

COMANDO VIA DTMF

Anderson Henrique, Cayo Coelho, Levi Nascimento, Isaac Santos, Matheus Meneses, Prof. Me. Pedro Adolfo

Gallani

Faculdade de Tecnologia de São Bernardo do Campo

Anderson.silva389@fatec.sp.gov.br, cayo.coelho@fatec.sp.gov.br, levi.nascimento@fatec.sp.gov.br,

isaac.santos6@fatec.sp.gov.br matheus.meneses4@fatec.sp.gov.br, pedro.galani@fatec.sp.gov.br

RESUMO: Este trabalho aborda o desenvolvimento de um sistema para controle remoto de

dispositivos elétricos utilizando a tecnologia Dual Tone Multi-Frequency (DTMF). O estudo

foca na criação de uma solução prática, segura e de baixo custo para automação. A proposta

consiste em um sistema capaz de receber comandos por chamadas telefônicas, decodificar os

tons DTMF e acionar cargas elétricas à distância. Para gerenciar todas as funções e garantir a

confiabilidade operacional, o microcontrolador ATmega328P da Atmel atua como unidade

central de processamento. Este componente, utilizado na plataforma Arduino Uno, é

responsável pela lógica de segurança, acionamento dos relés, leitura do sensor de corrente

ACS712 e geração do feedback sonoro. Após enviar o comando ao relé, o ATmega328P

monitora o ACS712 e, ao confirmar a passagem de corrente, comanda o módulo DFPlayer Mini

para gerar a mensagem de voz de confirmação ao usuário. A metodologia envolveu pesquisa

teórica, desenvolvimento de firmware único e testes experimentais, validando a eficácia do loop

de confirmação de carga ativa.

Palavras-chave: DTMF; Automação; Microcontrolador; Relés; Controle remoto.

ABSTRACT: This work addresses the development of a system for remote control of electrical

devices using Dual Tone Multi-Frequency (DTMF) technology. The study focuses on creating

a practical, secure, and low-cost solution for automation. The proposal consists of a system

capable of receiving commands via phone calls, decoding DTMF tones, and actuating electrical

loads remotely. To manage all functions and ensure operational reliability, the ATmega328P

microcontroller from Atmel acts as the central processing unit. This component, utilized in the

Arduino Uno platform, is responsible for the security logic, relay actuation, reading the ACS712

current sensor, and generating audible feedback. After sending the command to the relay, the

ATmega328P monitors the ACS712 and, upon confirming current flow, commands the

DFPlayer Mini module to generate a voice message for user confirmation. The methodology

involved theoretical research, development of a single firmware, and experimental tests,

validating the effectiveness of the active load confirmation loop.

2

Keywords: DTMF; Automation; Microcontroller; Relays; Remote control.

n1. Introdução

A automação de equipamentos elétricos tem se consolidado como uma área em

expansão, impulsionada pela busca por praticidade, eficiência e segurança no controle de

dispositivos residenciais e industriais. Nesse cenário, tecnologias de baixo custo e fácil

implementação ganham destaque, especialmente quando oferecem confiabilidade e

compatibilidade com recursos amplamente disponíveis.

A tecnologia Dual Tone Multi-Frequency (DTMF), conhecida popularmente pela sua

aplicação em sistemas telefônicos, é um exemplo de solução que, mesmo após décadas de uso,

mantém-se relevante nos dias atuais. Por meio da geração de dois tons em diferentes frequências

sonoros, o DTMF possibilita a transmissão de comandos de forma simples, confiável e imune

a ruídos, o que torna aplicável em diferentes contextos de automação.

Embora haja soluções modernas, como a comunicação via internet e aplicativos móveis,

nem sempre elas são viáveis em área com restrições de infraestrutura ou custo. Além disso,

conforme dados da Agência Brasil (2024), apenas 22% da população brasileira com mais de 10

anos possui condições satisfatórias de conectividade, evidenciando a limitação de acesso à

internet de qualidade em diversas regiões do país. Nesse sentindo, o DTMF se destaca como

uma alternativa prática para acionamento remoto de cargas, utilizando recursos acessíveis como

telefones celulares e rádios comunicadores.

O presente trabalho tem como objetivo desenvolver um sistema de acionamento de

cargas elétricas baseado em DTMF, integrado a um microcontrolador para processamento dos

sinais. A proposta busca demonstrar a viabilidade de soluções simples e seguras de automação,

explorando o potencial do DTMF como ferramenta de baixo custo e ampla aplicabilidade em

diferentes cenários.

2. Fundamentação teórica

Historicamente, a comunicação telefônica era realizada por meio dos chamados

telefones de disco, cujo funcionamento baseava-se em relés eletromecânicos. Neste sistema, os

números eram discados e sempre que se escolhia algum número, ocorria a interrupção na

conexão de corrente contínua que era utilizada para fazer a comunicação, fazendo com que os

relés de passo atuassem e identificasse o número desejado.

Com o passar dos anos e com o avanço da tecnologia, a discagem por pulso foi

substituída pela discagem por tom, ou DTMF (Dual Tone Multi-Frequency). Este sistema

representa um avanço significativo, pois, em vez de interrupções de corrente, a discagem é

realizada através de um conjunto de frequências sonoras distintas. Cada número ou símbolo

3

pressionado no teclado gera a combinação de duas frequências — uma da linha (baixa) e uma

da coluna (alta) —, o que permite um método de transmissão de dados mais rápido, eficiente e

com maior imunidade a ruídos, consolidando-se como a tecnologia padrão para a comunicação

e sistemas de controle telefônico.

2.1 Tecnologia DTMF (Dual Tone Multi-Frequency)

O DTMF (Dual Tone Multi Frequency), que pode ser traduzido como frequências

múltiplas, consiste em um dispositivo que processa chamadas telefônicas e é utilizado no

controle e automação de diversos equipamentos existentes, sendo sua função utilizar os sons

emitidos ao pressionar uma tecla, para detectar quais números foram discados.

De acordo com Medeiros (2006), os tons do “Dual Tone” consistem em pares de

frequências combinadas especificamente para identificar as teclas pressionadas no teclado

telefônico. Cada tecla gera um par único de frequências conforme apresentado na Tabela 1.

Tabela 1 – Frequências dos tons DTMF associados às teclas do teclado telefônico

Fonte: Virtual-Call (2025).

Essas frequências são divididas em dois grupos distintos, definidos como grupo de

frequências baixas (697, 770, 852 e 941 Hz) e grupo de frequências altas (1209, 1336, 1477 e

1633 Hz), sendo a combinação única destas duas frequências que identifica cada tecla

(Medeiros, 2006).

Sendo assim, cada número que é selecionado na tecla do telefone emite duas frequências

diferentes, o que possibilita sua identificação e, subsequentemente, a tomada de decisão. Em

resumo quando é feita uma chamada para um call center e pede-se para digitar a opção desejada

no atendimento, esta é escolhida pelo teclado do aparelho telefônico; o sistema, devido a isso,

entende o que deve ser feito posteriormente.

Tais sinais são amplamente utilizados em sistemas de comunicação por telefone, como

resposta interativa por voz (IVR), automação residencial e industrial, controle remoto e

segurança. Uma característica importante do sistema DTMF é a sua imunidade a ruídos

4

externos, proporcionando maior confiabilidade na comunicação (Virtual-call, 2023).

Para que o sistema automatizado possa interpretar os sinais sonoros DTMF, é utilizado

o circuito integrado HT9170. Trata-se de um decodificador específico para sinais DTMF, tendo

como função principal interpretar os sinais sonoros recebidos, convertendo-os em sinais digitais

que podem ser facilmente processados por microcontroladores ou outros dispositivos digitais.

O HT9170 realiza essa tarefa por meio de filtros passa-banda integrados, que separam as

frequências altas e baixas dos tons recebidos, gerando um código digital único para cada tecla

pressionada (Holtek, 2016).

Adicionalmente, o HT9170 dispõe de uma saída paralela com quatro bits, permitindo

conexão direta com entradas digitais de microcontroladores. Esse recurso simplifica

significativamente o projeto e implementação de sistemas de automação e controle remoto.

Para o processamento dos sinais decodificados e execução das ações de controle, o

projeto utiliza o microcontrolador ATmega328P, fabricado pela Atmel (Microchip

Technology). Este componente é o microcontrolador central de todo o sistema. Ele utiliza uma

arquitetura RISC aprimorada de 8 bits e possui um conjunto de 131 instruções poderosas, com

a maioria das operações executadas em um único ciclo de clock, o que garante uma excelente

performance em tempo real. O ATmega328P é o chip fundamental da plataforma de

prototipagem Arduino Uno, utilizada neste trabalho devido à sua vasta comunidade de

desenvolvimento e facilidade de integração.

O ATmega328P possui 32 KB de memória Flash para programa, 2 KB de SRAM e 1

KB de EEPROM. Para a interface com o sistema externo, conta com 23 pinos de entrada e saída

digitais programáveis, além de integrar um Conversor Analógico-Digital (ADC) de 10 bits com

6 canais, permitindo a leitura precisa de sensores analógicos. Possui ainda periféricos essenciais

como timers, interface USART serial (fundamental para o DFPlayer Mini) e interface SPI.

Dessa forma, no projeto proposto, o ATmega328P atua como a unidade principal de

controle (núcleo DTMF) e de feedback, centralizando todas as operações. Sua utilização se

justifica pela facilidade de programação, pela capacidade de consolidar a lógica de

decodificação, acionamento, leitura do sensor ACS712 via seu ADC e gerenciamento do

feedback sonoro.

O acionamento físico das cargas elétricas controladas é feito por meio de relés

eletromecânicos. Relés são componentes eletromecânicos fundamentais em sistemas de

automação, especialmente quando é necessário o controle de cargas elétricas de potência

superior à capacidade das saídas digitais dos microcontroladores. Funcionam por meio da

energização de uma bobina que produz um campo magnético capaz de atrair um contato móvel,

fechando ou abrindo circuitos elétricos externos (Petruzella, 2015).

5

Neste projeto, a saída digital do microcontrolador energiza a bobina do relé, permitindo

a ativação ou desativação segura e eficaz de dispositivos elétricos variados, oferecendo

praticidade e segurança ao usuário.

2.2. Monitoramento e Feedback

Para garantir a eficácia operacional do sistema e fornecer feedback ao usuário, a

arquitetura do projeto utiliza o microcontrolador central para processar o controle e o

monitoramento. O sistema utiliza o sensor de corrente ACS712, que é baseado no Efeito Hall e

capaz de medir correntes AC ou DC de forma não invasiva, convertendo a corrente em um sinal

de tensão analógica proporcional. O sensor é posicionado na saída de potência do relé,

permitindo a confirmação de que a corrente elétrica foi estabelecida após o comando de

acionamento.

Essa leitura de confirmação é processada diretamente pelo microcontrolador

ATmega328P (chip principal da plataforma Arduino Uno). O ATmega328P utiliza seu

Conversor Analógico-Digital (ADC) integrado para receber e interpretar o sinal de tensão do

ACS712. Uma vez que o microcontrolador central confirme a presença de corrente (carga

ativa), ele é o responsável por comandar, via comunicação serial, o módulo DFPlayer Mini para

a geração do áudio. O DFPlayer Mini é utilizado para armazenar e reproduzir mensagens de

voz pré-gravadas (ex: "Carga 1 Ativada"), garantindo que o feedback seja claro e humanizado.

Dessa forma, o Arduino Uno, através do chip ATmega328P, centraliza a decodificação DTMF,

o controle dos relés e o feedback, garantindo que a mensagem sonora só seja enviada ao usuário

após a confirmação física de acionamento da carga.

Quanto à segurança da comunicação, o sistema projetado utiliza um aparelho celular

conectado via conector P2 ao decodificador HT9170. Ao receber uma chamada e estabelecer

conexão, exige autenticação por senha para garantir segurança e evitar acessos não autorizados.

Após três tentativas incorretas, o sistema envia uma mensagem de erro, sendo bloqueado

temporariamente, oferecendo uma camada adicional de proteção contra uso indevido (Stallings,

2018). Essa abordagem é essencial em aplicações práticas, garantindo ao usuário controle

seguro e confiável sobre seus equipamentos residenciais ou industriais.

3. Metodologia

3.1. Caracterização da Pesquisa

O presente trabalho caracteriza-se como uma pesquisa aplicada, pois o objetivo central

é o desenvolvimento e implementação de uma solução tecnológica para o controle remoto de

dispositivos elétricos. O foco deste tipo de pesquisa é a geração de conhecimento no que tange

6

a aplicação prática, sendo fundamental para o avanço em sistemas de automação, especialmente

diante do conceito de acionamento de cargas a distância.

3.2. Procedimentos Metodológicos

O presente trabalho caracteriza-se como uma pesquisa aplicada, voltada para o

desenvolvimento e implementação de uma solução tecnológica para o controle remoto de

dispositivos elétricos, sendo fundamental para o avanço em sistemas de automação que exigem

acionamento de cargas a distância e com a garantia de acionamento. A execução do sistema de

Comando via DTMF foi estruturada em uma abordagem de desenvolvimento de protótipo,

compreendendo etapas sequenciais adaptadas para a implementação de uma arquitetura de

controle centralizada e robusta. A fase inicial consistiu na Fundamentação Teórica, com uma

abrangente pesquisa bibliográfica focada na tecnologia DTMF, suas aplicações em sistemas de

automação e na análise detalhada dos datasheets de todos os componentes eletrônicos

essenciais, incluindo o Circuito Integrado (CI) decodificador HT9170, o microcontrolador

Arduino Uno, o sensor de corrente ACS712 e o módulo de áudio DFPlayer Mini.

Simultaneamente, ocorreu a Definição de Especificações, na qual foram estabelecidos

os requisitos operacionais do sistema, como o número de cargas elétricas a serem controladas,

os critérios de segurança, através de um protocolo de autenticação por senha via DTMF, e a

especificação de feedback, definindo a necessidade de monitoramento do estado de carga e

geração de uma resposta sonora humanizada. Com as especificações definidas, iniciou-se a fase

de projeto. O Projeto Lógico e Simulação envolveu a elaboração do esquema elétrico detalhado

do circuito, no qual todos os periféricos (HT9170, ACS712, DFPlayer Mini) foram conectados

diretamente ao Arduino Uno. Para a validação prévia da lógica de hardware e da configuração

dos pinos do microcontrolador, utilizou-se um software de simulação, permitindo o estudo do

comportamento do sistema antes da montagem física.

Em paralelo, deu-se o Desenvolvimento do Firmware (Figura 2). A codificação do

programa principal para o Arduino Uno foi realizada em Linguagem C, utilizando a IDE do

Arduino para facilitar o desenvolvimento. O firmware foi centralizado, sendo responsável por

quatro funções principais: decodificação DTMF, rotina de autenticação, controle dos relés e

gerenciamento do feedback. O firmware foi projetado para utilizar o Conversor Analógico-

Digital (ADC) do Arduino Uno para ler o sinal do ACS712 e, em seguida, comandar o módulo

DFPlayer Mini via comunicação serial para reproduzir a mensagem de feedback. A etapa de

Montagem e Protótipo abrangeu a seleção e aquisição dos componentes finais. Após testes

iniciais de funcionalidade em protoboard, o circuito foi montado de forma definitiva em uma

placa de circuito impresso (PCI), integrando todos os componentes ao Arduino Uno.

7

A Coleta de Dados foi efetuada de forma prática e experimental, através do envio de

comandos DTMF sequenciais realizados via chamada telefônica. Os dados primários coletados

e avaliados incluíram a resposta do sistema verificada pela leitura digital do HT9170, a leitura

analógica de corrente do ACS712 pelo Arduino, a ação física dos relés, e a emissão da

mensagem de voz pelo DFPlayer Mini como confirmação de sucesso. A etapa final consistiu

na validação do protótipo e na análise dos resultados. A Análise de Dados concentrou-se na

avaliação da confiabilidade, do tempo de resposta e, principalmente, na eficácia do loop de

confirmação, verificando se a mensagem sonora só era reproduzida após a confirmação física

de corrente pelo sensor ACS712 lida pelo Arduino Uno, comprovando o atendimento integral

aos objetivos propostos pelo projeto.

Figura 2 – Diagrama de blocos

Fonte: Autores (2025).

4. Desenvolvimento do projeto

O desenvolvimento do projeto detalha a materialização física e lógica da solução,

integrando os componentes teóricos para a construção do sistema de controle via DTMF. Para

atender aos requisitos de segurança e garantir o feedback instrumentalizado, foi adotada uma

8

arquitetura de controle centralizada no microcontrolador Arduino Uno. Esta unidade é

responsável pela decodificação DTMF, rotinas de segurança, acionamento dos relés, leitura do

sensor de corrente (ACS712) e geração da resposta de áudio (DFPlayer Mini), resultando em

um sistema robusto e de hardware mais enxuto.

O ciclo de feedback é totalmente gerenciado pelo Arduino Uno: ao confirmar a presença

de corrente elétrica via leitura do ACS712, o microcontrolador envia um comando serial direto

ao DFPlayer Mini. O DFPlayer reproduz a mensagem de voz correspondente à carga, e o áudio

é injetado na linha telefônica via conector P3. Dessa forma, a unidade central é a responsável

final pela geração da confirmação sonora ao usuário, certificando que a carga foi efetivamente

ligada ou desligada.

A Figura 3 apresenta o esquema elétrico do projeto.

Figura 3 – Esquema elétrico

Fonte: Autores (2025).

5. Testes e resultados

Para a validação do sistema, foram realizados testes de funcionamento, tanto do sistema

para o acionamento de cargas distintas, como com a utilização do feedback. Contando com a

utilização de vários aparelhos telefônicos, a fim de verificar a confiabilidade do reconhecimento

9

dos tons DTMF.

Os testes demonstraram que o circuito responde corretamente aos comandos enviados

via ligação telefônica, acionando as cargas de forma precisa e gerando o retorno, informando

se a carga solicitada foi ligada ou desligada corretamente. O tempo médio de resposta foi de

aproximadamente 500 milissegundos a 1 segundo.

As Figuras 4 e 5 ilustram o protótipo desenvolvido.

Figura 4 – Protótipo em teste

Fonte: Autores (2025).

Figura 5 - Protótipo

10

Fonte: Autores (2025).

As cargas foram constantemente acompanhadas, assim como a medição feita pelo

sensor de corrente, que é responsável pela precisão dos retornos ao cliente, informando o estado

de cada acionamento ou desligamento. Além disso foram testados diferentes aparelhos, como:

Lâmpadas de LED, esmerilhadeira angular, diodo emissor de luz, furadeira de impacto,

carregadores de celular. Com isso, foi possível monitorar a corrente de cada um dos itens

listados e a resposta do circuito a eles.

Observou-se, entretanto, que sinais de baixa qualidade (como em ligações com ruído)

podem gerar falhas ocasionais de decodificação, sendo necessário um ambiente com certo

controle sobre estes eventos.

6. Considerações finais

O projeto de acionamento remoto via DTMF atingiu o objetivo proposto de permitir o

controle e a consulta do estado de cargas elétricas a partir de uma ligação telefônica

convencional. O sistema apresentou funcionamento estável e de fácil operação, demonstrando

a viabilidade da técnica estudada.

Como pontos fortes, destacam-se o baixo custo e a simplicidade de implementação,

além da alta confiabilidade do funcionamento e de não haver fronteiras para o uso da tecnologia,

tendo em vista que para operá-la basta um aparelho e sinal telefônico, trazendo a possibilidade

de se encontrar em outros estados ou até mesmo fora do País. Outro ponto positivo é o produto

ser totalmente isento do uso de internet para seu funcionamento, tendo em vista que em grande

parte das cidades brasileiras hoje, se enfrenta como grande dificuldade, a qualidade da mesma.

Com isso, o projeto foi implementado de forma positiva e cumpriu tanto com as

expectativas técnicas, quanto com o objetivo de desenvolver alternativas distintas, onde não

seja necessário depender somente de um tipo de meio de comunicação, de forma eficaz e

confiável.

Referências

CRISTINA, A. DTMF VoIP: O que é e como configurar para empresas 2025, 2024. Disponível em:

https://www.google.com/amp/s/www.virtual-call.net/pt-br/blog/qual-e-dtmf-e-para-que-serve%3fhs_amp=true.

Acesso em: 31 mar. 2025.

HOLTEK. HT9170 Datasheet. Holtek Semiconductor Inc., 2016. Disponível em:

https://www.holtek.com.tw/documents/10179/116711/HT9170_30v130.pdf. Acesso em: 07 abr. 2025.

HT9170 9170 Decodificador Tono Dtmf Dip Mt8870 8870 Cm8870. Disponível em:

https://www.mercadolibre.com.ar/ht9170-9170-decodificador-tono-dtmf-dip-mt8870-8870-

cm8870/up/MLAU296682555. Acesso em: 12 nov. 2025.

MEDEIROS, L. F. Redes Neurais em Delphi. 2ª ed. Florianópolis: Visual Books, 2006.

11

PETRUZELLA, F. D. Automação Industrial. 2ª ed. São Paulo: Pearson Education, 2015.

SANTOS, F. C. A. Integration of human resource management and competitive priorities of manufacturing

strategy. International Journal of Operations & Production Management, n. 5, p. 612-628, 2000.

SMOLKA, J. R. Smolka et catervarii. Disponível em: https://smolkaetcaterva.blogspot.com/. Acesso em: 31 mar.

2025.

STALLINGS, W. Segurança e Criptografia em Redes. 7ª ed. São Paulo: Pearson, 2018.

VIRTUAL-CALL. Tecnologia DTMF. Disponível em: https://www.virtual-call.net/. Acesso em: 07 abr. 2025.

12

Apêndice A - Tutorial de operação do sistema de comando via DTMF

O presente apêndice detalha os procedimentos operacionais para a utilização do sistema

de controle remoto de cargas elétricas, com o objetivo de guiar o usuário na execução de

comandos via tecnologia Dual Tone Multi-Frequency (DTMF). O protocolo de interação é

estruturado em três fases principais: Acesso e Autenticação, Controle das Cargas e Funções

Especiais, descritos a seguir:

1. Acesso e Autenticação

A operação do sistema é iniciada quando o usuário efetua uma chamada para o aparelho

celular conectado ao circuito. O sistema é configurado para realizar o atendimento automático

da ligação, estabelecendo o canal de comunicação via áudio. Após a conexão, o usuário deve

inserir a senha de acesso de três dígitos por meio do teclado do telefone. O firmware do

microcontrolador processa o código DTMF recebido pelo decodificador HT9170 e verifica a

autenticidade da sequência. Apenas após a confirmação da senha o usuário recebe a mensagem

sonora de "Senha correta. Bem-vindo ao menu principal" e tem o acesso liberado para as

funções de controle e monitoramento.

2. Menu Principal e Controle de Cargas

Com o acesso liberado, o sistema disponibiliza teclas para o controle direto e o

monitoramento do estado físico de duas cargas (Carga 1 e Carga 2), utilizando os dígitos de 5

e 6. As funções de controle são do tipo toggle, alternando o estado atual da carga a cada toque:

• Tecla 1: Ativa e desativa o Relé da Carga 1. Após a ação, o sistema consulta o sensor

ACS712 para diagnosticar o estado. O feedback de voz pode informar o sucesso da

ativação ("Carga um ativada"), o sucesso do desativamento ("Carga um desativada"),

ou diagnosticar uma falha ("Carga um ligada, mas sem corrente"), caso o Relé esteja

acionado, mas o sensor não detecte passagem de corrente.

• Tecla 2: Ativa e desativa o Relé da Carga 2, seguindo a mesma lógica de diagnóstico e

feedback por voz baseada na leitura do ACS712.

As funções de verificação permitem que o usuário solicite o status em tempo real, sem alterar

o estado:

• Tecla 5: Confere o estado da Carga 1. O sistema lê o ACS712 e informa se a carga está

"ativa e com corrente" ou "desativada e sem corrente".

• Tecla 6: Confere o estado da Carga 2. O sistema lê o ACS712 e informa o estado atual

da carga.

3. Função Especial: Modo Reset

A função de reset permite desligar todas as cargas simultaneamente e retornar o sistema à

tela de autenticação para um novo ciclo operacional, reforçando a segurança e estabilidade.

13

• Tecla 9: Ao digitar esta tecla, o sistema entra no Modo Reset, emitindo o feedback

"Modo reset ativado. Digite 1 para confirmar o reset do sistema e desligar todas as

cargas, ou 2 para cancelar a ação."

o Confirmação (9 + 1): Desliga ambos os relés e retorna o sistema ao prompt de

senha inicial, solicitando uma nova autenticação.

o Cancelamento (9 + 2): Cancela a operação e retorna o usuário diretamente ao

Menu Principal sem alterar o estado das cargas.

Apêndice B - Tutorial: configuração do atendimento automático em celulares (via P2)

Este guia visa configurar o celular que serve como interface DTMF para atender

chamadas automaticamente, condição essencial para o funcionamento do sistema.

Pré-requisito Fundamental: Para que o recurso de atendimento automático funcione na

maioria dos dispositivos Android, o sistema operacional exige a detecção de um fone de ouvido. Desse

modo, o cabo P3 (que conecta o celular ao seu circuito HT9170 e injeta o feedback de voz) deve estar

plugado e corretamente reconhecido pelo aparelho antes de iniciar a configuração. A presença do

conector P3 simula um headset, o que é crucial para que o sistema libere a funcionalidade de

atendimento automático.

Abordagem 1: Usando Configurações Nativas do Fabricante (Mais Recomendada)

Muitas interfaces de usuário (UIs) personalizadas do Android incluem esta opção,

geralmente oculta nas configurações de acessibilidade ou do aplicativo de Telefone. Siga os

passos a seguir para configurar a função de atendimento automático, utilizando as configurações nativas

do aparelho:

Acesse as Configurações: Abra o aplicativo "Configurações" (Settings) do seu celular.

1. Localize as Configurações de Chamada:

a. Procure por "Acessibilidade" (Accessibility) e, dentro, procure por “Interação

e Destreza” ou “Atender e Encerrar Chamadas”.

b. OU Procure diretamente nas configurações do "Aplicativo de Telefone" (Call

Settings).

2. Habilite o Atendimento Automático:

a. Encontre a opção “Atendimento Automático” (Auto Answer) ou similar.

b. Condição: Geralmente, você terá que selecionar a opção: "Atender

automaticamente quando um fone de ouvido ou dispositivo Bluetooth estiver

conectado."

3. Defina o Atraso (Opcional): Muitas vezes, você pode definir um pequeno atraso (ex: 2

ou 3 segundos) antes do atendimento. Defina para um valor baixo (2s) para agilizar o

processo.

14

4. Teste: Peça a alguém para ligar para o celular do sistema enquanto o cabo P2 está

conectado. O celular deve atender sem que você precise tocar na tela.

Apêndice C – Código fonte

O código fonte representa a implementação lógica (firmware) desenvolvida para o

microcontrolador Arduino Uno, que atua como unidade central de processamento do sistema

de controle via DTMF. O firmware é responsável pela leitura e decodificação do sinal DTMF,

pela execução da lógica de segurança, pelo gerenciamento do tempo de inatividade, pelo

processamento dos dados do sensor ACS712 e pelo controle serial do módulo DFPlayer Mini

para o feedback de voz.

Para garantir a transparência do projeto e permitir sua reprodutibilidade, o código

integral é apresentado a seguir. Seu desenvolvimento exigiu a inclusão de bibliotecas

específicas que facilitam a comunicação com os periféricos (LCD I2C e DFPlayer Mini) e a

execução de funções avançadas. As bibliotecas de terceiros necessárias estão disponíveis para

instalação e gerenciamento através do Gerenciador de Bibliotecas (Library Manager) da IDE

do Arduino (versão 1.8.2, utilizada no projeto), enquanto outras são nativas da plataforma.

/*

 Projeto: Controle por DTMF com leitura de corrente (ACS712), DFPlayer e LCD 16x2

 Placa: Arduino UNO

 Funcionalidades principais:

 - Senha DTMF: 1-2-3 para liberar o sistema.

 - Dois canais de carga (C1 e C2) com relé + medição de corrente (ACS712).

 - Histerese de corrente:

 * Estado ON acima de 80 mA

 * Estado OFF abaixo de 50 mA

 - Ao ligar relé:

 1) Liga o relé.

 2) Espera ~500 ms.

 3) Mede corrente corrigida.

 - Se I >= 0,08 A → áudio "Carga X ligada".

 - Se I < 0,08 A → áudio "Carga X sem corrente".

 - Ao desligar → áudio "Carga X desligada".

 Mapeamento das teclas no modo UNLOCKED:

 - Tecla 1 → liga/desliga CARGA 1 (C1).

 - Tecla 2 → liga/desliga CARGA 2 (C2).

 - Tecla 3 → consulta estado de C1 (ligada/desligada) via histerese (on1).

 - Tecla 4 → consulta estado de C2 (ligada/desligada) via histerese (on2).

 - Tecla 5 → consulta CORRENTE da C1.

 - Tecla 6 → consulta CORRENTE da C2.

 - Tecla 9 → inicia fluxo de RESET (confirma com 1, cancela com 2).

*/

15

#include <Wire.h> // disponível na biblioteca da IDE do aruino versão 1.8.2

#include <LiquidCrystal_I2C.h> // disponível na biblioteca da IDE do aruino versão 1.8.2

#include <SoftwareSerial.h> // disponível na biblioteca da IDE do aruino versão 1.8.2

#include <DFRobotDFPlayerMini.h> // disponível na biblioteca da IDE do aruino versão 1.8.2

#include <math.h> // disponível na biblioteca da IDE do aruino versão 1.8.2

#include <string.h> // disponível na biblioteca da IDE do aruino versão 1.8.2

#define N_CH 2 // número de canais usados neste UNO

/*===================== LCD =====================*/

LiquidCrystal_I2C lcd(0x27, 16, 2);

/*=================== DFPlayer ===================*/

/*

 Ligações:

 - DFPlayer TX → D10 (RX do Arduino / SoftwareSerial)

 - DFPlayer RX → D11 (TX do Arduino / SoftwareSerial) [ideal: resistor ~1k em série]

 - GND DFPlayer → GND Arduino

 - VCC DFPlayer → 5V Arduino

*/

const uint8_t PIN_DF_RX = 10; // RX Arduino <- TX DFPlayer

const uint8_t PIN_DF_TX = 11; // TX Arduino -> RX DFPlayer

SoftwareSerial dfSerial(PIN_DF_RX, PIN_DF_TX);

DFRobotDFPlayerMini dfp;

bool df_ok = false;

/*

 MAPEAMENTO REAL NO DFPLAYER (ajuste se necessário):

 0001.mp3 -> 1 = (livre ou outro uso)

 0002.mp3 -> 2 = Carga 1 ligada (exemplo)

 0003.mp3 -> 3 = Carga 1 desligada (exemplo)

 0004.mp3 -> 4 = Sistema inativo

 0005.mp3 -> 5 = Sistema resetado

 0006.mp3 -> 6 = Atenção, o sistema será reiniciado

 0007.mp3 -> 7 = Reset não autorizado

*/

// PROMPTS gerais (ajustados aos números que você está usando)

#define TRK_AUTH_OK 8 // "Senha correta" (conforme seu SD)

#define TRK_AUTH_FAIL 9 // "Senha incorreta"

#define TRK_SYSTEM_ACTIVE 10 // "Sistema ativo"

#define TRK_SYSTEM_INACTIVE 1 // 0004.mp3 = "Sistema inativo"

// Trilhas de reset (novas)

#define TRK_RESET_DONE 11 // 0005.mp3 = "Sistema resetado"

#define TRK_RESET_WARN 13 // 0006.mp3 = "Atencao, o sistema sera reiniciado"

#define TRK_RESET_DENY 12 // 0007.mp3 = "Reset nao autorizado"

// não usados por enquanto

#define TRK_BOOT 0

#define TRK_WAIT_PIN 0

#define TRK_MENU 0

#define TRK_RESET 0

16

#define TRK_INVALID 0

#define TRK_IDLE_TO 0

#define TRK_CURR_OK 0

#define TRK_CURR_OFF 0

// Trilhas por canal (mantenha como você ajustou no SD)

const uint16_t TRK_ON[N_CH] = { 2, 4 }; // C1 ligada, C2 ligada

const uint16_t TRK_OFF[N_CH] = { 3, 5 }; // C1 desligada, C2 desligada

// "Sem corrente"

const uint16_t TRK_NC[N_CH] = { 6, 7 }; // C1 sem corrente, C2 sem corrente

/*==================== DTMF (HT9170B) ============*/

/*

 Ligações típicas:

 - D0 → D4

 - D1 → D5

 - D2 → D6

 - D3 → D7

 - DV → D2 (INT0)

*/

#define DTMF_D0 4

#define DTMF_D1 5

#define DTMF_D2 6

#define DTMF_D3 7

#define DTMF_DV 2

volatile bool dvRiseFlag = false;

volatile uint8_t lastNibble = 0;

/*===================== Pinos diversos ===========*/

const uint8_t PINO_BOTAO = 8; // botão recalib. (puxado para GND)

const uint8_t LED_HB = 13; // LED onboard

/*================= Relés =================*/

const uint8_t RELAY1_PIN = 3; // C1

const uint8_t RELAY2_PIN = 12; // C2

const bool REL_ACTIVE_LOW = true; // LOW = liga

bool relay1On = false;

bool relay2On = false;

/*=================== Sensores ===================*/

const uint8_t PINO_ACS1 = A0;

const uint8_t PINO_ACS2 = A1;

const float Vref_ADC = 5.000;

// Ajustar sensibilidade conforme modelo do ACS712

// - 5A → 0.185 V/A

// - 20A → 0.100 V/A

// - 30A → 0.066 V/A

const float sensib1 = 0.100; // exemplo: 20 A

const float sensib2 = 0.100;

uint16_t N_RMS = 400;

const uint16_t DELAY_MS = 1;

17

// Histerese/filtros

float TH_ON_A = 0.080f; // 80 mA

float TH_OFF_A = 0.050f; // 50 mA

float I_MIN_DISPLAY = 0.020f; // 20 mA

const float ALPHA_EMA = 0.20f;

const float TH_AUDIO_ON_A = 0.080f;

// Offsets

uint16_t offset1 = 512;

uint16_t offset2 = 512;

float calibOff1_A = 0.0f;

float calibOff2_A = 0.0f;

// Estado lógico de corrente (pelo ACS + histerese)

bool on1 = false, on2 = false;

float ema1 = 0.0f, ema2 = 0.0f;

bool emaInit1 = false, emaInit2 = false;

// Botão

bool lastBtn = HIGH;

unsigned long btnDownAt = 0;

/*==================== Senha =====================*/

enum Mode { LOCKED, UNLOCKED };

Mode mode = LOCKED;

const uint8_t PASS_LEN = 3;

// Senha DTMF: 1-2-3

const uint8_t PASS_SEQ[PASS_LEN] = {1,2,3};

uint8_t pass_buf[PASS_LEN];

uint8_t pass_pos = 0;

/*===== Inatividade & cooldown =====*/

const unsigned long INACTIVITY_MS = 60000;

unsigned long lastActivityAt = 0;

const unsigned long KEY_COOLDOWN_MS = 300;

unsigned long lastKeyAt = 0;

/*===== Delay para verificação de corrente =====*/

const unsigned long VERIFY_DELAY_MS = 500;

/*===== Estado de reset pendente =====*/

bool resetPending = false; // true = aguardando tecla de confirmação (1 = sim, 2 = não)

/*================== PROTÓTIPOS ==================*/

void initDF();

void fala(uint16_t trk);

void falaC1On();

void falaC1Off();

void falaC2On();

void falaC2Off();

uint16_t medirOffset(uint8_t pino, uint16_t N, uint16_t atraso_ms);

float medirIrms_A(uint8_t pino, float sensib, uint16_t N, uint16_t atraso_ms, uint16_t zero);

float aplicaEMA(float x, float &y, bool &inited);

void recalibrar(bool showLCD);

18

void lcdShowLocked();

void lcdMsg(const char* msg, uint16_t ms);

void printLinha2Canais(float I1, bool s1, float I2, bool s2);

int mapNibbleToKey(uint8_t nib);

int dtmfReadKey();

void handleLockedKey(int k);

void handleUnlockedKey(int k);

void applyRelay(uint8_t pin, bool on);

void toggleRelay1();

void toggleRelay2();

float medirCorrenteCorrigida_C1();

float medirCorrenteCorrigida_C2();

// Reset geral (usado por tecla 9 + 1)

void resetSistema();

/*====================== SETUP ====================*/

void setup() {

 // Serial.begin(9600); // se quiser debug

 pinMode(LED_HB, OUTPUT);

 pinMode(PINO_BOTAO, INPUT_PULLUP);

 pinMode(RELAY1_PIN, OUTPUT);

 pinMode(RELAY2_PIN, OUTPUT);

 applyRelay(RELAY1_PIN, false);

 applyRelay(RELAY2_PIN, false);

 pinMode(DTMF_D0, INPUT);

 pinMode(DTMF_D1, INPUT);

 pinMode(DTMF_D2, INPUT);

 pinMode(DTMF_D3, INPUT);

 pinMode(DTMF_DV, INPUT);

 attachInterrupt(digitalPinToInterrupt(DTMF_DV), [](){

 uint8_t d0 = digitalRead(DTMF_D0);

 uint8_t d1 = digitalRead(DTMF_D1);

 uint8_t d2 = digitalRead(DTMF_D2);

 uint8_t d3 = digitalRead(DTMF_D3);

 lastNibble = (d3<<3)|(d2<<2)|(d1<<1)|(d0<<0);

 dvRiseFlag = true;

 }, RISING);

 lcd.begin(16, 2);

 lcd.backlight();

 lcd.clear();

 lcd.setCursor(0,0); lcd.print("Senha: 1-2-3");

 lcd.setCursor(0,1); lcd.print("Aguardando...");

 dfSerial.begin(9600);

 initDF(); // inicializa DFPlayer (com retry + modo cego)

19

 recalibrar(false);

 lcdShowLocked();

 lastActivityAt = millis();

 // Áudio de sistema ativo (se quiser manter)

 fala(TRK_SYSTEM_ACTIVE);

}

/*======================= LOOP ====================*/

void loop() {

 // Heartbeat LED

 static unsigned long tHB = 0;

 if (millis() - tHB >= 300) {

 tHB = millis();

 digitalWrite(LED_HB, !digitalRead(LED_HB));

 }

 /* ---------- Botão de recalibração (AJUSTADO) ---------- */

 bool btn = digitalRead(PINO_BOTAO);

 // Borda de descida: botão pressionado

 if (btn == LOW && lastBtn == HIGH) {

 btnDownAt = millis();

 lastActivityAt = millis();

 }

 // Borda de subida: botão solto → decide curto x longo

 if (btn == HIGH && lastBtn == LOW) {

 unsigned long t = millis() - btnDownAt;

 if (t < 2000) {

 // Recalibração normal

 recalibrar(true);

 if (mode == LOCKED) lcdShowLocked();

 } else {

 // Hard Recalib (mesma função, só muda texto)

 lcdMsg("Hard Recalib...", 600);

 recalibrar(true);

 if (mode == LOCKED) lcdShowLocked();

 }

 lastActivityAt = millis();

 }

 lastBtn = btn;

 /* ---------- Leitura corrente ACS ---------- */

 float Iraw1 = medirIrms_A(PINO_ACS1, sensib1, N_RMS, DELAY_MS, offset1);

 float Iraw2 = medirIrms_A(PINO_ACS2, sensib2, N_RMS, DELAY_MS, offset2);

 float Icor1 = Iraw1 - calibOff1_A;

 float Icor2 = Iraw2 - calibOff2_A;

 if (Icor1 < 0.0f) Icor1 = 0.0f;

 if (Icor2 < 0.0f) Icor2 = 0.0f;

 if (Icor1 < I_MIN_DISPLAY) Icor1 = 0.0f;

 if (Icor2 < I_MIN_DISPLAY) Icor2 = 0.0f;

20

 float I1 = aplicaEMA(Icor1, ema1, emaInit1);

 float I2 = aplicaEMA(Icor2, ema2, emaInit2);

 // Histerese de ligado/desligado:

 // - Sempre mostramos a leitura REAL do ACS (I1/I2).

 // - MAS só consideramos a carga "LIGADA" (onX = true) se o relé daquela carga estiver ON.

 if (relay1On) {

 if (!on1 && I1 >= TH_ON_A) on1 = true;

 if (on1 && I1 <= TH_OFF_A) on1 = false;

 } else {

 on1 = false; // relé 1 desligado → estado lógico OFF, mesmo que ACS veja ruído

 }

 if (relay2On) {

 if (!on2 && I2 >= TH_ON_A) on2 = true;

 if (on2 && I2 <= TH_OFF_A) on2 = false;

 } else {

 on2 = false; // relé 2 desligado → estado lógico OFF

 }

 if (mode == UNLOCKED) {

 printLinha2Canais(I1, on1, I2, on2);

 }

 /* ---------- Tecla DTMF ---------- */

 int key = dtmfReadKey();

 if (key != -1) {

 lastActivityAt = millis();

 if (mode == LOCKED) handleLockedKey(key);

 else handleUnlockedKey(key);

 }

 /* ---------- Auto-lock ---------- */

 if (mode == UNLOCKED && (millis() - lastActivityAt >= INACTIVITY_MS)) {

 mode = LOCKED;

 pass_pos = 0;

 lcdShowLocked();

 // feedback de sistema inativo pelo DFPlayer

 fala(TRK_SYSTEM_INACTIVE);

 resetPending = false; // garante que não fique pendente após timeout

 }

 delay(40);

}

/*================= DFPLAYER =================*/

// inicialização com retry + "modo cego"

void initDF() {

 df_ok = false;

 // dá tempo para o DFPlayer montar SD

 delay(2000);

 for (uint8_t tent = 0; tent < 3 && !df_ok; tent++) {

 if (dfp.begin(dfSerial)) {

 df_ok = true;

 break;

21

 }

 delay(500);

 }

 if (!df_ok) {

 lcd.clear();

 lcd.setCursor(0,0); lcd.print("DF sem resp.");

 lcd.setCursor(0,1); lcd.print("Modo Cego ON");

 delay(1500);

 // modo cego: vamos tentar mandar comando mesmo assim

 df_ok = true;

 }

 dfp.outputDevice(DFPLAYER_DEVICE_SD);

 dfp.volume(30); // volume alto pra teste

 dfp.EQ(DFPLAYER_EQ_NORMAL);

}

void fala(uint16_t trk){

 if (!df_ok || trk == 0) return; // ignora trilhas 0/inexistentes

 dfp.play(trk);

 delay(20);

}

void falaC1On() { fala(TRK_ON[0]); }

void falaC1Off() { fala(TRK_OFF[0]); }

void falaC2On() { fala(TRK_ON[1]); }

void falaC2Off() { fala(TRK_OFF[1]); }

/*================= MEDIÇÃO ==================*/

uint16_t medirOffset(uint8_t pino, uint16_t N, uint16_t atraso_ms){

 unsigned long soma = 0;

 for (uint16_t i=0; i<N; i++) {

 soma += analogRead(pino);

 delay(atraso_ms);

 }

 return (uint16_t)(soma / N);

}

float medirIrms_A(uint8_t pino, float sensib, uint16_t N, uint16_t atraso_ms, uint16_t zero){

 double soma2 = 0.0;

 for (uint16_t i=0; i<N; i++) {

 int adc = analogRead(pino);

 int delta = adc - (int)zero;

 float v = delta * (Vref_ADC / 1023.0f);

 soma2 += (double)v * (double)v;

 delay(atraso_ms);

 }

 float Vrms = sqrt(soma2 / (double)N);

 return Vrms / sensib;

}

float aplicaEMA(float x, float &y, bool &inited){

 if (!inited) {

 y = x; inited = true;

 } else {

22

 y += ALPHA_EMA * (x - y);

 }

 return y;

}

void recalibrar(bool showLCD){

 if (showLCD){

 lcd.clear();

 lcd.setCursor(0,0); lcd.print("Recalibrando...");

 lcd.setCursor(0,1); lcd.print("Aguarde");

 }

 offset1 = medirOffset(PINO_ACS1, 800, 1);

 offset2 = medirOffset(PINO_ACS2, 800, 1);

 float Irep1 = medirIrms_A(PINO_ACS1, sensib1, 1000, 1, offset1);

 float Irep2 = medirIrms_A(PINO_ACS2, sensib2, 1000, 1, offset2);

 calibOff1_A = Irep1;

 calibOff2_A = Irep2;

 emaInit1 = emaInit2 = false;

 on1 = on2 = false;

 if (showLCD){

 lcd.clear();

 lcd.setCursor(0,0); lcd.print("Calib. OK");

 lcd.setCursor(0,1);

 lcd.print(Irep1,3); lcd.print(" / "); lcd.print(Irep2,3);

 delay(1500);

 }

}

/*================= LCD ==================*/

void printLinha2Canais(float I1, bool s1, float I2, bool s2){

 char b1[17], b2[17], v1[8], v2[8];

 dtostrf(I1, 6, 3, v1);

 dtostrf(I2, 6, 3, v2);

 snprintf(b1,sizeof(b1),"C1 %sA %s",v1,s1?"ON ":"OFF");

 snprintf(b2,sizeof(b2),"C2 %sA %s",v2,s2?"ON ":"OFF");

 lcd.setCursor(0,0); lcd.print(b1);

 for (int i=strlen(b1); i<16; i++) lcd.print(' ');

 lcd.setCursor(0,1); lcd.print(b2);

 for (int i=strlen(b2); i<16; i++) lcd.print(' ');

}

void lcdMsg(const char* msg, uint16_t ms){

 lcd.clear();

 lcd.setCursor(0,0);

 lcd.print(msg);

 delay(ms);

}

void lcdShowLocked(){

 lcd.clear();

23

 lcd.setCursor(0,0); lcd.print("Senha (3 dig):");

 lcd.setCursor(0,1); lcd.print("_ _ _");

}

/*================= DTMF ==================*/

int mapNibbleToKey(uint8_t nib){

 if (nib >= 1 && nib <= 9) return nib;

 if (nib == 0x0A) return 0;

 return -1;

}

int dtmfReadKey(){

 if (!dvRiseFlag) return -1;

 noInterrupts();

 uint8_t nib = lastNibble;

 dvRiseFlag = false;

 interrupts();

 int k = mapNibbleToKey(nib);

 if (k == -1) {

 uint8_t d0 = (nib & 0x01) ? 1 : 0;

 uint8_t d1 = (nib & 0x02) ? 1 : 0;

 uint8_t d2 = (nib & 0x04) ? 1 : 0;

 uint8_t d3 = (nib & 0x08) ? 1 : 0;

 uint8_t nib_inv = (d0<<3)|(d1<<2)|(d2<<1)|(d3<<0);

 k = mapNibbleToKey(nib_inv);

 }

 return k;

}

/*============= Senha e teclas =============*/

void handleLockedKey(int k){

 if (k < 0 || k > 9) return;

 if (millis() - lastKeyAt < KEY_COOLDOWN_MS) return;

 lastKeyAt = millis();

 lcd.setCursor(pass_pos*2,1);

 lcd.print((char)('0'+k));

 lcd.setCursor(pass_pos*2+1,1);

 lcd.print(' ');

 pass_buf[pass_pos++] = (uint8_t)k;

 if (pass_pos >= PASS_LEN){

 bool ok = true;

 for (uint8_t i=0; i<PASS_LEN; i++) {

 if (pass_buf[i] != PASS_SEQ[i]) { ok=false; break; }

 }

 if (ok){

 fala(TRK_AUTH_OK); // "senha correta"

 lcdMsg("Senha correta",1500);

 mode = UNLOCKED;

 lcd.clear();

 } else {

 fala(TRK_AUTH_FAIL); // "senha incorreta"

 lcdMsg("Senha incorreta",1200);

24

 pass_pos = 0;

 lcdShowLocked();

 }

 }

 lastActivityAt = millis();

}

void handleUnlockedKey(int k){

 auto canDoKey = [&](){ return (millis() - lastKeyAt) >= KEY_COOLDOWN_MS; };

 // Se estamos aguardando confirmação de reset (9 foi pressionado antes)

 if (resetPending) {

 if (!canDoKey()) return;

 lastKeyAt = millis();

 if (k == 1) {

 // 9 + 1 => resetar sistema

 resetSistema();

 fala(TRK_RESET_DONE); // "sistema resetado"

 } else if (k == 2) {

 // 9 + 2 => não autoriza reset

 lcdMsg("Reset cancelado", 800);

 fala(TRK_RESET_DENY); // "reset nao autorizado"

 } else {

 // Qualquer outra tecla também cancela o reset por segurança

 lcdMsg("Reset cancelado", 800);

 fala(TRK_RESET_DENY);

 }

 resetPending = false;

 lastActivityAt = millis();

 return; // não processa mais nada desta tecla

 }

 // Se NÃO estamos em modo de confirmação de reset, segue fluxo normal

 if (k == 1){

 // Tecla 1: LIGA/DESLIGA CARGA 1 (C1)

 if (canDoKey()){

 bool wasOn = relay1On;

 toggleRelay1(); // muda o estado do relé C1

 if (!wasOn && relay1On){

 // Acabou de ligar C1 → verifica corrente

 lcdMsg("Verif. C1...", 300);

 delay(VERIFY_DELAY_MS);

 float Icheck = medirCorrenteCorrigida_C1();

 if (Icheck >= TH_AUDIO_ON_A){

 falaC1On(); // "Carga 1 ligada"

 lcdMsg("C1 LIGADA (OK)", 700);

 } else {

 fala(TRK_NC[0]); // "Carga 1 sem corrente"

 lcdMsg("C1 SEM CORRENTE", 900);

 }

 } else if (wasOn && !relay1On){

 // Acabou de desligar C1

 falaC1Off(); // "Carga 1 desligada"

25

 lcdMsg("Relé C1: DESLIG", 700);

 }

 lastKeyAt = millis();

 }

 } else if (k == 2){

 // Tecla 2: LIGA/DESLIGA CARGA 2 (C2)

 if (canDoKey()){

 bool wasOn = relay2On;

 toggleRelay2(); // muda o estado do relé C2

 if (!wasOn && relay2On){

 // Acabou de ligar C2 → verifica corrente

 lcdMsg("Verif. C2...", 300);

 delay(VERIFY_DELAY_MS);

 float Icheck = medirCorrenteCorrigida_C2();

 if (Icheck >= TH_AUDIO_ON_A){

 falaC2On(); // "Carga 2 ligada"

 lcdMsg("C2 LIGADA (OK)", 700);

 } else {

 fala(TRK_NC[1]); // "Carga 2 sem corrente"

 lcdMsg("C2 SEM CORRENTE", 900);

 }

 } else if (wasOn && !relay2On){

 // Acabou de desligar C2

 falaC2Off(); // "Carga 2 desligada"

 lcdMsg("Relé C2: DESLIG", 700);

 }

 lastKeyAt = millis();

 }

 } else if (k == 3){

 // Tecla 3: CONSULTA ESTADO LÓGICO DA CARGA 1 (C1) via on1

 if (on1) {

 falaC1On(); // "Carga 1 ligada"

 lcdMsg("C1: LIGADA", 700);

 } else {

 falaC1Off(); // "Carga 1 desligada"

 lcdMsg("C1: DESLIGADA", 700);

 }

 } else if (k == 4){

 // Tecla 4: CONSULTA ESTADO LÓGICO DA CARGA 2 (C2) via on2

 if (on2) {

 falaC2On(); // "Carga 2 ligada"

 lcdMsg("C2: LIGADA", 700);

 } else {

 falaC2Off(); // "Carga 2 desligada"

 lcdMsg("C2: DESLIGADA", 700);

 }

 } else if (k == 5){

 // Tecla 5: CONSULTA CORRENTE DA CARGA 1 (C1)

 float Icheck = medirCorrenteCorrigida_C1();

 lcd.clear();

26

 lcd.setCursor(0,0); lcd.print("C1 Corrente:");

 lcd.setCursor(0,1); lcd.print(Icheck,3); lcd.print(" A");

 if (Icheck >= TH_AUDIO_ON_A){

 falaC1On(); // "Carga 1 ligada"

 } else {

 fala(TRK_NC[0]); // "Carga 1 sem corrente"

 }

 delay(900);

 } else if (k == 6){

 // Tecla 6: CONSULTA CORRENTE DA CARGA 2 (C2)

 float Icheck = medirCorrenteCorrigida_C2();

 lcd.clear();

 lcd.setCursor(0,0); lcd.print("C2 Corrente:");

 lcd.setCursor(0,1); lcd.print(Icheck,3); lcd.print(" A");

 if (Icheck >= TH_AUDIO_ON_A){

 falaC2On(); // "Carga 2 ligada"

 } else {

 fala(TRK_NC[1]); // "Carga 2 sem corrente"

 }

 delay(900);

 } else if (k == 9){

 // Tecla 9: INICIA fluxo de reset (precisa confirmar)

 if (canDoKey()){

 resetPending = true;

 // Mensagem no LCD pedindo confirmação

 lcd.clear();

 lcd.setCursor(0,0); lcd.print("Reset sistema?");

 lcd.setCursor(0,1); lcd.print("1=SIM 2=NAO");

 // Aviso sonoro

 fala(TRK_RESET_WARN); // "atencao, o sistema sera reiniciado"

 lastKeyAt = millis();

 }

 } else {

 // Outras teclas: só avisa que é inválida (sem áudio)

 lcdMsg("Tecla incorreta", 900);

 }

 lastActivityAt = millis();

}

/*================ Relés =================*/

void applyRelay(uint8_t pin, bool on){

 if (REL_ACTIVE_LOW) digitalWrite(pin, on ? LOW : HIGH);

 else digitalWrite(pin, on ? HIGH : LOW);

}

void toggleRelay1(){

 relay1On = !relay1On;

27

 applyRelay(RELAY1_PIN, relay1On);

}

void toggleRelay2(){

 relay2On = !relay2On;

 applyRelay(RELAY2_PIN, relay2On);

}

/*======== Medição rápida corrigida =========*/

float medirCorrenteCorrigida_C1(){

 float Iraw = medirIrms_A(PINO_ACS1, sensib1, N_RMS, DELAY_MS, offset1);

 float Icor = Iraw - calibOff1_A;

 if (Icor < 0.0f) Icor = 0.0f;

 return Icor;

}

float medirCorrenteCorrigida_C2(){

 float Iraw = medirIrms_A(PINO_ACS2, sensib2, N_RMS, DELAY_MS, offset2);

 float Icor = Iraw - calibOff2_A;

 if (Icor < 0.0f) Icor = 0.0f;

 return Icor;

}

/*======== RESET SISTEMA (tecla 9 + 1) =========*/

void resetSistema(){

 // Desliga relés e flags

 relay1On = false;

 relay2On = false;

 applyRelay(RELAY1_PIN, false);

 applyRelay(RELAY2_PIN, false);

 // Zera estado lógico de corrente

 on1 = false;

 on2 = false;

 emaInit1 = false;

 emaInit2 = false;

 // Volta para modo bloqueado (senha)

 mode = LOCKED;

 pass_pos = 0;

 lcdShowLocked();

 // Áudio de "sistema resetado" é tocado fora (em handleUnlockedKey)

}

Apêndice D – Procedimento para criação e gravação dos arquivos de áudio no Dfplayer

mini

Este apêndice tem como objetivo descrever, de forma simples e reprodutível, o procedimento

completo para a geração, nomeação e preparo dos arquivos de áudio necessários para o correto

funcionamento do sistema de feedback de voz do projeto.

28

1. Geração e Preparação das Mensagens de Voz

Para a geração das mensagens de voz, foi adotado o método de síntese de voz (Text-to-Speech

– TTS), utilizando um serviço online (https://luvvoice.com). O procedimento envolve

acessar a plataforma, digitar a frase de feedback desejada (ex: "Sistema ativo," "Carga um

ligada," ou "Carga dois desligada"), selecionar o Idioma Português (Brasil) e manter a mesma

voz padrão em todos os arquivos para garantir a padronização e humanização do feedback.

Após a geração, o áudio é baixado no formato MP3 e salvo temporariamente no computador,

repetindo-se o processo para todas as mensagens de voz requeridas pela lógica do sistema.

2. Nomeação e Estrutura de Arquivos

A correta nomeação dos arquivos é crucial, pois o módulo DFPlayer Mini não identifica os

áudios pelo nome textual, mas sim por uma numeração fixa que deve coincidir com o comando

enviado pelo código do Arduino. Desta forma, o nome do arquivo deve, obrigatoriamente,

conter quatro dígitos numéricos, seguidos da extensão .mp3. Não devem ser utilizados letras,

espaços ou caracteres especiais no nome do arquivo.

Exemplos de Nomes Válidos: O áudio de "Sistema inativo" deve ser nomeado como

0001.mp3, "Carga 1 ligada" como 0002.mp3, e assim sucessivamente. Esta

correspondência é vital: o comando dfp.play(4); no Arduino, por exemplo, fará o

DFPlayer reproduzir o arquivo 0004.mp3.

3. Preparação do Cartão microSD

O cartão microSD atua como a memória de armazenamento das mensagens de voz. Para

garantir o funcionamento correto com o DFPlayer Mini, o cartão deve ter uma capacidade

recomendada de até 32 GB e ser formatado com o Sistema de Arquivos FAT32. Após a

formatação, todos os arquivos MP3 corretamente nomeados devem ser copiados diretamente

para a raiz do cartão, sendo vedada a criação de subpastas. É fundamental que o cartão seja

dedicado exclusivamente aos áudios do projeto. Após a verificação dos nomes e estrutura, o

cartão deve ser ejetado em segurança e inserido no módulo DFPlayer Mini.

4. Boas Práticas Adotadas

Durante a implementação, foram adotadas boas práticas para otimizar o desempenho do

feedback de voz. Todas as mensagens foram gravadas com volume semelhante, evitando

29

variações bruscas que pudessem prejudicar a clareza na linha telefônica. A padronização de voz

e idioma foi mantida, e os áudios foram testados individualmente antes da integração ao

sistema. O volume final do DFPlayer Mini foi ajustado via software no Arduino para evitar

distorções na saída de áudio.

