeeeeeee s s ses s s s ssssssesssssssssssssssssssssssssssssnsssnnsnsnnnssnnnnnnns 32
3.1 Hardcoded Credentialscccuueenneeiiiiiiimiinnssssss s s s s snssss s e snnnnes 32

B 0 T | 10 1Y o2 { o o 33
3.21 SQL Injection Banditccccoommmmriiiiiiiiiieeerre e 33

3.2.2 SQL Injection SemQgrep ... 33

3.2.3 SAQL Injection CodeQl.........cccmmmriiiiiiiiiimrerre e e 34

3.2.4 Conclusao SQL INjectioncccceevviviiisiiiisssisss s snnas 35
BCTRC T 00T T/ =T Lo [N 1] 1= 1 o o 1 35
3.3.1 Command Injection Banditccceremmmciiiiiiiirr e 36
3.3.2 Command Injection SeMJrepccccrrrrrrrrsrrrrsnsnsssssssss s 36
3.3.3 Command Injection CodeQl.............ccoermmmmmriiiiiiririenrrr e 38
3.3.4 Conclusao Command Injection...............euuueeeeiiiiiimisnnnnnnssssseesensnnnnnsnns 38
3.4 Path traversaleeciiiiiiiiiiiecnis s s 39
3.4.1 Path traversal SEemMQrep.........cccccrerrrrrrinnnnnnnnnsss s 39
3.4.2 Path Traversal CodeQl ... 40
3.4.3 Conclusao path traversal..........cccccoiiiiiecciiiieeccce e e e 41
3.5 Insecure Deserializationuuuueiiiiiiiiinseeneiin s e 42
3.5.1 Insecure Deserialization Bandit...............ccooeeeeiiiiiiiiimnc s 42
3.5.2 Insecure Deserialization SEMQrepccccerrrrrrrrrrnnsnnsnsnnsssssssssssssas 42
B0 S 0o T -1 & | 43
3.5.4 Conclusao Insecure Desserializationc.ccooeririiinnnnnnnnnnsnnnnnnnnns 44
3.6 Usode Eval.......ciiiiiirrrrn s s s s s 44
3.6.1 Bandit ... s 45
BT 71 4 o | Y o PN 45
B0 T 0o T -1 & | 46
3.6.4 Conclus@o CWE-94........... e s 47
3.7 Criptografia Fracacccooiiiiiiininn s 47
B N A R = 7- T4 e 1 48

SC T 7 11 5 o | Y o PN 48
R0 T 0o Yo [T | PSR 49
3.7.4 Conclusao Criptografia Fraca.............ccooviniiiisiiiissninnsi s 50
3.8 Sem validagao de input.............coeeeeeeciiiiiiiiiriess e e 50
BT 0 TR = 7- T4 e 1 50
3.8.2 SEMGIEPuuuuui s 51
3.8.3 Conclusao sem validagao de input..........cccceuueeeeiiiiiiiiinnnne s 51
CONSIDERAGOES FINAIScooeeuirirereeesessessessessesessssessssssssssssssssssssssseessesssnees 53

REFERENGCIAS.....coeeeeeeeeeeteeeetesesesesesssssessssesssssssssessssssssssssssessssessssessssessssesssnessnnesns 55

11

INTRODUGAO

Conforme o tempo passa, cada vez mais o ser humano se torna dependente
da tecnologia e, com ela, vém também os seus riscos. A todo momento, as pessoas
estao expostas, seja navegando na internet ou utilizando um aplicativo, por exemplo,
vivendo a mercé de que as empresas cuidem devidamente da seguranga dos dados
de suas aplicagdes.

Uma area que vem ganhando cada vez mais espago no ambito tecnoldgico e
de desenvolvimento de sistemas é Development Security and Operations
(DevSecOps), setor que enfatiza o desenvolvimento seguro e a importancia de olhar
para a infraestrutura e seguranga de uma aplicagdo desde o inicio de sua construgao
até o momento em que ela é publicada, podendo usufruir de metodologias como
Continuous Integration (Cl).

A seguranca cibernética tem se mostrado uma necessidade central para
organizagdes ao redor do mundo, o quéo complexas e escalaveis as aplicagbes estéo
se tornando. Consequentemente, técnicas de ataques cada vez mais sofisticadas
surgem com o objetivo de explorar vulnerabilidades, podendo causar enormes
impactos financeiros, de reputacao e influenciar diretamente na privacidade de dados.
No cenario atual de desenvolvimento, em que praticas de Cl sdao amplamente
utilizadas pelas equipes para agilizar o processo de integragdo de solugdes, é
fundamental garantir a seguranga durante toda a pipeline.

Este trabalho, portanto, se justifica pela necessidade constante e crescente de
avaliar as ferramentas de seguranga dentro dessas pipelines. Mostrar as principais
diferencas quanto aos resultados obtidos por ferramentas Static Application Security
Testing (SAST), por exemplo, € essencial para compreender a efetividade da
seguranga no desenvolvimento de sistemas, contribuindo para a melhoria dos
processos e da efetividade das operacgdes, visto que a utilizagdo desses meios de
testes de seguranga é fortemente recomendada por padrées de seguranga como o
Open Web Application Security Project (OWASP).

No contexto da ciberseguranca, é fundamental analisar o desenvolvimento das
aplicacbes e garantir que elas sejam devidamente testadas antes de serem
disponibilizadas para clientes. Seguindo essa ideia, tem-se como problema de

12

pesquisa: quais seriam as possiveis diferencas nos resultados obtidos por
ferramentas de teste de software estatico?

Tem-se como objetivo geral, neste trabalho, analisar os resultados obtidos
através da integragao de ferramentas SAST em pipelines Cl, com o intuito de melhorar
a seguranga no setor de desenvolvimento de sistemas, otimizando a detecgao
antecipada de vulnerabilidades e problemas nas aplicacées, a fim de promover
praticas de desenvolvimento seguro, bem como a integracéo continua.

Dito isso, pode-se levantar algumas hipdteses relacionadas ao uso das
ferramentas SAST. Elas influenciam positivamente o desenvolvimento de sistemas,
pois, com elas, é possivel manter um controle melhor sobre vulnerabilidades e erros
dentro do ambiente de desenvolvimento, a incidéncia desses riscos e podendo
melhorar significativamente a qualidade do codigo desenvolvido, garantindo assim o
desenvolvimento eficaz da aplicagdo, com énfase na seguranca e na agilidade da
metodologia CI.

O percurso metodologico deste trabalho foi realizar um estudo de caso que
permitiu a analise pratica das ferramentas SAST em um ambiente de pipeline Cl. Os
dados foram coletados por meio da execugao e configuragdo destas ferramentas no
pipeline que simularam também o processo de integragdo continua. A partir dos
resultados observados nas simulagdes, foi realizado uma analise comparativa, onde
pdde ser levado em consideracdo a precisdo e capacidade de identificacdo de
vulnerabilidades. A escolha desse método justifica-se pela necessidade de um
ambiente controlado que permita observar diretamente o desempenho das

ferramentas no contexto de automacéo ClI.

13

1 FUNDAMENTAGAO TEORICA

1.1 Continuous Integration

Segundo Shahin, Babar e Zhu (2017), a Integragao Continua (Cl) € uma pratica
do desenvolvimento de software na qual os membros de uma equipe integram
frequentemente seus codigos em um mesmo repositorio, podendo realizar multiplas
integracbes ao longo de um unico dia. Essa metodologia contribui para um
desenvolvimento mais rapido, com maior qualidade, aumentando a produtividade das
equipes, uma vez que esta fortemente associada a execucdo de testes

automatizados.

1.2 Beneficios da utilizagao de ClI

Jani (2023), traz uma lista de beneficios que devem ser considerados ao decidir

entre utilizar ou ndo a metodologia CI.

1. Tempo de langamento no mercado: Realizar a automatizagéo de tarefas
como Build, testes, processos de implantacdo e otimizagdo do
desenvolvimento de novas solugdes e atualizagbes, consequentemente,
permite que as empresas atendam as rapidas mudangas do mercado.

2. Qualidade Melhorada: Tarefas automatizadas e integragdo continua de
novos codigos no ambiente de desenvolvimento, permitem a detecgéo e
resolucdo precoce de problemas, garantindo uma melhor qualidade e
confianca no sistema.

3. Reducgao de riscos: A implantagao continua permite mudangas mais ageis,
com isso, consegue-se reduzir os riscos em grandes langamentos, onde

nestes casos, a complexidade da aplicagao se torna muito maior.

Conforme a pesquisa feita por Cunha, Gido, Pereira e Flores (2024), onde
foram analisados dados de criagdo de repositérios no GitHub entre 2012 e 2023,
realiza-se a analise de 612.557 repositérios, destes, 200.023, ou seja, 32.7% possuem

a metodologia CI integrada. Os autores também complementam dizendo sobre a

14

usabilidade desta metodologia integrado a diferentes linguagens de programacao,
onde mostra um cenario vasto de oportunidades de uso, sendo que Python e

JavaScript sdo as linguagens que aparecem no topo do grafico.

Figura 1 - Contagem de repositérios por linguagem de programacéo.

50,000
40,000
30,000
20,000
el
E 10,000
3 ’
o

5,000
4,000
3,000
2,000
1,000

a [a o © + o 7 () > 3 - - & € X

= 2 c O - + = S 2 O 2 = s = Q

<?§ & @ = 0 & « & o E &6 @2 .‘g

g & S

- - %

Q

=

Q

=]

3

language

Fonte: Gido et al. (2024).

1.3 Static Application Security Testing (SAST)

“O teste de segurancga é conhecido como um processo destinado a
revelar falhas nos mecanismos de seguranga de um sistema de
informagédo que protegem os dados e mantém a funcionalidade
conforme o esperado. Existem dois tipos principais de teste de
seguranga: o teste estatico e o teste dindmico. O SAST utiliza uma
ferramenta de analise de cddigo estatico para examinar o cédigo-fonte
e identificar possiveis vulnerabilidades ou falhas de software”
(Nguyen-Duc et al, 2021, p. 3).

A respeito de técnicas comuns utilizadas por ferramentas SAST, os autores
complementam dizendo:
1- Analise sintatica, como chamadas a fungdes de API inseguras ou uso de

opgbes de configuragdo inseguras. Um exemplo dessa categoria seria a

15

analise de programas em Java que chamam java.util.random (que nao
fornece um gerador de numeros aleatdrios criptograficos seguro).

2- Analise semantica, que exige o entendimento das semanticas do programa,
como o fluxo de dados ou o controle de fluxo de um programa. Essa analise
comeca representando o cédigo-fonte por meio de um modelo abstrato (por
exemplo, grafo de chamadas, grafo de controle de fluxo ou diagrama de
classe/sequéncia UML). Um exemplo dessa categoria seria uma verificagao
de fluxos diretos de dados de uma entrada de formulario de usuario para
uma instrugdo SQL (indicando uma vulnerabilidade potencial de injegcao de
SQL).

1.4 Beneficios da implantagao de ferramentas SAST

Nutalapati (2023), traz uma série de beneficios a respeito da implantagao desse
tipo de ferramentas, a seguir:
1- Eficiéncia e velocidade
a. Como base dos beneficios estdo a eficiéncia e velocidade da SAST,
que possui a capacidade de executar diversos testes de forma
rapida, reduzindo significativamente o tempo de descoberta de falhas
no codigo, prevenindo vulnerabilidades e aumentando, de modo
geral, a seguranga no ambiente da aplicagao.
2- Cobertura abrangente
a. As ferramentas de teste de seguranga automatizado cobrem uma
ampla gama de cenarios e vulnerabilidades de seguranga, permitindo
testes sistematicos contra problemas como XSS, injecdo SQL,
armazenamento inseguro de dados e controles de acesso
inadequados. Isso garante uma avaliagdo completa da seguranga do
aplicativo, reduzindo a chance de falhas criticas passarem
despercebidas.
3- Consisténcia e confiabilidade
a. Automatizados, esses testes oferecem resultados padronizados e
reproduziveis, evitando os erros humanos dos testes manuais e
garantindo avaliagdes de vulnerabilidades confiaveis ao longo do

desenvolvimento.

16

EaN
1

Escalabilidade
a. Essas ferramentas sdo escalaveis, suportando testes extensivos e
repetitivos conforme a complexidade e o tamanho das aplicagdes
crescem, particularmente em ambientes de CI.
5

Deteccao precoce de vulnerabilidade
a. Ao integrar testes de seguranca desde o inicio do desenvolvimento,
é possivel identificar e corrigir vulnerabilidades antes do langamento,
reduzindo riscos de exploracao e facilitando a correcéo.
6- Custo-beneficio
a. Embora requeira um investimento inicial, o teste automatizado reduz
a necessidade de extensos testes manuais e os custos de incidentes
de seguranga, como esforgos de remediac&do e danos reputacionais.

7- Integragao com processos de desenvolvimento
a. Esses testes podem ser integrados aos fluxos de trabalho de
desenvolvimento, especialmente em pipelines de Cl, assegurando
uma avaliagdo continua da seguranga em tempo real.
1.5 Semgrep

Com base na documentacgéo da ferramenta, Semgrep (2025), Semgrep Code
€ um mecanismo de analise estatica de cdédigos com uma vasta gama de linguagens
de programacgao possiveis de se utilizar e tem a capacidade de detecgéo tanto de
falhas de segurangca quanto a aplicagdo de regras customizadas de estilo e
vulnerabilidade, caso necessario. O site da ferramenta também deixa de forma muito
explicita dizendo “You can use Semgrep Code to scan local repositories or integrate it
into your CI/CD pipeline to automate the continuous scanning of your code”
(SEMGREP, 2025), ou seja, ressaltando a capacidade e um ponto forte, que é
justamente a integracdo com pipelines Cl para a melhora de processos de seguranga
durante o desenvolvimento de software.

Para a linguagem Python, a documentagao de Semgrep (2025), traz uma vasta
capacidade de deteccgbes, como por exemplo, a Figura 2 mostra os frameworks

disponiveis para que Semgrep Code consiga realizar scans.

17

Figura 2 - Contagem de repositérios por linguagem de programacéo.

Framework / library Category

Django Web framework
Flask Web framework
FastAPI Web framework

Fonte: Documentagao Semgrep. (2025).

A ferramenta também apresenta constante evolugado no contexto de melhorias
para seguranga quando diz: “Semgrep's benchmarking process involves scanning
open source repositories, triaging the findings, and making iterative rule updates. This
process was developed and is used internally by the Semgrep security research team
to monitor and improve rule performance.” (Semgrep, 2025) ou seja, as equipes de
desenvolvimento de Semgrep buscam realizar scans de forma periédica em
repositérios open source a fim de melhorar os padrdes de regras do Semgrep. Na
Figura 3 é apresentada uma tabela disponibilizada pela desenvolvedora do Semgrep

referente a ultima execucéo dos testes de melhoria da ferramenta.

Figura 3 - Contagem de repositérios por linguagem de programacéo.

Benchmark true positive rate (before Al processing) for latest ruleset 84%

Lines of code scanned ~20 million
Repositories scanned 192
Findings triaged to date ~1000

Fonte: Documentacao Semgrep. (2025).

1.6 Bandit

De acordo com a documentacéo oficial do Bandit (2024), diz que é uma

ferramenta desenvolvida com o intuito de identificar problemas e falhas em cédigos

18

Python por meio da analise da arvore sintatica abstrata (AST) utilizando plugins que
analisam o coédigo com base em padrdo conhecidos de seguranga da informacéao e
geram relatorios detalhados apds as verificagbes. A documentagdo mostra que, a
ferramenta € capaz de ser configurada via arquivos de configuragdo como YAML, e
integrado em ferramentas de pipelines Cl, como o Github Actions.

O Bandit também suporta a configuragcdo de plugins de teste de forma
individual, nos quais o usuario pode ajustar parametros internos de cada verificagao.
Essa abordagem justamente implementada nestes arquivos de configuragdo em
formato YAML, possibilita alterar o comportamento de regras especificas, como o
tratamento de chamadas a comandos do sistema operacional (os.system, entre
outros) permitindo ajustar o nivel de rigor da analise conforme a necessidade de
verificagao por parte do usuario.

A documentagao da ferramenta Bandit (2024) também traz explicagdes sobre
a capacidade de integragdes possiveis em ambientes de pipelines Cl. Onde também
é explicitado com um exemplo de cddigo, a possibilidade do uso integrado ao Github
Actions, como mostra a Figura 4:

Figura 4 - Exemplo de configuragcédo Bandit no GitHub Actions.

Example YAML Code for GitHub Actions Pipeline

Below is an example configuration for the GitHub Actions pipeline:

name: Bandit

on:
workflow_dispatch:

jobs:
analyze:

runs-on: ubuntu-latest

permissions:
Required for all workflows
security-events: write
Only required for workflows in private repositories
actions: read
contents: read

steps:
- name: Perform Bandit Analysis

uses: PyCQA/bandit-action@vl

Fonte: Documentacao oficial do Bandit (2025).

19

Para os resultados, a documentagao Bandit (2024) traz uma ampla gama de
formatos possiveis para se exportar relatorios do Bandit apds analises. Nesta lista

estédo presentes os formatos csv, html, json, sarif, screen, text, xml, yaml.

1.7 CodeQL

A documentagdo CodeQL (2025), traz informagdes dizendo a respeito o foco
da ferramenta é ajudar desenvolvedores a automatizagdo checagens de seguranga e
integrar isto a seus respectivos workflows de desenvolvimento. E também uma
ferramenta altamente vasta quando se diz a quais linguagens ela pode abranger, por
exemplo JavaScript, C, C++, C#, Java e claro, Python. Sob cada linguagem, é bem
importante também notar a capacidade da ferramenta de ser aplicada frameworks,
que no caso do python nota-se uma lista com mais de 30 bibliotecas, mas por exemplo
dentre os mais conhecidos destacam-se Django, FastAPI, Flask, Pycurl, requests etc.

CodeQL funciona com base em queries que sao utilizadas para encontrar
problemas em caodigos fontes, problemas estes que podem estar associados a
vulnerabilidades e falhas de segurancga. De acordo com a documentagao oficial da
CodeQL (2025), cada query é responsavel por identificar padrdes de vulnerabilidades,
falhas légicas ou comportamentos suspeitos em um determinado trecho de cddigo. As
consultas sao divididas em dois tipos principais: alert queries e path queries. As
primeiras servem para destacar trechos de codigo que apresentam problemas
pontuais, enquanto as segundas descrevem o fluxo de dados entre uma origem
(source) e um destino (sink), permitindo detectar vulnerabilidades de fluxo, como SQL
Injection e Cross-Site Scripting (XSS).

Para as linguagens, como mostra a Figura 5, CodeQl possui varias das mais

famosas linguagens disponiveis para uso.

20

Figura 5 -Linguagens disponiveis CodeQl.

CodeQL language guides

Experiment and learn how to write effective and efficient queries for CodeQL databases
generated from the languages supported in CodeQL analysis.

CodeQL for C and C++
CodeQL for C#
CodeQL for GitHub Actions
CodeQL for Go
CodeQL for Java and Kotlin
CodeQL for JavaScript and TypeScript
CodeQL for Python
CodeQL for Ruby
CodeQL for Rust
CodeQL for Swift
Fonte: Documentacéo oficial do CodeQL (2025).

21

2 DESENVOLVIMENTO

Nesta etapa, sera contextualizado o formato do desenvolvimento pratico deste
trabalho. Sera utilizada a ferramenta GitHub para realizar a configuracdo de um
repositorio e através da ferramenta nativa do GitHub, chamada GitHub Actions sera
construido e configurado o workflow CI.

Utilizou-se um unico repositério Git com branch principal main, assegurando
que Bandit, Semgrep e CodeQL analisassem sempre o mesmo snapshot de cédigo.

A partir deste repositério sera realizado push requests para ativar os workflows.
Importante destacar que, propositalmente a fim de testes, estas push requests tera

codigos altamente vulneraveis que foram desenvolvidos na linguagem python.

2.1 Estrutura do workflow

Para a conducédo dos experimentos, foi definido um workflow dentro do diretorio
.github/workflows/ do repositério, utilizando a ferramenta GitHub Actions para
automacao das execucoes.

Denominado sast_all.yml, o workflow foi estruturado com o propésito de simular
um ambiente real de integracdo continua (Cl) em um contexto DevSecOps, no qual
multiplas ferramentas de analise de segurangca sao executadas de forma
automatizada a cada alteragdo no codigo-fonte. Esse workflow €& acionado
automaticamente por eventos de push request na branch principal, e executa em
sequéncia as ferramentas Bandit, Semgrep e CodeQL. Ao término da execucgao, os
resultados sdo consolidados em artefatos (arquivos JSON e TXT). Tal abordagem
representa o cenario de uma pipeline corporativa, onde diferentes testes de seguranca
operam simultaneamente, permitindo avaliar a integragao pratica dessas ferramentas

no ciclo de desenvolvimento.

2.2 Configuragao Inicial do Workflow.

1. Nome e Triggers: O workflow € denominado "SAST - CodeQL + Semgrep +

Bandit" e € acionado automaticamente em trés situagdes: quando ha um push

22

para a branch main, quando uma pull request € aberta para a branch main, ou
manualmente através do workflow_dispatch.

Permissoes: O workflow define permissdes especificas de leitura para
conteudo e agdes do repositério, além de permissédo de escrita para eventos
de segurancga, essencial para o registro de vulnerabilidades identificadas.
Controle de Concorréncia: Implementa um mecanismo que garante que
apenas uma execucdo do workflow ocorra por vez para cada referéncia
(branch), cancelando execugdes anteriores ainda em andamento quando uma

nova é iniciada.

2.3 Configuragio do Ambiente de Execugio

4. Ambiente do Job: O job é executado em um ambiente Ubuntu na versdo mais

recente, com um tempo limite de 30 minutos para evitar execucdes indefinidas
que possam consumir recursos desnecessariamente.

Checkout do Cédigo: Utiliza a action checkout@v4 para clonar o repositério e
disponibilizar o codigo-fonte para analise pelas ferramentas de seguranca.
Configuragao do Python: Instala o Python na verséo 3.11, estabelecendo o
ambiente necessario para execug¢ao das ferramentas de analise estatica que
serao utilizadas.

Criacdo do Diretério de Relatérios: Cria uma pasta dedicada chamada
"reports" onde todos os relatérios gerados pelas diferentes ferramentas seréao

armazenados de forma organizada.

2.4 Analise com Bandit.

Instalagao e Verificagao: O Bandit, ferramenta especializada em identificar
problemas de seguranga comuns em codigo Python, é instalado via pip e sua

versao é verificada para garantir a instalagao correta.

Figura 6 - Verséao utilizada do Bandit.

v @ Check Bandit version

» Run bandit --version
bandit 1.8.6

Fonte: GitHub Action (2025).

23

9. Execugao da Analise: Executa o Bandit recursivamente em todo o diretério do
projeto, gerando dois formatos de relatorio: JSON para processamento
automatizado e TXT para leitura humana. O comando utiliza "|| true" para

garantir que falhas nao interrompam o workflow.

2.5 Analise com Semgrep
10.Instalagao e Verificagao: Instala o Semgrep junto com a ferramenta ja para
processamento de JSON. O Semgrep é uma ferramenta de analise estatica

que utiliza padrbées customizaveis para identificar vulnerabilidades.

Figura 7 - Versao utilizada do Semgrep.

v @ Check Semgrep version

» Run semgrep --version
1.141.1

Fonte: GitHub Action (2025).

11.Execugao com Multiplas Configuragdes: Executa o Semgrep utilizando trés
conjuntos de regras: regras especificas para Python (p/python), auditoria de
seguranga (p/security-audit) e as dez principais vulnerabilidades da OWASP
(p/owasp-top-ten).

12.Processamento dos Resultados: Gera um relatoério inicial em formato JSON
e, em seguida, utiliza o jq para extrair e formatar as informacdes relevantes em
um arquivo TXT legivel, incluindo ID da verificagédo, severidade, localizagao e

mensagem.

2.6 Analise com CodeQL

13.Inicializagao: Utiliza a action oficial do GitHub para inicializar o CodeQL,
especificando Python como linguagem alvo. O CodeQL é uma ferramenta

avangada de analise semantica de cddigo desenvolvida pelo GitHub.

24

14.Verificagao de Metadados: Executa um comando para exibir a versao da
action do CodeQL utilizada, auxiliando na rastreabilidade e resolugcéo de
possiveis problemas.

15.Execucao da Analise: Realiza a analise completa do coédigo utilizando o
CodeQL, configurado para nao fazer upload automatico dos resultados e
armazenar a saida localmente no diretério de relatérios.

16.Conversao de Formatos: Converte o arquivo SARIF (formato padréo de saida
do CodeQL) para JSON e extrai informagdes em formato TXT, processando o
ID da regra violada e a mensagem correspondente para cada vulnerabilidade

identificada.

2.7 Armazenamento dos Artefatos

17.Upload dos Relatérios: Utiliza a action upload-artifact@v4 para armazenar
todos os relatérios gerados no workflow. A condigao "if: always()" garante que
os artefatos sejam salvos mesmo se etapas anteriores falharem.

18.Configuragdo de Retencao: Define que os artefatos serdo mantidos por 7
dias, permitindo analise posterior dos resultados enquanto gerencia o espago
de armazenamento de forma eficiente. O artefato € nomeado "sast-reports" e

inclui todo o conteudo do diretdrio reports.

2.8 Geragao do codigo vulneravel e metodologia de teste.

Para a execucgao pratica deste trabalho, foi desenvolvido um conjunto de
coédigos propositalmente vulneraveis, com o objetivo de testar a capacidade de
deteccdo das ferramentas SAST integradas a pipeline. A linguagem escolhida foi
Python, por ser amplamente suportada por todas as ferramentas utilizadas (Bandit,
Semgrep e CodeQL) e possuir um ecossistema consolidado de bibliotecas e praticas
de seguranga documentadas.

O cddigo vulneravel foi criado de forma controlada, buscando representar
vulnerabilidades reais encontradas no contexto de desenvolvimento de aplicagdes. A
tabela 1 mostrara todas as vulnerabilidades selecionadas e as respectivas
identificadores de acordo com OWASP e CWE.

Quadro 1 - Mapeamento das vulnerabilidades segundo OWASP 2021 e CWE.

25

Vulnerabilidades OWASP 2021 CWE
Hardcoded Credentials A02:2021 Sensitive Data | CWE-798
Exposure
SQL Injection (Query por | A03:2021 Injection CWE-89

concatenacgao)

Command Injection A03:2021 Injection CWE-78

Path traversal A05:2021 Security | CWE-22
Misconfiguration

Insecure Deserialization A05:2021 Security | CWE-502
Misconfiguration

Uso de eval() - RCE A03:2021 Injection CWE-94

Criptografia fraca A02:2021 Sensitive Data | CWE-327
Exposure

Sem validacao de input A01:2021 Input Validation | CWE-20

Fonte: Adaptado de OWASP (2021) e MITRE CWE (2024)

2.8.1 Armazenamento de senhas em texto plano.

Manter credenciais diretamente no codigo-fonte expde informagdes sensiveis

e facilita o vazamento de segredos em repositorios publicos, logs ou pipelines. A

OWASP (2025), explica que essa vulnerabilidade pode comprometer ambientes de

producdo caso o codigo seja compartilhado ou comprometido.

De acordo com a OWASP (2025), credenciais nunca devem ser armazenadas

em codigo-fonte. Recomenda-se utilizar secret managers (como AWS Secrets

Manager, Hashicorp Vault ou GitHub Actions Secrets) e aplicar rotagdo periddica de

segredos.

26

Figura 8 - Credenciais Hardcoded.

"admin123”
"my secret _key 12345"

@app .route(' /debug"’)

def debug_info():

return {

‘secret_key': SECRET_KEY,
‘database_password®': DATABASE_PASSWORD

Fonte: Desenvolvido pelo autor (2025).

2.8.2 Injecao SQL

A OWASP (2025) explica que a vulnerabilidade de SQL /njection ocorre quando
comandos SQL s&o construidos dinamicamente a partir de entradas do usuario sem
qualquer validagdo ou parametrizagcdo, permitindo que um atacante modifique a
consulta original e execute comandos arbitrarios no banco de dados. No cddigo
utilizado neste estudo, o endpoint /user constroi a query por concatenagao direta
("SELECT * FROM users WHERE id = {user_id}") e o endpoint /update atualiza
registros concatenando user_input, demonstrando cenarios classicos de injegao
(OWASP A03:2021 — Injection; CWE-89). O impacto inclui vazamento massivo de
dados, alteragao ou exclusao de registros, elevagao de privilégios e possivel tomada
completa do servidor de banco de dados.

Como mitigagdo, a OWASP (2025) recomenda o uso de prepared
Statements/queries parametrizadas (por exemplo, cursor.execute("SELECT * FROM
users WHERE id = ?", (user_id,))), validacao estrita de tipos/formatos de entrada (ex.:
aceitar somente inteiros para id) e politicas de minimos privilégios no usuario do
banco. Essas medidas reduzem drasticamente a superficie de ataque e permitem

atribuir com precisao qualquer achado da ferramenta SAST ao trecho vulneravel.

27

Figura 9 - Injecéo SQL.

def ensure_db():
conn = sqlite3.connect('users.db"’)
c = conn.cursor()
c.execute("CREATE TABLE IF NOT EXISTS users (id INTEGER PRIMARY KEY, name TEXT, data TEXT);")
c.execute("INSERT OR IGNORE INTO users (id, name, data) VALUES (1, ‘"alice', ‘demo’);")
conn.commit()
conn.close()

ensure_db()

@app .route(' /user")

def get_user():

user_id = request‘args.get('id'ﬂ

conn = sqlite3.connect('users.db")

cursor = conn.cursor()

query = f"SELECT * FROM users WHERE id = {user_id}"
tRY:

cursor.execute(query)

result = cursor.fetchall()
except Exception as e:

result = [("error", str(e))]
conn.close()
return str(result)

Fonte: Desenvolvido pelo autor (2025).

2.8.3 Execugao de comandos de sistema sem sanitizagao

Determinadas funcdes, de acordo com a OWASP, permitem a execucao de
comandos do sistema operacional. Quando combinadas com entradas externas nao
validadas, tornam-se vetores para Command Injection, permitindo que o atacante
execute comandos arbitrarios no servidor. Essa vulnerabilidade é classificada pela
OWASP como Injection (A03:2021).

A OWASP recomenda evitar a execucao direta de comandos, preferindo APls
de alto nivel. Se for inevitavel, deve-se usar lista de argumentos totalmente

controladas, sanitizagao rigorosa, e nunca concatenar strings vindas do usuario.

28

Figura 10 - Vulnerabilidade Command Injection.

@app .route('/ping")
def ping server():
host = request.args.get('host")

result = os.system(f"ping -c 1 {host}"
return f"Ping result: {result}”

Fonte: Desenvolvido pelo autor (2025).

2.8.4 Path traversal

E a falha que permite que um invasor acesse arquivos arbitrarios do sistema
ao manipular entradas que representam caminhos de ficheiros (por exemplo,
.I..letc/passwd). No exemplo pratico do repositorio, o endpoint /file abre diretamente
o caminho informado por flename sem normalizagdo ou confinamento, expondo assim
qualquer arquivo legivel pelo processo da aplicagdao (OWASP A05:2021 — Security
Misconfiguration; CWE-22). As consequéncias incluem divulgacdo de arquivos
sensiveis (configuragdes, chaves, credenciais), informagdo que facilita ataques
subsequentes e, em casos extremos, modificacdo de arquivos se houver escrita.

A mitigagdo recomendada envolve restringir a leitura/escrita a um diretério
especifico (chroot-like ou verificar os.path.commonpath), normalizar e validar o
caminho (remover .. e caracteres inesperados) e, quando possivel, mapear nomes
l6gicos (IDs) para arquivos reais em vez de aceitar caminhos arbitrarios. Implementar
essas protecdes também facilita a deteccdo de falsos positivos nas ferramentas

SAST, pois o padrao inseguro fica mais simples de identificar.

Figura 11 - Vulnerabilidade path traversal.

@app.route('/file")
v def read file():

filename = request.args.get('name’)

with open(filename, ‘r') as f:
content = f.read()
return content

Fonte: Desenvolvido pelo autor (2025).

29

2.8.5 Desserializagao insegura.

Ocorre quando um objeto serializado recebido de fonte externa € desserializado
sem validagao, possibilitando a execugéo de codigo arbitrario ou instancia de classes
maliciosas no contexto da aplicagdo. No codigo analisado, o endpoint /load chama
pickle.loads(data.encode()) sobre dados recebidos externamente — uso que é
notoriamente perigoso em Python, ja que pickle pode executar fungdes arbitrarias
durante a desserializagdo (OWASP A05:2021 — Security Misconfiguration; CWE-
502). O impacto tipico inclui execugao remota de cddigo (RCE), escalonamento de
privilégios e comprometimento total do servidor da aplicagéo.

As principais mitigagcées de acordo com a OWASP, consistem em n&o utilizar
pickle para dados nao confiaveis, optar por formatos seguros (JSON, por exemplo),
aplicar whitelist de tipos esperados ao desserializar, ou utilizar mecanismos de
desserializagdo com validagao e sandboxing. Quando a aplicagao exige serializagcao
rica, € recomendado empregar bibliotecas que implementem mecanismos explicitos
de seguranga e exigir assinatura/assinatura HMAC dos blobs serializados para

garantir integridade e origem.

Figura 12 - C4digo desserializagao insegura.

@app .route(' /load")
def Lload _data():

data = request.args.get(’'data’)

obj = pickle.loads(data.encode())
return str(obj)

Fonte: Desenvolvido pelo autor (2025).

2.8.6 Uso inseguro da fungao eval.

A vulnerabilidade de Code Injection ocorre quando cddigo malicioso € injetado
e executado pela aplicagdo, explorando o tratamento inadequado de dados néao
confiaveis. Segundo a OWASP, este tipo de ataque é possivel devido a falta de
validagao adequada de entrada e saida de dados, incluindo verificagdo de caracteres

permitidos, formato de dados e quantidade esperada de informagdes.

30

A funcao eval é particularmente perigosa, pois executa dinamicamente uma
string como codigo na linguagem de programacéao utilizada. Quando essa fungéo
recebe dados controlados pelo usuario sem validagao apropriada, abre-se caminho
para RCE, permitindo que atacantes executem comandos arbitrarios no sistema.

Figura 13 - Cdodigo vulnerabilidade eval.

@app .route('/calc")
def calculate():

expression = request.args.get('expr')

result = eval(expression)
return str(result)

Fonte: Desenvolvido pelo autor (2025).

2.8.7 Criptografia fraca.

A OWASP (2025), explica que o uso de algoritmos criptograficos fracos para
hashing de senhas ou protecdo de dados sensiveis compromete a resisténcia a
ataques de forga bruta e a tabelas arco-iris. No cdédigo disponibilizado, a fungéo
weak_hash utiliza hashlib.md5 para derivar um “hash” de senha, pratica inadequada
para armazenamento de credenciais (OWASP A02:2021 — Sensitive Data Exposure;
CWE-327). MD5 é considerado criptograficamente quebravel e ndo prové resisténcia
suficiente contra ataques modernos; senhas hashed com MD5 sdo rapidamente
recuperaveis.

A mitigacdo adequada, de acordo com a OWASP €& empregar algoritmos e
derivagcdes de chave projetados para senhas: bcrypt, scrypt, argon2 ou, quando
necessario, pbkdf2 hmac com salt unico por senha e parametros de iteracéo
elevados. Além disso, nunca se deve armazenar segredos hardcoded (ver paragrafo
ja existente) e é importante combinar hashing seguro com politicas de salting,

throttling de tentativas de login e armazenamento em repositorios protegidos.

Z
5
2
G
3
7
Z
'
Z
2
3
Z
?
4
7
Z
3
?
Z
7
z
s
3
'
%
Z
2
Z
2
2

31

Figura 14 - Criptografia fraca.

k_hash(password):
return hashlib.md5(password.encode()).hexdigest()

@app .route(' /hash’)

def hash _endpoint():
pwd = request.args.get('pwd’, ")
return f"MD5: {weak hash(pwd)}"

Fonte: Desenvolvido pelo autor (2025).

2.8.8 Auséncia de tratamento de excegoes e validagao de entrada

A falta de validagdo dos dados fornecidos pelo usuario pode resultar em

crashes, vazamento de informagdes e comportamentos inesperados. Além disso, a

auséncia de tratamento de excegdes (try/except) facilita a exposigcao de erros internos

ao usuario, o que pode ser explorado para engenharia reversa ou ataques de

enumeragdo. Essa categoria esta relacionada ao Security Misconfiguration
(A05:2021) e a Input Validation (A01:2021 — Broken Access Control).

Para mitigacao, a OWASP recomenda:

validagao positiva (“allowlist”),
verificacédo de tipos, tamanhos e formatos,
tratamento adequado de excecdes,

mensagens de erro genéricas para o usuario.

Figura 15 - Input de dados no banco sem validagao.

@app .route(' /update")
def update record():

user_input = request.args.get(’'data’)

conn = sqlite3.connect('users.db")
cursor = conn.cursor()
cursor.execute(f"UPDATE users SET data
conn.commit()

conn.close()

return "Updated”

Fonte: Desenvolvido pelo autor (2025).

32

3 Resultados

Neste capitulo, foi abordada a execugdo das ferramentas mencionadas no
capitulo anterior, sobre o codigo malicioso guefoi desenvolvido para teste. O objetivo
principal € adicionar os resultados obtidos por cada ferramenta em cada uma das
vulnerabilidades propostas.

A abordagem tomada neste capitulo sera na mesma sequéncia que foi
desenvolvido o capitulo anterior, sera passado por cada vulnerabilidade de forma

unica e dissertado sobre cada resultado obtido por cada ferramenta.
3.1 Hardcoded Credentials

O uso de credenciais escritas diretamente no cédigo-fonte representa um alto
risco a seguranga. De acordo com os testes feitos, apenas a ferramenta Bandit foi

capaz de detecta-lo, como € possivel observar na Figura 16.

Figura 16 - Detecgdo hardcoded credentials Bandit.

Issue: [B1@5:hardcoded_password_string] Possible hardcoded password: ‘admin123’

Severity: Low Confidence: Medium

CWE: CWE-259 (https://cwe.mitre.org/data/definitions/259.html)

More Info: https://bandit.readthedocs.io/en/1.8.6/plugins/b185 hardcoded password string.html

Location: ./app.py:17:20

DATABASE_PASSWORD = "admin123"
SECRET_KEY = "my_secret_key 12345"

Fonte: Desenvolvido pelo autor (2025).

O Bandit possui regras nativas hardcoded _password_string para detectar
strings sensiveis. Semgrep e CodeQL nao sinalizaram, possivelmente por auséncia
de regras especificas de secrets scanning no ruleset usado. A partir da analise dos
arquivos de resultados, pode-se concluir que o Bandit apresentou uma classificagao

true positive (TP), enquanto Semgrep e CodeQl resultaram em false negative (FN).

33

3.2 SQL Injection

Dentro das analises para SQL Injection, todas as trés ferramentas obtiveram
sucesso na detecg¢do. Podendo-se confirmar com base nas Figuras 17, 18 e 19 sendo

que, sao os resultados de Bandit, Semgrep e CodeQl, respectivamente.

3.2.1 SAQL Injection Bandit

De acordo com a Figura 17, o Bandit detectou com o identificador interno da
ferramenta B608, identificador este que esta diretamente ligado a possibilidade do
vetor de ataque de SQL /njection. Severidade média e confianga baixa, conclui-se que,
apesar da deteccdo, a ferramenta atribuiu um certo grau de incerteza quanto ao

contexto deste teste executado.

Figura 17 - Deteccdo SQL Injection Bandit.
v >> Issue: [B608:hardcoded_sql_expressions] Possible SQL injection vector through string-based query construction.
Severity: Medium Confidence: Low
CWE: CWE-89 (https://cwe.mitre.org/data/definitions/89.html)
More Info: https://bandit.readthedocs.io/en/1.8.6/plugins/b608 hardcoded sql_expressions.html

Location: ./app.py:50:12
49 cursor = conn.cursor()
50 query = f"SELECT * FROM users WHERE id = {user_id}"
51 try:

Fonte: Desenvolvido pelo autor (2025).

3.2.2 SQL Injection Semgrep

Semgrep por sua vez gerou duas detecgdes para esta vulnerabilidade, como
mostra a figura 18.

A primeira foi denominada python.django.security.injection.sql.sql-injection-
using-db-cursor-execute.sql-injection-db-cursor-execute e foi detectada na linha 47 do
cbdigo, justamente o trecho que foi mostrado no capitulo 3 e foi classificada como
Warning e corresponde a um alerta genérico para situagbes em que dados
controlados pelo usuario sao passados diretamente ao método execute.

Essa regra tem como foco aplicagdes Django, porém, por falar sobre um padrao
comum em consultas SQL quando sao construidas manualmente, também acabou se
aplicando no caso de teste do cddigo analisado. O aviso enfatiza o risco de exposigao

de informacgdes sensiveis devido a auséncia de parametrizacido e recomenda 0 uso

34

do método QuerySet ou mecanismos ORM com query parameterization, que eliminam
a vulnerabilidade.

Ja a segunda detecgao foi denominada python.flask.security.injection.tainted-
sql-string.tainted-sql-string, apresentou nivel de severidade Error, que € uma
caracteristica de um risco mais alto. Essa detecg¢ao refere-se ao uso explicito de
interpolagao de strings (via f-string) na constru¢ao de uma query SQL no contexto de
uma aplicacdo Flask, pratica considerada insegura por permitir que dados nao
sanitizados sejam incorporados diretamente ao comando SQL.

O relatério sugere como mitigagdo o uso de consultas parametrizadas —
disponiveis por padrao em diversos motores de banco de dados — ou a adocao de

bibliotecas ORM, como o SQLAIchemy, que abstraem e previnem esse tipo de falha.

Figura 18 - Detecgdo SQL Injection Semgrep.

1 python.django.security.injection.sql.sql-injection-using-db-cursor-execute.sql-injection-db-cursor-execute | WA

python.flask.security.injection.tainted-sql-string.tainted-sql-string | ERROR

Fonte: Desenvolvido pelo autor (2025).

3.2.3 SAQL Injection CodeQl

O CodeQL também identificou a vulnerabilidade de inje¢gdo de SQL no cddigo
de teste, classificando-a sob o identificador de regra py/sql-injection.

Essa regra pertence ao conjunto de consultas de segurancga para Python e tem
como objetivo detectar situagdes em que consultas SQL sdo construidas a partir de
dados controlados pelo usuario, sem o devido processo de sanitizagdo ou uso de
parametros preparados.

Na pratica, o CodeQL analisou o fluxo de dados desde a origem (fung¢ao que
recebe a requisicdo do usuario) até o ponto em que o valor é interpolado na string
SQL. Esse mecanismo de rastreamento de tainted data flow permite identificar
vulnerabilidades que ndo dependem apenas de pattern matching, mas da propagagao
real de variaveis inseguras dentro da aplicagao.

O relatério gerado aponta que a consulta SQL é construida diretamente com
dados néo tratados, utilizando interpolagao de string (f-string) e o método execute, o

que torna possivel a inje¢do de comandos arbitrarios por um atacante.

35

Além de apresentar a vulnerabilidade, a prépria consulta py/sql-injection
fornece uma explicagado detalhada e recomendagdes de mitigagdo, destacando a
importancia de utilizar parametros de consulta (prepared statements) ou bibliotecas
ORM, como o SQLAIchemy, para evitar que o dado do usuario seja concatenado

diretamente ao comando SQL.

Figura 19 - Deteccado SQL /njection CodeQl.

Fonte: Desenvolvido pelo autor (2025).

3.2.4 Conclusao SQL /njection

Com estas informacgdes, é possivel classificar os resultados obtidos como TP,
dado que, todas as 3 ferramentas foram devidamente capazes de detectar a
vulnerabilidade, e devidamente explicadas cada um dentro dos critérios da

ferramenta.

3.3 Command Injection

Para esta vulnerabilidade, as trés ferramentas obtiveram sucesso no teste e

foram capazes de detecta-la. Neste paragrafo sera destrinchado e dissertado de forma
individual cada resultado.

36

3.3.1 Command Injection Bandit
O relatério do Bandit identificou um problema de Command Injection na
chamada a um processo do sistema operacional a partir de dados controlados pelo

usuario. No log do Bandit o achado aparece da seguinte forma como mostra a Figura
20:

Figura 20 - Detecgdo Command Injection Bandit.

65 o de os.system com input direto -> command injection

66 result = m(f'ping -c 1 {host}")
67 return f"Ping result: {result}”

Fonte: Desenvolvido pelo autor (2025).

O Bandit classifica esse tipo de deteccdo como alta severidade por se tratar de
um vetor classico de command injection (CWE-78). A regra B605 detecta chamadas
que executam comandos em shell (por exemplo os.system, subprocess.call com
shell=True, os.popen) em que o comando contém valores interpolados diretamente
vindos do usuario. Nesse caso, a variavel host (proveniente de uma requisicao) é
concatenadalinterpolada numa f-string e passada ao os.system, permitindo que um
atacante injete argumentos ou comandos adicionais (por exemplo rm -rf / ou && curl
http://malicious), com potencial execugdo arbitraria no servidor. O alto nivel de
confianga informado pelo Bandit indica que o padréao detectado é claro (uso direto de
os.system com entrada dinamica) e dificimente se trata de um falso positivo no

contexto apresentado.

3.3.2 Command Injection Semgrep

O Semgrep produziu quatro alertas relacionados ao trecho que executa
comandos do sistema operacional com dados controlados pelo usuario (linhas 64—67
de app.py). As regras cobrem tanto contextos especificos de framework
(Django/Flask) quanto verificagdes genéricas da linguagem. A figura 14 mostra

exatamente como foi estas deteccgdes:

37

Figura 21 - Detecgdo Command Inject/on Semgrep.

python.django.security.injection.command.command-injection-os-system.command-injection-os-system | ERROR

python.flask.security.injection.os-system-injection.os-system-injection | ERROR

python.lang.security.dangerous-system-call.dangerous-system-call | E

python.flask.security.audit.directly-returned-format-string.directly-returned-format-string | WARNING

Fonte: Desenvolvido pelo autor (2025).

3.3.2.1 Deteccgoes

A deteccdo um de Semgrep para esta vulnerabilidade verifica o uso da
biblioteca “o0s” utilizando o comando os.system e recebendo dados da requisigéo. Esta
deteccdo ocorre justamente por conta da variavel proveniente do request fluir
diretamente para o os.system, o que caracteriza a possibilidade de command
injection, o que foi caracterizada como alto risco de acordo com a CWE-78. Semgrep
deixa como recomendacao caso isso realmente precise ser feito, utilizar o modulo
“subprocess” e passar os argumentos em formato de lista.

A detecgdo dois observou o mesmo padrdo inseguro para a vulnerabilidade
CWE-78, porém agora com o ruleset especifico para o framework flask, novamente
deixando como recomendagdo caso issO seja necessario, utilizar o mddulo
subprocess e os dados serem passados em formato de lista.

A terceira detecgao segue o mesmo padréo, contudo, esta foi feita com base
no ruleset do Semgrep feita para a linguagem python, diferentemente das outras que
sdo rulesets para frameworks especificos (django e flask respectivamente). E
repetindo as recomendacgdes de mitigagdo com uso de subprocess.

Ja a quarta deteccédo diz que, se o conteudo formatado vier (ou puder vir) de
usuario, pode abrir margem para XSS; aqui aparece como audit (aviso) porque
depende do contexto. Deixa-se como recomendacido renderizar a resposta via
template engine ao invés de render_template.

O Semgrep cobriu 0 caso com redundancia saudavel (regras Django, Flask e
linguagem) e classificou corretamente com ERROR os pontos que expdem execugao
de comando. Essa multiplicidade de regras aumenta a cobertura e a confiabilidade da
detecgédo, apontando tanto o ponto critico (0s.system) quanto a boa pratica de saida

(evitar formatar e retornar strings diretamente).

38

3.3.3 Command Injection CodeQl

O CodeQL sinalizou o uso de cadeias de comando controladas externamente,
classificado como error (nivel alto). A regra py/command-line-injection detecta pontos
do codigo onde dados de usuario fluem para fungdes que executam comandos ou
interpretam cddigo (por exemplo, os.system, subprocess.* com entrada dinamica,
exec/eval), permitindo que o atacante altere o significado do comando. A
vulnerabilidade se relaciona diretamente as classificagdes CWE-78 (OS Command

Injection) e CWE-88 (Argument Injection).

Figura 22 - Detecgdo Command Injection CodeQl.

Fonte: Desenvolvido pelo autor (2025).

A query py/command-line-injection do CodeQL demonstrou elevada precisao
por rastrear o dado contaminado até o ponto de execucdo do comando, oferecendo
recomendagdes prescritivas (allowlist, subprocess sem shell e validag&o). Isso reduz
falsos positivos tipicos de regras puramente sintaticas e reforca o CodeQL como

ferramenta muito eficaz para detectar Command Injection em aplicagdes Python.

3.3.4 Conclusao Command Injection

Pode-se conclui que a vulnerabilidade Command Injection, correlacionada pela

CWE-78, foi plenamente identificada pelas trés solu¢cdes de analise estatica, com o

39

CodeQL destacando-se pela profundidade da inspegao e rastreamento de fluxo, o
Semgrep pela cobertura de regras contextualizadas por framework, e o Bandit pela
simplicidade e precisédo na identificacdo de padrdes diretos.

Esse resultado evidencia que a combinacdo das ferramentas potencializa a
detecgédo e validagao cruzada de falhas criticas de seguranga em pipelines de CI/CD

voltados a aplicagdes Python.
3.4 Path traversal

Neste paragrafo sera dissertado sobre os resultados das trés solugdes de
analise estatica para a vulnerabilidade path traversal. PGde-se observar que apenas
Semgrep e CodeQl obtiveram algum tipo de resultado quanto a presenga desta falha
de seguranca, enquanto nos testes com Bandit, ela passou de forma despercebida

pela ferramenta.
3.4.1 Path traversal Semgrep

O Semgrep gerou dois alertas distintos referentes a vulnerabilidade de Path
Traversal, ambos relacionados ao uso da funcdo open com dados provenientes
diretamente da requisi¢ao do usuario. Os avisos estdo localizados nas linhas 74 e 76
do arquivo app.py, e foram classificados respectivamente como Warning e Error.

Figura 23 - Detecgdo Path Traversal Semgrep.

python.django.security.injection.path-traversal.path-traversal-open.path-traversal-open | WARNING | app.py:7

python.flask.security.injection.path-traversal-open.path-traversal-open | ERROR | app.py:76 |

Fonte: Desenvolvido pelo autor (2025).

3.4.1.1 Detecgoes

A primeira deteccdo registrada, tem foco em aplicagdes Django e foi
categorizada como Warning. Ela mostra que o codigo realiza a abertura de um arquivo
(open) utilizando valores controlados externamente, sem qualquer mecanismo de

validagdo ou sanitizacdo. Esse padrdo expde a aplicacdo ao risco de leitura de

40

arquivos arbitrarios no sistema, especialmente quando o usuario consegue manipular
o caminho do arquivo (por exemplo, utilizando o padréao ../../etc/passwd).

A segunda deteccdo foi classificada como Error, corresponde ao mesmo
problema, mas no contexto de aplicagbes Flask. Essa redundancia de regras é
proposital e reflete a capacidade do Semgrep de aplicar politicas especificas para
diferentes frameworks, aumentando a cobertura e a precisdo de deteccgao.

Ambas as regras trazem recomendacgdes diretas de mitigagao, sugerindo o uso
de fungdes como os.path.abspath(), os.path.realpath() ou da biblioteca pathlib para
normalizar e restringir os caminhos acessiveis, além de validar rigorosamente os

nomes de arquivos permitidos antes de realizar a leitura.

3.4.2 Path Traversal CodeQl

O CodeQL identificou a vulnerabilidade de Path Traversal no coédigo de teste

através da regra py/path-injection, classificada com nivel Error.

Figura 24 - Detecgao Path Traversal CodeQl.

"nal

:]
"shortDescription™:

“text™: "Un

Fonte: Desenvolvido pelo autor (2025).

41

Essa query faz parte do conjunto de analises voltadas a integridade de acesso
ao sistema de arquivos em aplicagdes Python e tem como objetivo detectar o uso de
dados nado controlados na constru¢do de caminhos de arquivo.

De acordo com a descrigdo do arquivo gerado pela ferramenta, o alerta é
emitido quando informacgdes fornecidas por usuarios sao utilizadas diretamente na
formacdo de um caminho de arquivo, sem validagao, sanitizacdo ou normalizagao
adequadas. Essa pratica permite que um atacante acesse, modifique ou exponha
recursos inesperados do servidor, como diretorios fora da area permitida da aplicagao.

O comportamento foi corretamente identificado nas linhas 74-76 do arquivo
app.py, onde o parametro recebido da requisicao é utilizado na fungao open() sem
qualquer tipo de restricao.

Esse cenario representa o risco descrito pelo CWE-22 (Improper Limitation of
a Pathname to a Restricted Directory) e pelo CWE-23 (Relative Path Traversal),
ambos relacionados a manipulagao indevida de caminhos de arquivos.

A query py/path-injection recomenda explicitamente validar o input do usuario
antes de utiliza-lo na construgdo do caminho. Entre as praticas sugeridas estao:

1. Usar fungdes de validagao como werkzeug.utils.secure_filename, amplamente
empregada em aplicagdes Flask;

2. Restringir caracteres e simbolos proibidos, como "/", "\", ".." e multiplos pontos;

3. Evitar depender apenas de substituicdo de sequéncias (../), pois ainda podem
permitir travessias relativas;

4. Implementar allowlists de nomes de arquivos ou extensoes validas;

5. Normalizar o caminho antes de validar, utilizando os.path.normpath() ou

pathlib.Path.resolve().

3.4.3 Conclusao path traversal

A vulnerabilidade de Path Traversal foi corretamente identificada por duas das
trés ferramentas analisadas Semgrep e CodeQL, enquanto o Bandit ndo apresentou
qualquer detecgéo relacionada a esse tipo de falha. De modo geral, a combinagéo dos
resultados obtidos indica que, para vulnerabilidades do tipo Path Traversal,
ferramentas baseadas em analise semantica e contextual, como o Semgrep e o

CodeQL, oferecem desempenho superior e maior profundidade de analise. Ja o

42

Bandit, apesar de eficiente para casos mais diretos, ndo apresentou cobertura
suficiente para esse tipo de falha.

Conclui-se, portanto, que as ferramentas Semgrep e CodeQL apresentaram
TPs consistentes para o caso de Path Traversal, enquanto o Bandit apresentou FN,

nao reconhecendo a vulnerabilidade existente.

3.5 Insecure Deserialization

Para esta vulnerabilidade, as trés ferramentas obtiveram sucesso na deteccéo

e neste paragrafo sera mostrado de forma unitaria o que cada uma retornou.
3.5.1 Insecure Deserialization Bandit

O Bandit identificou a vulnerabilidade de desserializagao insegura por meio da
regra B301:blacklist, classificada com severidade média e alta confianga, conforme

trecho localizado na linha 87 do arquivo app.py.

Figura 25 - Detecgdo Insecure Deserialization Bandit.

>> Issue: [B3@1:blacklist] Pickle and modules that wrap it can be unsafe when used to deserialize untrusted data, possible security issue.
Severity: Medium Confidence: High
CWE: CWE-502 (https://cwe.mitre.org/data/definitions/5€2.html)
More Info: https://bandit.readthedocs.io/en/1.8.6/blacklists/blacklist_calls.html#b301-pickle

Location: ./app.py:87:10
86 # desserializacdo insegura com pickle
87 obj = pickle.loads(data.encode())
88 return str(obj)

Fonte: Desenvolvido pelo autor (2025).

O alerta faz referéncia direta ao CWE-502 (Deserialization of Untrusted Data),
indicando que o uso da funcéo pickle.loads() com dados provenientes de fontes
externas representa um risco elevado de execugéao arbitraria de cédigo.

A regra B301 pertence a categoria de blacklists de chamadas inseguras, que
identificam o uso de fungdes e bibliotecas conhecidas por introduzir vulnerabilidades
criticas, mesmo sem analise contextual do fluxo de dados.

O Bandit destaca que mddulos como pickle permitem que objetos arbitrarios
sejam reconstruidos a partir de dados serializados, o que possibilita que um atacante

injete instrugcdes maliciosas executadas durante o processo de desserializagao.

3.5.2 Insecure Deserialization Semgrep

43

O Semgrep também detectou a vulnerabilidade em duas regras distintas,
ambas na linha 87 de app.py.

A primeira regra foi classificada como Error, identifica a presenga de uma
biblioteca de desserializagao insegura utilizada em uma rota Flask. Ela alerta que
bibliotecas como pickle podem permitir RCE se dados de usuario forem passados
diretamente a funcao loads().

Ja a segunda regra foi categorizada como Warning, reforga a recomendagéo
de evitar o uso de pickle e sugere o emprego de alternativas seguras como
json.loads() ou yaml.safe_load().

A existéncia de duas regras sobre o0 mesmo ponto demonstra a abordagem
redundante e detalhada do Semgrep, que visa cobrir tanto contextos de frameworks
especificos quanto praticas inseguras da linguagem em geral.

Em ambas as detecgbes, o Semgrep também forneceu orientagdes claras de
mitigac&o: substituir a biblioteca de desserializag&o por alternativas seguras, restringir
a entrada de dados e, se necessario, validar rigorosamente o conteudo recebido antes

do processamento.

3.5.3 CodeqQl

O CodeQL detectou a mesma vulnerabilidade através da query py/unsafe-
deserialization, classificada com nivel Error e mapeada para o CWE-502.

A regra identifica cenarios em que dados controlados por usuario séo
desserializados diretamente usando frameworks que permitem reconstruir objetos
arbitrarios, como Pickle, Marshal e YAML, resultando em alto risco de execucao de
cédigo arbitrario. Diferente das outras ferramentas, o CodeQL realiza uma analise
semantica de fluxo de dados, rastreando o valor recebido de fontes externas até o
ponto de desserializagdo. O relatério do CodeQL inclui uma explicagdo detalhada e
um exemplo pratico, mostrando o caso inseguro pickle.loads e a alternativa segura

json.loads(request_data).

44

Figura 26 - Detecgao Insecure Deserialization CodeQl.

Fonte: Desenvolvido pelo autor (2025).

A ferramenta recomenda, sempre que possivel, evitar completamente a
desserializacdo de dados ndo confiaveis. Caso o uso de bibliotecas seja
indispensavel, deve-se preferir fungbes seguras como yaml.safe _load() e aplicar

validacdes rigidas.

3.5.4 Conclusao Insecure Desserialization

As trés ferramentas analisada, Bandit, Semgrep e CodeQL identificaram
corretamente a vulnerabilidade de desserializagao insegura, presente na linha 87 do
arquivo app.py, onde a fungao pickle.loads() é utilizada para processar dados
recebidos de forma direta e sem validagdo. demonstrando maturidade e eficacia tanto
das regras baseadas em padrdes de Bandit e Semgrep quanto da analise semantica
aprofundada oferecida pelo CodeQL, que se destaca na interpretacédo do fluxo de

dados e na precisao da analise contextual.
3.6 Uso de Eval
Para a vulnerabilidade apontada como CWE-94, foi obtido resultado de todas

as trés ferramentas, e neste paragrafo sera explicado qual resultado foi obtido por

estas ferramentas.

45

3.6.1 Bandit
O Bandit identificou a vulnerabilidade associada ao uso da fungao eval() na
linha 97 do arquivo app.py, classificando-a pela regra B307:blacklist, com severidade

meédia e alta confianca.

Figura 27 - Detecgao Uso de eval Bandit.

Issue: [B3@7:blacklist] Use of possibly insecure function - consider using safer ast.literal_eval.
Severity: Medium Confidence: High

CWE: CWE-78 (https://cwe.mitre.org/data/definitions/78.html)

More Info: https://bandit.readthedocs.io/en/1.8.6/blacklists/blacklist_calls.html#b307-eval

Location: ./app.py:97:13
execucdo direta de expressdo -> RCE
result = eval(expression)
return str(result)

Fonte: Desenvolvido pelo autor (2025).

Essa regra alerta para o uso de fungdes potencialmente inseguras como eval()
e exec(), estas falhas podem permitem a execugdo dinamica de expressdes
controladas externamente. O Bandit associa esse comportamento ao CWE-78, pois,
embora o eval() execute cédigo Python e ndo comandos do sistema diretamente, o
impacto final € equivalente a uma inje¢do de comando, ja que o invasor pode executar
instrugcdes arbitrarias que comprometem a integridade do sistema. No trecho
analisado, o conteudo da variavel expression, proveniente de entrada de usuario, é
avaliado diretamente pela funcdo eval(), sem qualquer sanitizagdo ou validagéo
prévia. Isso abre a possibilidade de RCE, uma das falhas mais criticas em aplica¢des
Python.

3.6.2 Semgrep

O Semgrep também identificou a vulnerabilidade de execugao arbitraria por
meio de trés regras distintas, localizadas nas linhas 95 e 97 do arquivo app.py.

Por meio de duas destas trés regras, o Semgrep notificou como Warning a
possibilidade de existéncia desta vulnerabilidade, pois apenas detectando o eval ele
ja foi capaz de identificar o risco. Por outro lado, na terceira regra, e de mais

necessidade de visibilidade, ele gerou um alerta como Error dado que, identificou

46

dados externos fluindo para dentro do método eval, justamente gerou como Error pois

isto se caracteriza a presenca nitida da vulnerabilidade.

Figura 28 - Detecgao Uso de eval Bandit.

python.django.security.injection.code.user-eval.user-eval | W app.py:95

python.flask.security.injection.user-eval.eval-injection |

python.lang.security.audit.eval-detected.eval-detected | W

Fonte: Desenvolvido pelo autor (2025).

Conclui-se como TP o resultado de Semgrep para esta vulnerabilidade dado
que, ele foi capaz ndo apenas de notificar a possibilidade e com isso recomendacoes

para evita-la, como também notificar de forma clara a presencga dela no cédigo.

3.6.3 CodeqQl

O CodeQL detectou a mesma vulnerabilidade por meio da query py/code-
injection, classificada como Error e mapeada para os identificadores CWE-94 (Code
Injection) e CWE-95 (Improper Neutralization of Directives in Dynamically Evaluated
Code). A regra define o problema como a interpretacédo de entrada ndo sanitizada
como cédigo, o que permite que usuarios maliciosos executem comandos arbitrarios.

Segundo a descrigao oficial, isso ocorre quando a aplicagao inclui diretamente
dados de usuario em uma expressao avaliada por fungbes como eval() ou exec(), sem

qualquer tratamento.

47

Figura 29 -Detecgédo Uso de eval Bandit.

"defaultConfiguration":

“enabled":

"lev

Fonte: Desenvolvido pelo autor (2025).

O exemplo fornecido na documentagédo demonstra como um valor passado ao
exec() pode ser manipulado para executar instru¢des arbitrarias, reforgcando o risco
de RCE.

Assim, a detecgao do CodeQL também foi classificada como TP, confirmando

a presenca e gravidade da vulnerabilidade.
3.6.4 Conclusao CWE-94

As trés ferramentas Bandit, Semgrep e CodeQL identificaram corretamente a
vulnerabilidade de execucdo de codigo arbitrario no uso da fungao eval() com dados
externos. As trés ferramentas convergiram quanto a natureza e a gravidade da
vulnerabilidade, classificando-a como TP.

Essa coeréncia reforga que o uso de eval() com dados nao validados constitui
uma falha critica de seguranca e deve ser totalmente evitado em ambientes de
producado, sendo substituido por métodos seguros e restritivos como ast.literal_eval()

ou por légicas de conversao controladas.

3.7 Criptografia Fraca

48

Para esta vulnerabilidade, as trés ferramentas foram capazes de realizar
detecgdes, sera destrinchado individualmente neste paragrafo sobre estes resultados

obtidos e quais conclusées pdde-se tomar.

3.7.1 Bandit

Por meio da regra B324:hashlib interna da ferramenta, o Bandit detectou o
algoritmo hash MD5 sendo utilizado no cdédigo-fonte, algo que ja € considerado
ultrapassado quando o assunto € seguranca em senhas. Este evento detectado foi
considerado de alta confianga, alta severidade e associado a CWE-327 pela

ferramenta.

Figura 30 - Detecgéao de criptografia fraca Bandit.

v >> Issue: [B324:hashlib] Use of weak MD5 hash for security. Consider usedforsecurity=False
Severity: High Confidence: High
CWE: CWE-327 (https://cwe.mitre.org/data/definitions/327.html)
More Info: https://bandit.readthedocs.io/en/1.8.6/plugins/b324 hashlib.html

Location: ./app.py:105:11
104 # MD5 usado como "hash de senha"™ (inadequado)
105 return hashlib.mdS(password.encode()).hexdigest()
106

Fonte: Desenvolvido pelo autor (2025).

A funcéo hashlib.md5(password.encode()).hexdigest() é utilizada para calcular
0 hash de uma senha, conforme indicado pelo comentario do préprio codigo. O Bandit
considerou esta pratica insegura, dado o fato que este algoritmo atualmente, ja é
obsoleto e vulneravel a ataques de colisdo e forga bruta. Sendo assim, incapaz de
garantir a base da seguranca, confidencialidade e integridade destes dados.

3.7.2 Semgrep

O Semgrep por meio de duas de suas regras internas, observou o uso desta

fraca criptografia presente no codigo:

Figura 31 - Detecgao de crlptografla fraca Semgrep

python.lang.security. insecure-hash-algorithms-mdS.insecure-hash-algorithm-mdS | &

python.lang.security.audit.md5-used-as-password.md5-used-as-password | WARNINC

Fonte: Desenvolvido pelo autor (2025).

49

A primeira regra detectou a presenga de um algoritmo MDS5 e foi sinalizada
como warning, pois até entdo, o Semgrep apenas o analisou como um algoritmo
inseguro, e por enquanto ndo levou em consideragao que ele estaria sendo utilizado
como meétodo de criptografia para senhas. Como recomendacgéo a ferramenta trouxe
0s modelos SHA 256 ou SHA 3.

Por outro lado, na segunda regra, o Semgrep foi direto ao ponto principal da
questdo, a utilizagdo deste algoritmo na criptografia de senhas, trazendo pontos
importantes sobre a vulnerabilidade em questéo, no caso, dizendo que este algoritmo
nao € seguro o suficiente contra ataques simples como o de colisdo e pode ser
quebrado facilmente pelo atacante em um periodo curto. Para recomendacgoes, a
ferramenta trouxe a possibilidade de usar fungbes hashes especificas e seguras para
senhas como a scrypt podendo utilizar a biblioteca “hashlib.scrypt”.

3.7.3 CodeqQl
O CodeQL foi capaz de identificar a vulnerabilidade por meio da regra interna

da ferramenta py/weak-sensitive-data-hashing, classificada como Warning e
classificada para os identificadores CWE-327 e CWE-328.

Figura 32 - Detecgao de criptografia fraca CodeQl.

Fonte: Desenvolvido pelo autor (2025).

50

Esta regra explica como o uso de algoritmos fracos podem comprometer a
integridade de dados altamente sensiveis, neste caso ele explica a fraqueza quando
sdo utilizados em contextos de autenticagdo, assinaturas digitais e no caso utilizado
como exemplo neste trabalho, armazenamento de senhas. O CodeQL faz uma analise
contextual que distingue usos de hashes seguros e inseguros, sinalizando apenas
guando o algoritmo é aplicado sobre dados sensiveis.

A ferramenta recomenda o uso de fungdes criptograficas robustas como SHA-
256, SHA-3 e, para senhas, o uso de algoritmos ainda mais seguros para estes tipos

de dados, como Argon2, bcrypt, scrypt ou PBKDF2.

3.7.4 Conclusao Criptografia Fraca.

Pdde-se concluir por meio das analises dos relatorios destas ferramentas
testadas, que todas obtiveram o resultado TP, ainda que, cada ferramenta trouxe sua
forma individual de explicagao e recomendacao.

O Bandit apresentou a deteccado direta ao ponto, com alta severidade e
confianca, destacando o uso indevido de MD5 como fungao de hash para senhas. O
Semgrep reforgou o achado por meio de duas regras complementares, abordando
tanto a fragilidade do algoritmo quanto o contexto de uso em senhas

CodeQl além de trazer recomendacdes de outros algoritmos para criptografia,
foi capaz ainda de realizar recomendagdes de algoritmos ainda mais robustos quando

o assunto tratar de senhas e outros tipos de dados altamente sensiveis.
3.8 Sem validagao de input

Nesta vulnerabilidade duas das trés ferramentas foram capazes de realizar
detecgbes quanto a vulnerabilidades no trecho do cdédigo, contudo, ocorreram
algumas deteccdes diferentes por partes de cada uma, onde sera dissertado de forma
individual quais foram.

3.8.1 Bandit

O Bandit realizou a deteccdo de uma construgdo de instrugdo SQL via

interpolacao de strings com conteudo controlado pelo usuario.

51

Figura 33 - Deteccdo de sem validagao de input Bandit.
>> Issue: [B608:hardcoded_sql_expressions] Possible SQL injection vector through string-based query construction.
Severity: Medium Confidence: Medium
CWE: CWE-89 (https://cwe.mitre.org/data/definitions/89.html)
More Info: https://bandit.readthedocs.io/en/1.8.6/plugins/b608 hardcoded sql_expressions.html

Location: ./app.py:121:19
120 cursor = conn.cursor()
121 cursor.execute(f"UPDATE users SET data = "{user_input}'")
122 conn.commit()

Fonte: Desenvolvido pelo autor (2025).

Este padréao foi classificado pela ferramenta como possivel SQL injection, pois
0 usuario pode manipular diretamente o conteudo da variavel “user_input’ que sera

passado diretamente na query de update do SQL.
3.8.2 Semgrep

O semgrep por meio de duas regras internas foi capaz de detectar

vulnerabilidades neste mesmo trecho de cddigo:

Figura 34 - Detecgdo de sem valldagao de /nput Semgrep

python.django.security.injection.sql.sql-injection-using-db-cursor-execute.sql-injection-db-cursor-execute | WARNING

python.flask.security.injection.tainted-sql-string.tainted-sql-string | ERROR | app.py:121 |

Fonte: Desenvolvido pelo autor (2025).

A primeira regra sinalizou que dados controlados pelo usuario chegam a
execute() € um alerta genérico com sugestao de usar QuerySets/ORM do Django para
parametrizagdo automatica. A classificagdo Warning indica que é um padrao perigoso,
mas depende do contexto.

Ja a segunda regra detectou especificamente a construgdo manual da string
SQL usando o input do usuario. Essa regra € mais decisiva quanto a vulnerabilidade
existente e classifica como Error, que identifica a pratica de montar a query

manualmente.

3.8.3 Conclusao sem validagao de input

Houve resultados significativos por parte de Bandit e Semgrep para os trechos

de cddigos com esta vulnerabilidade, contudo, ambas as ferramentas detectaram as

52

falhas como possivel SQL injection, CWE-89. Resultando ainda assim como TPs, por
mais que a vulnerabilidade proposta CWE-20 ndo tenha sido identificada, as
ferramentas foram capazes de detectar as falhas ali por meio de outra vulnerabilidade
altamente conhecida.

CodeQl, por outro lado, ndo detectou nenhuma incidéncia de falha neste trecho

do cddigo, nas linhas 115 a 124 do app.py, resultando assim em um FN.

53

Consideragoes finais

Este trabalho teve como foco principal analisar os resultados obtidos por trés
ferramentas SAST, sendo elas Bandit, Semgrep e CodeQL. Por meio do
desenvolvimento e teste de cddigos propositalmente vulneraveis na linguagem
Python. O objetivo especifico foi verificar a capacidade dessas ferramentas em
identificar vulnerabilidades conhecidas e compreender como cada uma as descreve e
classifica em seus relatorios de analise.

Durante o desenvolvimento, obteve-se sucesso tanto na implementagao dos
cbdigos vulneraveis quanto na execugao das ferramentas dentro de uma pipeline Cl,
configurada no ambiente GitHub Actions. As execugbes resultaram em achados
distintos para cada vulnerabilidade, apresentando diferencgas significativas na forma
de deteccdo e no nivel de detalhamento apresentado por cada ferramenta.

O Bandit demonstrou-se eficaz e direto em suas analises, identificando com
precisdo diversas vulnerabilidades e correlacionando-as de forma explicita aos
identificadores CWE. Sua abordagem baseada em padrdes fixos e regras simples o
torna agil e confiavel para detecgdes classicas, como hardcoded credentials, uso de
eval() e algoritmos criptograficos obsoletos. Contudo, sua limitagao esta na auséncia
de uma analise contextual mais profunda, o que pode reduzir sua eficacia em casos
mais complexos de fluxo de dados.

O Semgrep, por sua vez, apresentou maior flexibilidade e amplitude, sendo
capaz de detectar vulnerabilidades por diferentes caminhos de analise. Ele se
destacou ao aplicar regras especificas para frameworks, como Flask e Django, além
de regras genéricas da linguagem Python, o que ampliou consideravelmente sua
cobertura. Essa caracteristica permitiu que uma mesma vulnerabilidade fosse
identificada sob diferentes perspectivas, resultando em uma analise mais rica e
contextualizada. Um grande fator positivo também desta ferramenta foi sempre trazer
recomendacgdes diretas sobre como evitar aquela vulnerabilidade em um codigo.

Ja o CodeQL apresentou um altissimo nivel de profundidade analitica. Por meio
de sua abordagem semantica, foi capaz de rastrear o fluxo de dados contaminados
desde a origem até o ponto de exploragéo, identificando vulnerabilidades com grande
precisdo. Além disso, seus relatérios se destacaram por conter explicacdes

detalhadas, exemplos de mitigacdo da vulnerabilidade e referéncias diretas aos

54

identificadores CWE, fornecendo uma visao bastante completa e didatica do problema
de seguranga.

De modo geral, observou-se que algumas vulnerabilidades foram detectadas
por apenas uma ou duas ferramentas, enquanto a grande maioria foi identificada pelas
trés, permitindo uma analise comparativa aprofundada sobre o comportamento, a
precisao e a abrangéncia de cada solugao no contexto de segurancga de aplicagbes

em pipelines automatizados.

55

REFERENCIAS

BANDIT. Configuration - Bandit Documentation. OpenStack Security Project.
Disponivel em: <https://bandit.readthedocs.io/en/latest/config.htmI>. Acesso em: 7
set. 2025.

CODEQL. About CodeQL queries. CodeQL Documentation. Disponivel em:
<https://codeql.github.com/docs/writing-codeql-queries/about-codeql-queries/>.
Acesso em: 20 set. 2025.

COMMUNICATION TEAM. Como integrar o Semgrep no CI/CD e enviar os
resultados para a Conviso Platform. Conviso Blog, 25 maio 2023. Disponivel em:
<https://blog.convisoappsec.com/como-integrar-o-semgrep-no-ci-cd-e-enviar-os-
resultados-para-a-conviso-platform/\>. Acesso em: 23 set. 2025.

GIAO, Hugo da; FLORES, André; PEREIRA, Rui; CUNHA, Jacome. Chronicles of
ClICD: A Deep Dive into its Usage Over Time. 2024. Disponivel em:
<https://doi.org/10.48550/arXiv.2402.17588>. Acesso em: 17 out. 2024.

JANI, Yash. Implementing Continuous Integration and Continuous Deployment
(CI/ICD) in Modern Software Development. International Journal of Science and
Research (IJSR), v. 12, n. 6, p. 2984-2987, jun. 2023. Disponivel em:
<https://www.ijsr.net>. Acesso em: 17 out. 2024. DOI: 10.21275/SR24716120535.
Acesso em: 17 out. 2024.

MAAYAN, David Gilad. Dynamic Application Security Testing. Computer.org, 2023.
Disponivel em: <https://www.computer.org/publications/tech-news/trends/dynamic-
application-security-testing>. Acesso em: 29 out. 2024.

NGUYEN, Bao Quan. Improving the quality of CodeGrade testing system using
Semgrep. Bachelor's thesis — Lappeenranta-Lahti University of Technology LUT,
2025. Disponivel em: <https://urn.fi/lURN:NBN:fi-fe2025051442634\>. Acesso em: 23
set. 2025.

NGUYEN-DUC, Anh; DO, Manh Viet; HONG, Quan Luong; KHAC, Kiem Nguyen;
QUANG, Anh Nguyen. On the adoption of static analysis for software security
assessment: A case study of an open-source e-government project. Computers &
Security, V. 111, p. 102470, 2021. Disponivel em:
<https://www.sciencedirect.com/science/article/pii/S0167404821002947>. Acesso
em: 28 out. 2024.

NIST. SP 800-63B - Digital Identity Guidelines. Disponivel em:
<https://pages.nist.gov/800-63-3/>. Acesso em: 16 out. 2025.

NUTALAPATI, Venkat. Automated Security Testing for Mobile Apps: Tools,
Techniques, and Best Practices. International Research Journal of Engineering &
Applied Sciences (IRJEAS), v. 11, n. 1, p. 26-31, jan.-mar. 2023. Disponivel em:
<https://doi.org/10.55083/irjeas.2023.v11i01004>. Acesso em: 28 out. 2024.

56

OWASP Foundation. Code Injection. Disponivel em: <https://owasp.org/www-
community/attacks/Code_Injection>. Acesso em: 22 out. 2025.

OWASP. Command Injection. Disponivel em: <https://owasp.org/www-
community/attacks/Command_Injection>. Acesso em: 15 out. 2025.

OWASP. Deserialization Cheatsheet. Disponivel em:
<https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.htm|>
. Acesso em: 16 out. 2025.

OWASP. Input Validation Cheat Sheet. Disponivel em:
<https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
>. Acesso em: 22 out. 2025.

OWASP. Password Storage Cheat Sheet. Disponivel em:
<https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage Cheat_Sheet.h
tml>. Acesso em: 16 out. 2025.

OWASP. Path Traversal. Disponivel em: <https://owasp.org/www-
community/attacks/Path_Traversal>. Acesso em: 15 out. 2025.

OWASP. Secrets Management Guidelines. Disponivel em:
<https://cheatsheetseries.owasp.org/cheatsheets/Secrets_Management_Cheat_She
et.html>. Acesso em: 15 out. 2025.

OWASP. SQL |Injection Prevention Cheat Sheet. Disponivel em:
<https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat
Sheet.html>. Acesso em: 15 out. 2025.

SEMGREP. Writing rules (Documentagdo oficial). 2025. Disponivel em:
<https://semgrep.dev/docs/writing-rules/overview\>. Acesso em: 23 set. 2025.

SHAHIN, Mojtaba; BABAR, Muhammad Ali; ZHU, Liming. Continuous Integration,
Delivery and Deployment: A Systematic Review on Approaches, Tools, Challenges
and Practices. IEEE Access, v. 5, p. 3909-3943, 2017. Disponivel em:
<https://ieeexplore.ieee.org/document/7884954>. Acesso em: 25 set. 2024.

SMARTTECS. Code Security with Semgrep. SmartTECS Cyber Security Blog, 10
fev. 2025. Disponivel em: <https://blog.smarttecs.com/posts/2024-006-semgrep/\>.
Acesso em: 23 set. 2025.

THULIN, Pontus. Evaluation of the applicability of security testing techniques in
continuous integration environments. 2015. 83 f. Master’s Thesis (Master’s degree
in Computer and Information Science) — Linkopings Universitet, Linkoping, 2015.
Disponivel em: <http://www.diva-
portal.org/smash/get/diva2:784545/FULLTEXTO1.pdf>. Acesso em 01 out 2024

