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RESUMO

Este trabalho tem como objetivo central analisar o funcionamento e o desenvolvimento 
de kernels de sistemas operacionais para a arquitetura x86, com o intuito de elucidar 
como os recursos computacionais são acessados e abstraídos para fornecer uma 
interface simplificada ao usuário e ao programador. Para concretizar este estudo, 
adotou-se  uma  abordagem  prática  baseada  na  análise  de  um  kernel didático 
denominado BergOS, desenvolvido pelo autor em linguagens C e assembly para a 
plataforma IA-32, membro da família x86. A motivação reside na premissa de que 
conceitos teóricos complexos, como a separação entre espaços de kernel e usuário, 
só são satisfatoriamente compreendidos quando examinados em implementações 
reais, as quais são inerentemente dependentes da arquitetura do hardware. Com base 
em  uma  revisão  bibliográfica  que  aborda  tópicos  sobre  sistemas  operacionais, 
arquitetura  de computadores,  programação assembly,  entre  outros, as partes  do 
BergOS são analisadas minuciosamente. Começando pelo bootloader, que carrega o 
kernel na memória, passando pelo driver de VGA, que usa E/S mapeada na memória 
para se comunicar com o dispositivo de vídeo e renderizar caracteres na tela, até a 
definição e implementação da interface do emulador de terminal do BergOS, que 
fornece rotinas de alto nível, oferecendo uma camada de abstração para outras partes 
do  kernel e programas aplicativos poderem escrever mensagens na tela sem se 
preocupar com os detalhes do hardware. A contribuição deste trabalho está no fato de 
ele se aprofundar na conexão inerente entre sistema operacional e hardware, não se 
limitando apenas ao campo teórico e abstrato, mas apresentando e analisando uma 
implementação  real  e  simples  dos  conceitos.  Mesmo  abordando  detalhes  da 
arquitetura  x86  em  profundidade,  ainda  há  aspectos  importantes  que  não  são 
estudados neste  trabalho,  como a separação de espaço de  kernel e  espaço de 
usuário, mecanismos de interrupção, entrada de dados com teclado e processos, que 
são  ganchos  para  estudos  futuros.  A  conclusão  é  que  o  estudo  de  sistemas 
operacionais deve vir acompanhado de um estudo de arquitetura de computadores, e 
que, apesar de sua simplicidade, o BergOS demonstra ser uma fonte interessante de 
exemplos práticos dos conceitos teóricos abstratos.

Palavras Chave: Sistema Operacional; Kernel; x86.



ABSTRACT

This work aims to analyze the operation and development of operating system kernels  
for  the  x86  architecture,  in  order  to  elucidate  how  computational  resources  are  
accessed and abstracted to provide a simplified interface for the user and programmer.  
To carry out this study, we developed a practical approach based on the analysis of a  
didactic kernel called BergOS, developed by the author in C and assembly languages 
for the IA-32 platform, a member of the x86 family. The motivation lies in the proposition 
that complex theoretical concepts, such as the separation between kernel and user  
spaces, are only satisfactorily understood when examined in real implementations, as  
these are indirectly dependent on the hardware architecture. Based on a literature  
review covering details about operating systems, computer architecture, assembly  
programming, among others, the parts of BergOS are meticulously verified. Starting  
with the bootloader, which loads the kernel into memory, moving on to the VGA driver,  
which uses memory-mapped I/O to communicate with the video device and render  
characters  on the screen,  and finally  to  the definition  and implementation of  the  
BergOS terminal emulator interface, which provides high-level routines, offering an  
abstraction layer so that other parts of the kernel and application programs can write  
messages to the screen without worrying about hardware details. The contribution of  
this work lies in its in-depth exploration of the inherent connection between operating  
system and hardware,  not  limiting  itself  to  the  theoretical  and  abstract  field,  but  
presenting and analyzing a real and simple implementation of the concepts. Even while  
addressing details of the x86 architecture in depth, there are still important aspects not 
covered in this work, such as the separation of kernel space and user space, interrupt 
mechanisms, keyboard input, and processes, which are hooks for future studies. The  
conclusion is that the study of operating systems should be accompanied by a study of  
computer  architecture,  and  that,  despite  its  simplicity,  BergOS  proves  to  be  an  
interesting source of practical examples of abstract theoretical concepts.

Keywords: Operating System; Kernel; x86.  
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1 INTRODUÇÃO

Este trabalho tem por objetivo analisar o funcionamento e desenvolvimento de kernels 

de sistemas operacionais para a família de arquiteturas x86.

O objetivo geral é apresentar uma visão sobre como kernels são programados, 

estudando  como  são  acessados  os  recursos  computacionais  e  como  eles  são 

abstraídos para apresentar uma interface simples para o usuário e o programador.

Como  objetivo  específico,  buscou-se  analisar  um  kernel simples  para  a 

arquitetura x86 chamado BergOS, escrito em linguagem C e assembly. Esse kernel, 

desenvolvido pelo autor, faz uso de estruturas e recursos da arquitetura e implementa 

mecanismos básicos de entrada/saída,  servindo,  assim,  como uma manifestação 

prática dos conceitos teóricos abordados.

A motivação para este trabalho está na certeza de que certos conceitos teóricos 

só são satisfatoriamente compreendidos com exemplos reais. A separação do espaço 

de usuário e espaço de  kernel, por exemplo, é realizada pelo processador, que é 

configurado pelo sistema operacional para se comportar conforme o desejado, o que 

torna  esse  recurso  dependente  da  arquitetura  da  máquina  para  a  qual  ele  foi 

programado. Uma abordagem geral, que tente ser independente de arquitetura, terá 

de se restringir a ideias vagas e abstratas, limitando a compreensão do tema.

Por outro lado, este trabalho faz um estudo com tecnologias específicas. No 

caso,  o  kernel BergOS,  escrito  para  a  arquitetura  IA-32,  membro  da  família  de 

arquiteturas x86, usando o GCC como compilador de C e o NASM como assembler. A 

implementação de conceitos como a comunicação do kernel com um driver de vídeo 

para saída de dados é detalhada através de um estudo dos mecanismos arquiteturais 

que permitem a comunicação do processador com o dispositivo de vídeo.

Este trabalho escolheu a arquitetura x86 por ser uma arquitetura madura, com 

abundância de documentação e sistemas operacionais suportados; e por ser comum 

em computadores pessoais, tanto desktops quanto laptops, o que torna fácil para o 

leitor ter a experiência de executar o BergOS em uma máquina real.

A escolha da linguagem C se motiva por ser uma linguagem de sistema simples, 

que foi projetada especialmente para a programação de sistemas operacionais, com 
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implementações eficientes e uma boa integração com outras linguagens de sistema, 

muito devido à sua já mencionada simplicidade. O uso do NASM como assembler é 

vantajoso, pois além de ter diretivas de pré-processamento poderosas, a sua sintaxe é 

a usada nos manuais da Intel.

O BergOS é um projeto de código aberto e pode ser acessado através de um 

repositório público no GitHub (BERGANTON, 2025). Esse repositório também contém 

instruções para compilar e executar o BergOS.

Como  o  código  do  BergOS  pode  evoluir  com  o  tempo  ao  ponto  de  ser 

substancialmente diferente daquele estudado neste trabalho, uma branch chamada 

tcc foi criada no repositório oficial. O foco dessa branch é apenas servir de referência 

para este trabalho; portanto, mesmo que o projeto evolua, o código estudado aqui 

poderá ser acessado facilmente.

Em determinados trechos, neste trabalho, um caminho de diretórios será usado 

para especificar algum arquivo do BergOS. Por exemplo, o código do kernel está em 

./kernel/main.c. Esses caminhos sempre tomam como ponto de partida o diretório raiz 

do projeto, conforme o repositório no GitHub.

O trabalho é dividido em seis capítulos e um apêndice. O capítulo 1 (Introdução) 

estabelece os objetivos e motivações do estudo. O capítulo 2 (Revisão Bibliográfica) 

faz uma revisão teórica de tópicos referentes a sistemas operacionais, arquitetura de 

computadores,  arquitetura  x86 e  programação em linguagem assembly,  que são 

necessários para a compreensão dos capítulos seguintes, onde esses conhecimentos 

serão aplicados.

O  capítulo  3  (Bootloader)  trará  uma  análise  minuciosa  do  programa  do 

bootloader do BergOS e como ele carrega o kernel para a memória e deixa a máquina 

em um estado esperado por ele. Neste capítulo, os conceitos abordados no capítulo 2 

serão  postos  em  prática,  como  programação  em  assembly,  manipulação  de 

registradores, segmentação de memória, interrupções de software, dentre outros.

O capítulo 4 (Driver de VGA) começa apresentando o padrão VGA e como ele 

faz uso de mecanismos de E/S mapeada na memória para fornecer uma maneira do 

programador manipular o vídeo apenas lendo e escrevendo na memória principal. 
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Após isso, será feita uma análise do driver de VGA do BergOS, onde todo o código é 

estudado, da interface à implementação.

O capítulo 5 (Emulador de terminal) define e implementa uma interface com 

rotinas feitas para manipular o emulador de terminal do BergOS. A implementação da 

interface faz uso do driver de VGA estudado no capítulo 4 para manipular o vídeo e 

escrever os caracteres na tela. É neste momento em que o BergOS estabelece uma 

camada de abstração, permitindo que outras partes do kernel e programas aplicativos 

sejam  programados  usando  interfaces  e  protocolos  livres  das  complexidades  e 

especificidades do hardware. Por fim, o capítulo 6 (Considerações finais) conclui o 

estudo levantando suas contribuições e limitações.

O  apêndice  A (Processo  de  Compilação  do  BergOS)  aborda  dois  temas 

principais: o processo de compilação do BergOS, incluindo suas dificuldades e os 

meios para contorná-las; e as questões referentes à execução do sistema, e como ele 

pode ser executado em emuladores como QEMU e em máquinas reais compatíveis 

com a arquitetura IA-32.
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2 REVISÃO BIBLIOGRÁFICA

Neste  capítulo  serão  introduzidos  os  conceitos  teóricos  referentes  a  sistemas 

operacionais e a arquitetura x86.

2.1 Sistema Operacional

Um sistema operacional é um  software complexo, e isso já se torna evidente na 

dificuldade em defini-lo.  É  intuitivo  concebê-lo  como o  conjunto  de programas e 

aplicativos que vêm junto a uma instalação de um sistema, como shells, interfaces 

gráficas, gerenciadores de arquivos etc. Apesar de serem recursos importantes e 

úteis,  eles  não  são,  a  princípio,  aspectos  substanciais  e  podem  facilmente  ser 

substituídos sem nenhuma alteração profunda no sistema. Um sistema operacional 

tem um papel muito mais profundo do que é imediatamente visível ao usuário comum.

Os programas citados são classificados como programas aplicativos, isto é, 

são feitos para realizar tarefas específicas e desejadas por usuários, mas não têm 

relação  com  o  sistema  computacional  em  si.  Já  os  programas  de  sistema  são 

destinados a gerenciar o computador em alguma instância. O programa de sistema 

mais básico é o sistema operacional,  que, em uma definição sucinta,  é “[…] um 

programa que gerencia o hardware de um computador. Ele também fornece uma base 

para os programas aplicativos e atua como intermediário entre o usuário e o hardware 

do computador” (SILBERSCHATZ; GALVIN; GAGNE, 2015, n. p.).

Um sistema operacional tem, então, um trabalho complexo. Além de gerenciar 

os recursos de um sistema computacional, também deve facilitar que estes sejam 

acessados de forma conveniente e segura, protegendo-os contra usos indevidos. Isso 

é atingido com o auxílio do hardware, que permite a execução de um programa em 

modo núcleo ou modo usuário. O núcleo do sistema operacional é o que executa em 

modo núcleo, como afirma Tanenbaum e Bos (2016, p. 1).

O sistema operacional, a peça mais fundamental de software, opera em modo 
núcleo (também chamado modo supervisor). Nesse modo ele tem acesso 
completo  a  todo  o  hardware e  pode  executar  qualquer  instrução  que  a 
máquina for capaz de executar. O resto do software opera em modo usuário, 
no qual apenas um subconjunto das instruções da máquina está disponível. 
Em particular,  aquelas  instruções que afetam o  controle  da  máquina ou 
realizam E/S (Entrada/Saída) são proibidas para programas de modo usuário 
(TANENBAUM; BOS, 2016, p. 1).
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A definição apresentada pode ser aprofundada. Tanenbaum e Bos detalham 

essa perspectiva argumentando que um sistema operacional  pode ser entendido 

através de duas abordagens, como uma máquina estendida e como um gerenciador 

de recursos.

2.1.1 Sistema Operacional Como Uma Máquina Estendida

Em um sistema computacional, o  hardware se apresenta aos programadores com 

uma  complexidade  exótica.  “Processadores  reais,  memórias,  discos  e  outros 

dispositivos são muito complicados e apresentam interfaces difíceis, desajeitadas, 

idiossincráticas e inconsistentes para as pessoas que têm de escrever softwares para 

elas utilizarem” (TANENBAUM; BOS, 2016, p. 3).

Para  manipular  um  processador,  por  exemplo,  é  necessário  conhecer  os 

detalhes de sua arquitetura, como seus registradores, instruções, mecanismos de 

acesso  à  memória,  mecanismos  de  segurança  e  mecanismos  de  acesso  aos 

dispositivos de E/S,  o que torna sua programação não apenas complicada,  mas 

dependente de uma arquitetura em específico.

Com dispositivos de E/S a situação é ainda pior. As interfaces para manipulá-

los tendem a ser primitivas e complicadas. Para ler um byte de um disco, por exemplo, 

podem ser necessárias várias instruções de máquina. Também é esperado que o 

mesmo programa que executa no processador seja capaz de lidar com diferentes 

modelos de dispositivos de uma mesma classe.

Em suma, o hardware é complicado, e qualquer programador se beneficiaria de 

estar longe de seus detalhes. Sendo assim, Tanenbaum e Bos (2016, p. 3) concluem 

que “Uma das principais tarefas dos sistemas operacionais é esconder o hardware e 

em vez disso apresentar  programas (e seus programadores)  com abstrações de 

qualidade,  limpas,  elegantes  e  consistentes  com  as  quais  trabalhar.  Sistemas 

operacionais transformam o feio em belo […]”. A Figura  1 traz uma representação 

visual dessa ideia.
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Essa interface que abstrai as complexidades do  hardware fornecendo uma 

visão mais simples do sistema aos programas aplicativos é o que conforma a noção de 

máquina estendida, que permite maior portabilidade e uma programação conveniente 

baseada em abstrações.

2.1.2 Sistema Operacional Como Um Gerenciador de Recursos

Essa abordagem enxerga o sistema operacional como um programa que administra 

os  recursos  de  um sistema  computacional.  “Resumindo,  essa  visão  do  sistema 

operacional sustenta que a sua principal função é manter um controle sobre quais 

programas estão usando qual recurso, conceder recursos requisitados, contabilizar o 

seu uso,  assim como mediar  requisições  conflitantes  de diferentes  programas e 

usuários” (TANENBAUM; BOS, 2016, p. 4).

Dado o fato de que computadores modernos permitem que múltiplos programas 

compartilhem  recursos,  um  gerenciamento  cuidadoso  passa  a  fazer  parte  das 

funcionalidades de um sistema operacional. “O gerenciamento de recursos inclui a 

multiplexação (compartilhamento) de recursos de duas maneiras diferentes: no tempo 

e no espaço.” (TANENBAUM; BOS, 2016, p. 4).

Figura 1 – Abstração fornecida pelo sistema operacional

Fonte: Tanenbaum e Bos (2016)
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A multiplexação no tempo é o intervalo no qual um programa terá direito a usar o 

processador. Depois de concluir o seu tempo, ou ser bloqueado devido à dependência 

de um evento externo para continuar sua execução, o sistema operacional fará outro 

programa em espera tomar seu lugar.

A multiplexação no espaço é o direito dos programas a uma parte do recurso. A 

memória principal, por exemplo, é dividida em partições que são associadas a um 

programa cada, de modo que cada um tenha sua própria memória e não possa 

acessar os recursos do outro.

2.1.3 Inconsistências na Definição

Nenhuma definição de sistema operacional é totalmente satisfatória. Se formos mais 

rigorosos com o que foi definido até aqui, o firmware Basic Input Output System (BIOS) 

de  uma  placa-mãe  pode  ser  considerado  um  sistema  operacional,  afinal,  ele 

administra recursos do sistema computacional com a operação Power On Self Test 

(POST), que detecta falhas no hardware, e fornece uma camada de abstração através 

das funções BIOS, formando uma interface mais simples e conveniente para interação 

com o hardware, ainda que limitada. O sistema MS-DOS, bem como outros sistemas 

antigos,  era  fortemente  baseado  nas  funções  BIOS,  permitindo  que  programas 

aplicativos as usassem em sua programação (DODGE; IRVINE; NGUYEN, 2005, p. 

80). Sendo assim, as funções BIOS compunham boa parte da máquina estendida do 

sistema da Microsoft.

A falta de consenso é corroborada por Silberschatz, Galvin e Gagne “[…] não 

temos  uma  definição  universalmente  aceita  sobre  o  que  compõe  o  sistema 

operacional”,  e concluem “Uma definição mais comum, que é a que costumamos 

seguir, é que o sistema operacional é o único programa que permanece em execução 

no computador durante todo o tempo — chamado, em geral, de kernel” (2015, n. p.). O 

kernel é a parte do sistema operacional que executa em modo núcleo, portanto, tem 

acesso a todas as instruções do processador.

Mas a afirmação de que o sistema operacional é o que executa em modo núcleo 

também gera problemas. Sistemas embarcados ou processadores antigos podem não 

ter uma divisão entre modo núcleo e modo usuário, e mesmo alguns programas que 

executam em modo usuário  estão tão intimamente ligados ao funcionamento do 
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sistema operacional que se torna difícil não considerá-los como parte dele, assim 

como afirma Tanenbaum e Bos (2016, p. 2).

[…] muitas vezes há um programa que permite aos usuários que troquem 
suas senhas. Não faz parte do sistema operacional e não opera em modo 
núcleo, mas claramente realiza uma função sensível e precisa ser protegido 
de  uma maneira  especial.  Em alguns  sistemas,  essa  ideia  é  levada  ao 
extremo, e partes do que é tradicionalmente entendido como sendo o sistema 
operacional (como o sistema de arquivos) é executado em espaço do usuário. 
Em tais sistemas, é difícil  traçar um limite claro. Tudo o que está sendo 
executado em modo núcleo faz claramente parte do sistema operacional, mas 
alguns programas executados fora dele também podem ser considerados 
uma parte dele, ou pelo menos estão associados a ele de modo próximo 
(TANENBAUM; BOS, 2016, p. 2).

Não  parece  correto  ou  pragmático  considerar  o  BIOS  como  um  sistema 

operacional, tornando uma definição muito ampla pouco adequada. O mesmo ocorre 

ao  desconsiderar  um  sistema  embarcado  sem  modo  núcleo  como  sistema 

operacional, o que também torna uma definição muito restrita pouco adequada.

O debate é amplo e exceções vão existir, mas para fins deste trabalho será 

adotada a definição já apresentada de um sistema operacional como um intermediário 

entre o usuário e o computador que gerencia o hardware e fornece uma base para os 

programas aplicativos (SILBERSCHATZ; GALVIN; GAGNE, 2015, n. p.).

2.2 Arquitetura x86

Como  um  sistema  operacional  tem  a  tarefa  de  gerenciar  o  hardware,  se  torna 

fundamental entender em detalhes a arquitetura para qual ele será programado, bem 

como sua arquitetura do conjunto de instruções. Como definido por Stallings (2017, p. 

2).

Arquitetura de computador refere-se aos atributos de um sistema visíveis a 
um programador ou, em outras palavras, aqueles atributos que possuem um 
impacto direto sobre a execução lógica de um programa. Um termo que é 
muitas  vezes  usado  de  maneira  intercambiável  com  as  arquiteturas  de 
computadores  é  arquitetura  de  conjunto  de  instrução  (ISA — do  inglês, 
Instruction Set Architecture). O ISA define os formatos de instruções, códigos 
de operação da instrução (opcodes),  registradores,  memória de dados e 
instrução; o efeito das instruções executadas nos registradores e na memória; 
e um algoritmo para o controle da execução das instruções (STALLINGS, 
2017, p. 2).
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2.2.1 História da arquitetura x86

Em  1971  a  Intel  fez  um  importante  avanço  para  a  área  da  computação,  o 

desenvolvimento do 4004, o primeiro microprocessador da história. Após esse evento, 

a tecnologia de microprocessadores foi  evoluindo,  culminando no lançamento do 

microprocessador  8086  em  1978.  “O  8086  tem  registradores  de  16  bits e  um 

barramento  de  dados  externo  de  16  bits,  com  endereçamento  de  20  bits, 

proporcionando um espaço de endereçamento de 1 MB.” (INTEL CORPORATION, 

2025, Vol. 1 2-1, tradução nossa).

Devido ao sucesso do 8086, a Intel desenvolveu outros processadores que 

mantinham compatibilidade com a ISA do 8086, expandindo suas funcionalidades com 

novas  instruções,  modos  de  operações  e  tecnologias.  Essa  família  de 

microprocessadores baseados na ISA do 8086 forma o que é chamado genericamente 

de arquitetura x86.

Em  1982  foi  lançado  o  80286  que,  dentre  outras  novidades,  expande  a 

capacidade de endereçamento do 8086 de 20 bits para 24 bits e adiciona um novo 

modo  de  operação,  o  modo  protegido.  “O  modo  de  operação  determina  quais 

instruções  e  recursos  da  arquitetura  estão  disponíveis”  (INTEL CORPORATION, 

2025,  Vol.  1  3-1,  tradução  nossa).  O  modo  protegido  usa  os  registradores  de 

segmento  como índices  para  tabelas  que  descrevem as  permissões  e  atributos 

daquele segmento. Por questões de compatibilidade com o 8086, o 80286, bem como 

seus sucessores, não iniciam no modo protegido, mas no modo real.

Em 1985 foi lançado o 80386, o primeiro microprocessador de 32 bits da família 

x86.  Para  permitir  a  execução de  programas de  16  bits em modo protegido  foi 

adicionado o modo virtual-8086.

A família x86 continuou evoluindo com novos lançamentos, como o 80486, 

Pentium, Pentium Pro, Pentium II, Pentium III, Core 2 etc. A AMD também produz 

microprocessadores compatíveis com a família x86. Uma de suas contribuições mais 

importantes foi  o  desenvolvimento de uma extensão da arquitetura,  chamada de 

x86_64, para processadores de 64 bits. A extensão também foi adotada pela Intel.
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BergOS é programado para o 80386, fazendo uso do modo protegido e de 

instruções de 32 bits. Portanto, a arquitetura correspondente, chamada IA-32, será a 

estudada neste trabalho.

2.2.2 Assembly

O uso de linguagens de programação de alto nível na programação de sistemas 

operacionais é adequado. Por serem baseadas em máquinas abstratas, apresentam 

uma gramática elegante que torna a programação agradável e menos propensa a 

erros. Porém, na programação de sistemas operacionais é necessário a manipulação 

da máquina real,  que possui  diferenças substanciais  das máquinas abstratas de 

linguagens  de  alto  nível.  Mesmo  C,  conhecida  pelo  controle  que  fornece  ao 

programador  sobre  a  máquina  subjacente,  não  é  capaz  de  manipular  recursos 

específicos de uma arquitetura como a x86, visto que registradores, segmentação de 

memória, tabela de descritores, modos de operação e ponteiros de pilha não fazem 

parte de sua máquina abstrata. Portanto, mesmo que o uso de uma linguagem de alto 

nível  seja  recomendado  na  maior  parte  do  software que  compõe  o  sistema 

operacional, se torna indispensável o uso de uma linguagem de baixo nível, isto é, 

uma linguagem de programação capaz de expressar instruções de uma máquina real.

As  linguagens  de  máquina  são  as  linguagens  de  baixo  nível  que  são 

diretamente interpretadas por alguma máquina real. Sua programação é trabalhosa e 

propensa  a  erros.  Para  tornar  a  programação  de  baixo  nível  mais  conveniente, 

fornecendo um mínimo de  abstração com notações  em texto  das  instruções  de 

máquina,  existem  as  linguagens  de  montagem  ou  linguagens  assembly.  Como 

descreve Zhirkov (2018, n. p.).

A linguagem  Assembly para um dado processador  é  uma linguagem de 
programação  constituída  de  mnemônicos  para  cada  possível  instrução 
binária codicada (código de máquina). Ela deixa a programação em códigos 
de  máquina  muito  mais  simples,  pois  o  programador  então  não  precisa 
memorizar a codicação binária das instruções,  apenas seus nomes e os 
parâmetros (ZHIRKOV, 2018, n. p.).

Após o programa ter sido escrito, um software chamado assembler é usado 

para transformar o programa assembly na linguagem de máquina correspondente. O 

BergOS é programado usando o assembler NASM.
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Nem toda  instrução  assembly tem  uma  instrução  em código  de  máquina 

equivalente.  Frequentemente  assemblers fornecem  instruções  que  definem  o 

comportamento da montagem ou informações do binário final.

O assembly da arquitetura x86 tem duas sintaxes distintas. A sintaxe oficial, 

usada nos manuais da Intel, é simplesmente chamada de Sintaxe Intel, enquanto a 

outra é chamada de Sintaxe AT&T. O assembler NASM usa a Sintaxe Intel, portanto é 

a sintaxe usada nos códigos do BergOS.

2.2.3 Registradores

A arquitetura x86 é baseada na arquitetura do computador IAS lançada em 1952, 

chamada de arquitetura de Von Neumann. A arquitetura de Von Neumann, mesmo 

que antiga, ainda é a base para a maioria dos computadores atuais, como reforça 

Stallings “Com raras exceções, todos os computadores de hoje têm essa mesma 

estrutura e função geral e são, por conseguinte, referidos como máquinas de von 

Neumann.” (2017, p. 11).

Um elemento importante da arquitetura de Von Neumann e,  portanto,  dos 

computadores atuais, são os registradores. Registradores “São células de memória 

colocadas diretamente no chip da CPU.” (ZHIRKOV, 2018, n.  p.).  Eles são mais 

rápidos que a memória principal e são extensivamente usados na programação em 

baixo nível. A maior parte das instruções de um programa envolvem mover dados 

entre registradores e entre registradores e a memória.

Como dito por Zhirkov “Na maior parte das vezes, um programador trabalhará 

com registradores de propósito geral.” (2018, n. p.). Os registradores AX, BX, CX, DX, 

SI,  DI,  BP e SP são os registradores de propósito geral da arquitetura do 8086, 

portanto, todos são de 16 bits. Eles podem ser usados livremente pelo programador, 

mas algumas instruções os usam como operandos ou para armazenar os resultados 

de  um  cálculo.  Nesse  caso,  os  registradores  assumem  significados  especiais, 

conforme pode ser visto na Tabela 1.

Tabela 1 – Significados especiais dos registradores de propósito geral

Registrador Significado Uso

AX Accumulator Usado em cálculos 
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aritméticos, para operandos 

e resultados.

BX Base Usado como ponteiro para 

dados.

CX Counter Usado como contador em 

operações de strings e 

loops.

DX Data Armazena dados de 

operações de E/S.

SI Source index Ponteiro para origem dos 

dados em operações de 

string.

DI Destination index Ponteiro para o destino dos 

dados em operações de 

string.

BP Base Pointer Ponteiro para a base da 

pilha de hardwre.

SP Stack Pointer Ponteiro para o topo da 

pilha de hardware.

Fonte: Elaborado pelo autor (2025).

Apesar dos registradores  AX,  BX,  CX e  DX terem 16  bits, seus 8  bits mais 

significativos podem ser acessados individualmente pelos nomes AH, BH, CH e DH 

respectivamente, bem como os menos significativos pelos nomes AL, BL, CL e DL 

respectivamente.

Com a introdução da arquitetura IA-32 e a expansão do barramento interno, 

os  registradores  de  propósito  geral  foram  expandidos  para  se  adaptar  à  nova 

capacidade de 32 bits, sendo acessíveis pelos nomes EAX, EBX, ECX, EDX, ESI, EDI, 

EBP e  ESP.  Os 16  bits menos significativos  dos  novos registradores ainda são 

acessíveis pelos nomes antigos.

Outros  registradores  importantes  da  arquitetura  x86  são  o  IP  (Instruction 

Pointer),  que  armazena  o  endereço  da  próxima  instrução  a  ser  executada,  o 
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equivalente ao PC (Program Counter) da arquitetura de Von Neumann; e o FLAGS 

que contém um grupo de  flags de status,  flag de controle e um grupo de  flags de 

sistemas. Assim como os registradores de propósito geral, IP e FLAGS também têm 

versões de 32 bits para arquitetura IA-32, sendo chamados de EIP e EFLAGS.

2.2.4 Segmentos de memória

Segundo a Intel Corporation, a “segmentação fornece um mecanismo de isolamento 

de módulos individuais de código, dados e pilha, permitindo que múltiplos programas 

(ou tarefas) sejam executados no mesmo processador sem interferir um no outro.” 

(2025, Vol. 3A 3-1, tradução nossa). O mecanismo de segmentação funciona de forma 

diferente no modo real e no modo protegido.

Os registradores de propósito especial CS, DS, ES, FS, GS e SS, chamados de 

registradores  de  segmento,  são  usados  no  cálculo  do  endereço  real  que  será 

acessado pelo processador. A Tabela 2 descreve os registradores de segmento.

Tabela 2 – Registradores de Segmento

Registrador Significado Uso

CS Code Segment (Segmento de 

Código).

Usado para obter endereços 

relacionados a código 

executável.

DS Data Segment (Segmento de 

Dados).

Usada para obter endereços 

relacionados a dados.

ES Extra Segment (Segmento 

Extra).

Não tem um significado 

especial e pode ser usado 

livremente pelo programador. 

FS Não tem um significado 

especial e pode ser usado 

livremente pelo programador.

GS Não tem um significado 

especial e pode ser usado 

livremente pelo programador.

SS Stack Segment (Segmento de 

Pilha).

Usado para obter endereços 

relacionados a pilha.
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Fonte: Elaborado pelo autor (2025).

No modo protegido,  a  segmentação é feita  definindo tabelas especiais  na 

memória que descrevem os segmentos. Os registradores de segmento passam a 

armazenar  um  valor  chamado  seletor  de  segmento,  que  serve  de  índice  para 

selecionar um dos segmentos descritos nessas tabelas especiais (ZHIRKOV, 2018, n. 

p.). A Global Descriptor Table (GDT), é a única tabela de descritores de segmentos 

que precisa ser definida para ativar o modo protegido, portanto, será analisada no 

capítulo 3.

Apesar da sua importância no contexto da arquitetura x86, a segmentação é 

considerada um mecanismo legado. Como confirma Zhirkov “[…] a segmentação é 

uma criatura selvagem um tanto quanto difícil de lidar. Há motivos pelos quais ela não 

foi  amplamente  adotada  pelos  sistemas  operacionais,  nem  igualmente  pelos 

programadores (hoje em dia, ela foi praticamente abandonada).” (2018, n. p.).

2.2.5 Interrupções

Em arquitetura de computadores, uma interrupção é um evento que faz o processador 

parar o que está fazendo para executar um código de tratamento de interrupção, para 

depois retomar a execução de onde parou. Conforme elabora Zhirkov (2018, n. p.).

As interrupções nos permitem alterar o controle de fluxo do programa em um 
instante  arbitrário  no  tempo.  Enquanto  o  programa  estiver  executando, 
eventos externos (dispositivos que exijam a atenção da CPU) ou internos 
(divisão por zero, nível de privilégio insuficiente para executar uma instrução, 
um  endereço  não  canônico)  poderão  provocar  uma  interrupção,  o  que 
resultará em outro código sendo executado.  Esse código é chamado de 
handler da interrupção (interrupt handler)  e faz parte do software de um 
sistema operacional ou de um driver (ZHIRKOV, 2018, n. p.).

Também é possível causar uma interrupção através de uma instrução. Esse 

tipo de interrupção é chamada de interrupção por software. Como será elaborado na 

seção 2.3, as interrupções por software podem ser usadas para acessar as funções 

BIOS.

Na arquitetura x86,  o  handler de interrupção,  bem como seus atributos,  é 

definido em uma tabela semelhante a GDT chamada Interrupt Descriptor Table (IDT). 

BergOS define uma IDT, mas ela não será estudada neste trabalho.
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2.3 BIOS

O  BIOS  é  “[…]  uma  interface  ou  ‘camada’  de  software  que  isola  os  sistemas 

operacionais e programas aplicativos de dispositivos de hardware específicos” (IBM, 

1987, 1-3, tradução nossa). Sua função é fornecer uma leve abstração para que o 

programador  assembly possa manipular dispositivos de bloco ou caractere sem se 

preocupar com suas características específicas.

A  abstração  é  alcançada  através  de  um  conjunto  de  rotinas,  às  vezes 

chamadas de funções BIOS. As funções BIOS ficam armazenadas em uma Read-

Only Memory (ROM) e são carregadas para a memória principal na inicialização do 

computador.

As interrupções de hardware são usadas para acessar rotinas do sistema. O 

número da interrupção corresponde ao tipo de serviço solicitado; por exemplo, a 

interrupção  de  número  0x10 refere-se  a  serviços  de  vídeo.  O  valor  definido  no 

registrador  AH determina a função específica do BIOS a ser executada. Algumas 

rotinas  exigem  parâmetros  adicionais,  que  são  passados  por  meio  de  outros 

registradores.  As  funções  BIOS  disponíveis  no  serviço  de  vídeo  podem  ser 

consultadas na Figura 2.

Figura 2 – Funções BIOS disponíveis no serviço de vídeo

Fonte: IBM (1987)
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É comum em programação de baixo nível o uso de números hexadecimais 

para representar valores, principalmente endereços de memória. Neste trabalho, todo 

valor precedido por “0x” deve ser entendido como um valor hexadecimal.

Para escrever um caractere na tela, por exemplo, a função BIOS Write Teletype 

to Active Page pode ser usada. A Figura 3 mostra um código NASM que usa a função 

BIOS citada para imprimir o caractere “!”:

Primeiro o registrador AH é definido com o valor 0xE para selecionar a função 

BIOS que escreve na página ativa, depois o registrador AL é definido com o valor do 

caractere “!” (o NASM converte caracteres em aspas simples para valores ASCII), e, 

por fim, uma interrupção 0x10 é disparada por software, fazendo com que a função 

BIOS execute.

Além da camada de abstração, o BIOS cumpre outras funções importantes no 

sistema computacional. De acordo com Dodge, Irvine e Nguyen “As funcionalidades 

do BIOS podem ser divididas em três áreas: POST,  Setup e  Boot.” (2005, p. 80, 

tradução nossa).

A operação POST detecta e inicializa os componentes de hardware. Após a 

conclusão de POST, o sistema BIOS fornece ao usuário a possibilidade de entrar em 

modo Setup, onde é possível alterar algumas configurações do BIOS como a ordem 

de  boot. Por fim, o BIOS executa a interrupção de número 0x19 que procura, na 

sequência definida pela ordem de  boot,  por um dispositivo bootável,  carrega seu 

Figura 3 – Imprimindo um caractere usando uma função BIOS

Fonte: Elaborado pelo autor (2025)
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primeiro setor para a memória e transfere o controle para o programa contido nele, 

geralmente um bootloader (DODGE, IRVINE, NGUYEN, 2005, p. 80).

2.4 E/S mapeada na memória

Qualquer arquitetura deve apresentar maneiras de se comunicar com dispositivos de 

E/S.  Esses  dispositivos  podem  ter  interfaces  muito  complexas,  o  que  faz  da 

programação com instruções próprias de E/S inconveniente, verbosa e propensa a 

erros. Contudo, há uma técnica chamada de E/S mapeada na memória que contorna 

esse problema, tornando a programação de dispositivos de E/S mais fácil por fazer o 

dispositivo acessível através da memória principal. Como elabora Stallings (2017, p. 

200).

Com a E/S mapeada na memória, existe um único espaço de endereço para 
locais de memória e dispositivos de E/S. O processador trata os registradores 
de estado e dados dos módulos de E/S como locais de memória e usa as 
mesmas instruções de máquina para acessar a memória e os dispositivos de 
E/S. Assim, por exemplo, com dez linhas de endereço, um total combinado de 
210 = 1.024 locais de memória e endereços de E/S podem ser aceitos, em 
qualquer combinação (STALLINGS, 2017, p. 200).

O emulador de terminal do BergOS usa um driver de  Video Graphics Array 

(VGA), que utiliza a técnica de E/S mapeada na memória para permitir que o programa 

escreva ou desenhe na tela através da manipulação de endereços de memória.

O próximo capítulo apresentará o bootloader do BergOS acompanhado de uma 

análise que expõe o processo de carregar o kernel na memória e passar o controle da 

máquina para ele.



29

3 BOOTLOADER

Um bootloader tem o objetivo de carregar o kernel na memória e colocar a máquina em 

um estado esperado por ele. O bootloader do BergOS entrega o controle da máquina 

para o kernel com o processador em modo protegido, com as interrupções desligadas 

e o modo de vídeo definido para 3.

3.1 Pré-bootloader

Na etapa de setup, o BIOS fornece ao usuário a opção de alterar a ordem de boot, que 

é uma lista contendo dispositivos de armazenamento em massa, como HDs e SSDs. O 

BIOS lê o primeiro setor de cada dispositivo procurando por um dispositivo bootável. 

Um dispositivo bootável é aquele no qual os últimos dois bytes do seu primeiro setor 

contêm um número mágico chamado de assinatura de boot, o valor 0xAA55. Após um 

dispositivo bootável  ter  sido localizado,  o  BIOS executa a interrupção 0x19,  que 

carrega o primeiro setor do dispositivo para o endereço 0x7C00 e salta para ele, 

transferindo o controle para o programa carregado. O estado da máquina após o fim 

da etapa de boot consiste no registrador CS com o valor zero, o registrador IP com o 

valor 0x7C00 e o registrador DL com o número do dispositivo no qual o boot ocorreu 

(IBM, 1987, 2-113).

Como apenas um setor  do dispositivo  é carregado,  o  bootloader não tem 

espaço para ser muito complexo. Caso mais de 512  bytes, tamanho de um setor, 

sejam necessários, um multi-stage bootloader pode ser usado, que “em vez de um 

único  programa  que  carrega  o  sistema  operacional  diretamente,  os  multi-stage 

bootloaders dividem suas funcionalidades em programas menores que carregam uns 

aos outros  sucessivamente.”  (DODGE; IRVINE;  NGUYEN, 2005,  p.  80,  tradução 

nossa). O bootloader do BergOS é simples e consegue ser contido em apenas um 

setor.

O  bootloader do  BergOS  é  um  código  assembly localizado  no  arquivo 

./arch/i386/boot/bootloader.asm, no qual as duas últimas linhas são responsáveis pela 

assinatura de boot, como mostra a Figura 4:
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A linha 81 é responsável por preencher o resto do setor com zeros. O NASM 

possui “pseudo-instruções” que são instruções que não fazem parte da arquitetura 

x86, mas instruem o montador a realizar alguma ação.  A instrução  times é uma 

pseudo-instrução que diz para o NASM repetir uma instrução por determinado número 

de vezes. A pseudo-instrução db significa que, naquela parte do binário final, o NASM 

deve preencher com um byte de valor definido. O trecho “510 - ($- $$)” é uma forma de 

obter  quantos  bytes ainda  não  foram preenchidos  para  completar  510  bytes.  A 

instrução  toda  diz  para  o  NASM preencher  o  binário  de  zeros  até  o  byte 510, 

reservando os últimos dois bytes para a assinatura de boot. Por fim, na linha 82, a 

pseudo-instrução dw, semelhante a db, com a exceção de que preenche com uma 

word (2 bytes) em vez de um byte, coloca o valor 0xAA55 nos últimos dois bytes do 

binário  final,  o  que  torna  o  dispositivo  cujo  primeiro  setor  contém  o  binário  de 

bootloader.asm em um dispositivo bootável.

3.2 Definindo os segmentos e a pilha

A Figura 5 mostra o início do bootloader do BergOS.

Figura 4 – Assinatura de boot

Fonte: Elaborado pelo autor (2025)

Figura 5 – Cabeçalho do bootloader

Fonte: Elaborado pelo autor (2025)
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A primeira linha de bootloader.asm define a macro KERNEL_OFFSET com o 

valor 0x7E00, que é o endereço de memória para o qual o kernel do BergOS será 

carregado.  A  linha  3  informa  ao  NASM  para  pôr  o  código  em  uma  seção 

chamada .bootloader.

O processo de compilação de BergOS, primeiro compila todo o código para o 

formato ELF32 e apenas no processo de linkagem é transformado em binário puro. 

Como o bootloader tem que estar no primeiro setor do disco, definir uma seção própria 

para ele torna possível definir um script de linkagem que garanta que ele seja posto 

logo no começo do binário final. Uma explicação detalhada sobre esse  script de 

linkagem pode ser encontrada no Apêndice A. A linha 5 informa ao NASM que um 

símbolo  chamado  main é  externo  e  deve  ser  resolvido  durante  o  processo  de 

linkagem. Esse símbolo refere-se à função principal main, escrita em linguagem C, 

que serve como ponto de entrada do kernel do BergOS. A linha 7 é uma diretiva que 

instrui o NASM a montar as instruções subsequentes no formato de 16 bits, o que é 

necessário uma vez que o processador é inicializado no modo real.

O início do programa do bootloader se dá pelo rótulo set_segmentation. Esse 

rótulo, assim como outros, não é necessário e não será usado em instruções de desvio 

de fluxo como  jmp ou  call, ele serve apenas para tornar o código  assembly mais 

estruturado e fácil de compreender. A Figura 6 mostra o código de set_segmentation.

A  instrução  xor,  que representa  a  operação  “ou  exclusivo”,  recebe  dois 

operandos, um registrador e um valor que pode vir de outro registrador ou da memória, 

aplica a operação e armazena o resultado no registrador do primeiro operando.  A 

operação de “ou exclusivo” quando aplicada a valores iguais resulta em zero, portanto 

Figura 6 – Definição dos registradores de segmento no bootloader

Fonte: Elaborado pelo autor (2025)
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a instrução serve para zerar o valor de AX. O mesmo resultado poderia ser obtido com 

“mov ax, 0”, porém essa instrução, junto ao operando, ocupa 3  bytes, enquanto a 

instrução equivalente com xor ocupa 2 bytes. É uma prática comum em programação 

assembly poupar  bytes com instruções mais econômicas. Prática inteligente de se 

seguir, já que o programa do bootloader está limitado a 512 bytes. Com o valor de AX 

zerado ele é usado para definir todos os registradores de segmento como zero.

Depois de definir os registradores de segmento, os registradores de pilha são 

configurados no rótulo set_stack. O programa faz os registradores BP e SP apontar 

para o  endereço 0x7C00.  A pilha “cresce para baixo”,  o  que significa  que  push 

(instrução que coloca um valor na pilha) subtrai o valor de SP enquanto pop (instrução 

que remove um valor da pilha) soma o valor de SP, o que garante que a pilha não 

sobrescreverá o programa do  bootloader durante a execução. A Figura  7 mostra 

set_stack.

Após  definir  a  pilha,  no  rótulo  set_video_mode o  bootloader executa  uma 

interrupção para acessar uma função de vídeo do BIOS chamada Set Mode, com a 

finalidade de alterar o modo de vídeo para 3. Isso será útil para o driver de VGA do 

BergOS, que depende que o modo de vídeo seja este. O código de set_video_mode 

será explicado no capítulo 4.

3.3 Carregando o kernel para a memória

Os primeiros 512 bytes do binário de BergOS são reservados para o bootloader. Nos 

bytes seguintes fica localizado o kernel. O kernel do BergOS está, portanto, a partir do 

segundo setor do disco no qual o bootloader foi executado.

Figura 7 – Definindo a pilha

Fonte: Elaborado pelo autor (2025)



33

Há  várias  maneiras  de  ler  um  disco.  Umas  mais  antigas  e  outras  mais 

modernas.

Historicamente, o endereçamento dos blocos usava um padrão denominado 
CHS  (Cylinder-Head-Sector):  para  acessar  cada  bloco,  era  necessário 
informar a cabeça (ou seja, a face), o cilindro (trilha) e o setor do disco onde 
se encontra o bloco. Esse sistema foi mais tarde substituído pelo padrão LBA 
(Logical Block Addressing), no qual os blocos são endereçados linearmente 
(0, 1, 2, 3, ...), o que é muito mais fácil de gerenciar pelo sistema operacional. 
Como a estrutura física do disco rígido continua a ter faces, trilhas e setores, 
uma conversão entre endereços LBA e CHS é feita pelo firmware do disco 
rígido, de forma transparente para o restante do sistema (MAZIERO, p. 262).

As funções BIOS suportavam, originalmente, apenas o padrão Cylinder-Head-

Sector (CHS).  Posteriormente  algumas  implementações  começaram  a  fornecer 

extensões para suportar  Logical Block Addressing (LBA). A Phoenix Technologies 

formalizou, em 1994, um padrão chamado de Enhanced Disk Drive, que expande as 

capacidades do serviço de disco, acessadas pela interrupção 0x13, para lidar com 

padrões de disco mais modernos, incluindo LBA. BergOS usa funções disponíveis 

nessa extensão para ler o disco e carregar o kernel para a memória.

O rótulo read_kernel identifica o código responsável pela leitura do kernel:

Figura 8 – Carregando o kernel para a memória

Fonte: Elaborado pelo autor (2025)
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Na linha 24, o valor 0x42 é posto em AH, o código que identifica a função BIOS 

Extended Read. A função também exige que o número do dispositivo que ela deve ler 

seja posto no registrador DL, porém, como o BIOS já inicializa esse registrador com o 

valor que identifica o disco em que o boot ocorreu, não é necessário alterá-lo.

Na linha 25, o registrador SI recebe um endereço de memória onde está contida 

uma estrutura chamada Disk Address Packet (DAP). Por fim, uma interrupção 0x13 é 

disparada para invocar a função BIOS.

Caso um erro ocorra, a flag carry do registrador FLAGS será ligada (definida 

para 1). A instrução jnc faz um salto para o endereço especificado se a flag carry não 

estiver definida. Ou seja, se nenhum erro ocorreu e a leitura do kernel foi concluída, o 

programa  salta  para  o  rótulo  load_gdt,  caso  contrário,  as  linhas  30  a  39  são 

responsáveis  por  imprimir  uma  mensagem  de  erro  e  parar  a  execução  do 

processador.

Embora  a  função  pareça  simples,  os  parâmetros  mais  complexos  são 

definidos no DAP, e não em registradores. É nele onde será especificado quantos 

blocos serão lidos, a partir de qual bloco será lido e em qual endereço o conteúdo lido 

será colocado. Segundo a Phoenix Technologies “A estrutura de dados fundamental 

para as extensões Int 0x13 é o Disk Address Packet. Int 0x13 converte as informações 

de endereçamento do Disk Address Packet para parâmetros físicos apropriados para 

a mídia.” (1995, p. 7). A Tabela 3 descreve os campos do DAP.

Tabela 3 – Disk Address Packet

Offset Tipo Descrição

0 Byte Tamanho do DAP em bytes. 

Deve ser maior ou igual a 16.

1 Byte Reservado, deve ser 0.

2 Byte Número de blocos para 

transferir.

3 Byte Reservado, deve ser 0.

4 Double Word (4 bytes) O endereço, no padrão 

segmento:offset, em que as 

operações de escrita/leitura 
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serão realizadas.

8 Quad Word (8 bytes) Número do primeiro bloco, no 

padrão LBA, em que as 

operações de escrita/leitura 

serão realizadas.

Fonte: Elaborado pelo autor (2025).

O DAP usado pelo bootloader do BergOS é definido no rótulo DAP. A Figura 9 

mostra a definição do DAP para a leitura do kernel.

Juntando o segmento com o offset, o endereço para onde o kernel será lido é 

0x0000:KERNEL_OFFSET,  que,  com  a  expansão  da  macro  KERNEL_OFFSET, 

resulta em 0x0000:0x7E00.

3.4 Colocando o processador em modo protegido

Colocar o processador em modo protegido é simples, bastando apenas mudar um bit 

em um registrador. Porém, para que ele funcione apropriadamente, uma GDT deve 

ser definida. Uma GDT é uma tabela de descritores de segmentos que, segundo a Intel 

Corporation,  “[…] é um array de descritores de segmento. Uma tabela de descritores é 

variável em tamanho e pode conter até 8192 (213) descritores de 8 bytes.” (2025, Vol. 

3A 3-14,  tradução nossa).  No modo protegido,  diferentemente do modo real,  os 

registradores  de  segmento  deixam  de  ser  usados  diretamente  no  cálculo  de 

endereços e passam a atuar como índices que selecionam um descritor em uma 

Figura 9 – Definição do DAP

Fonte: Elaborado pelo autor (2025)
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tabela  de  descritores  de  segmentos.  Esses  descritores  descrevem  atributos  do 

segmento como endereço base, nível de privilégio, tipo do segmento (código, data) 

dentre outros.

Há outras tabelas de descritores na arquitetura x86 como a IDT, fundamental 

para tornar a arquitetura multitarefa, já que é ela a responsável por lidar com as rotinas 

de  tratamento  de  interrupção;  e  a  Local  Descriptor  Table (LDT)  que  é  muito 

semelhante a uma GDT e tinha o propósito de auxiliar os sistemas operacionais na 

alternância de tarefas, mas os projetistas de sistemas operacionais não a adotaram. 

Para o modo protegido, apenas a GDT é necessária. A Figura 10 mostra a estrutura de 

uma GDT e uma LDT.

Cada entrada de uma GDT é um descritor de segmento e ocupa 8 bytes. O 

primeiro descritor de uma GDT não é usado.  Os registradores de segmento CS, DS, 

Figura 10 – A estrutura de uma GDT e uma IDT

Fonte: Intel Corporation (2025)
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ES, FS, GS e SS armazenam um valor que serve como um índice para obter o 

descritor de segmento correspondente na GDT.

A Figura 11 mostra a estrutura de um descritor de segmento.

A estrutura de um descritor de segmento é composta por campos distribuídos 

de maneira não contígua ao longo de 64 bits. Essa disposição caótica e confusa existe 

para manter compatibilidade com versões antigas da arquitetura x86. Os campos da 

GDT desempenham o seguinte papel:

• Base Address: O endereço base é definido por três campos fragmentados: 

“Base 31:24”. “Base 23:16” e “Base Address 15:00”, que, em conjunto, formam 

um valor de 32 bits que indica o início do segmento.

• Segment Limit: O limite de segmento é determinado por dois campos: “Seg. 

Limit 19:16” e “Segment Limit 15:00”, que compõem um valor de 20 bits. Esse 

valor define o tamanho do segmento. Se o  bit de granularidade (G) estiver 

definido como 0, o limite é calculado em incrementos de  bytes,  permitindo 

Figura 11 – A estrutura de um descritor de segmento

Fonte: Intel Corporation (2025)
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segmentos de até 1 MB (220). Se G for 1, o limite é calculado em incrementos de 

4 KB, possibilitando segmentos de até 4 GB (220 * 4 KB).

• P (segment present): Indica se o segmento está presente na memória.

• DPL (descriptor privilege level): Define o nível de privilégio necessário para 

acessar o segmento. Pode assumir valor de 0 a 3, sendo 0 o mais privilegiado e 

3 o menos privilegiado.

• S (descriptor  Type):  Se for  0  indica que o segmento é um segmento de 

sistema, se for 1 indica que é um segmento de código ou dados.

• TYPE:  Se o valor de S for 1,  este campo serve para selecionar entre um 

segmento de código ou segmento de dados e definir suas características.

• D/B  (default  operation  size):  Se  for  0,  o  segmento  é  tratado  como  um 

segmento de 16 bits, se for 1, o segmento é tratado como um segmento de 32 

bits.

• G (granularity): Determina a escala do campo Segment Limit.

• L (64-bit code segment): Disponível apenas em plataformas que suportam 

IA-32e.

• AVL (available and reserved bits): Disponível para ser usado pelo sistema.

A GDT desempenha um papel fundamental na separação do espaço de usuário 

e do espaço de kernel. O campo DPL é usado para definir os níveis de privilégio de um 

segmento. Apesar desse campo poder assumir 4 valores diferentes, historicamente os 

sistemas operacionais fazem uso de apenas dois deles, com o nível 0 sendo usado 

para o espaço de kernel e o nível 3 sendo usado para o espaço de usuário.

Para que o processador passe a usar a GDT definida, seu endereço e tamanho 

precisam  ser  carregados  para  um  registrador  especial  chamado  GDTR  (INTEL 

CORPORATION, 2025, Vol.  3A 3-1).  Para isso, outra estrutura na memória será 

necessária. A Figura 12 ilustra essa estrutura.
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A estrutura  é  autoexplicativa,  mas  um detalhe  importante  é  que  o  campo 

“Tamanho” deve conter o tamanho real da GDT subtraído por 1. Isso decorre do fato 

de que 16 bits podem representar números em um intervalo de 0 a 65535 (216 – 1). 

Porém, como não há GDT com tamanho de zero bytes, o valor 0 representa uma GDT 

de 1 byte, o valor 1 uma GDT de 2 bytes e assim sucessivamente.

A Figura 13 mostra a GDT usada pelo bootloader do BergOS, com a definição 

da estrutura a ser carregada na GDTR e dos descritores de segmento.

O rótulo GDT demarca o início das estruturas referentes a GDT. Na linha 70, a 

pseudo-instrução dw é usada para definir o valor de 16 bits que representa o tamanho 

da GDT. Um cálculo com endereços é feito para obter o tamanho da GDT subtraído 

por 1. Enquanto a linha 71 usa a pseudo-instrução dd para um valor de 32 bits que 

representa o endereço da GDT.

O rótulo local .begin marca o início da GDT propriamente dita. Como BergOS 

não faz uso de segmentação, por ser um mecanismo obsoleto, e nem faz separação 

Figura 12 – Estrutura para GDTR

Fonte: Elaborado pelo autor (2025)

Figura 13 – Definição da GDT usada pelo bootloader do BergOS

Fonte: Elaborado pelo autor (2025)
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do espaço de kernel e espaço de usuário, os segmentos definidos na GDT são bem 

simples.

A  GDT usada  pelo  bootloader do  BergOS define  apenas  dois  segmentos 

válidos: um para código e outro para dados. A única diferença entre eles é um bit que 

determina qual é o segmento de código e qual é o segmento de dados. De resto, 

ambos têm as mesmas características: endereço base igual a 0, limite do segmento 

igual a 0xFFFFF (tamanho máximo), nível de privilégio igual a 0 (mais privilegiado).

Como o  primeiro  descritor  de  uma GDT não  é  usado,  o  rótulo  local  .null 

preenche essa entrada com zeros. Já os rótulos locais  .code e  .data definem os 

descritores de segmento de código e de dados, respectivamente.

Após a definição dessa estrutura,  o registrador GDTR pode finalmente ser 

carregado com o endereço dela. Isso é feito no rótulo load_gdt que foi para onde o 

programa do bootloader saltou após carregar o kernel. A Figura 14 mostra o rótulo 

load_gdt.

Primeiramente, as interrupções são desligadas com a instrução  cli, depois a 

estrutura é carregada para o registrador GDTR através da instrução lgdt. Desligar as 

interrupções serve tanto para evitar comportamentos indesejados quanto para cumprir 

o contrato entre o bootloader e o kernel onde o primeiro deve entregar o controle da 

máquina para o segundo com as interrupções desligadas.

Figura 14 – Definindo o registrador GDTR

Fonte: Elaborado pelo autor (2025)
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A Figura  15 mostra  o  rótulo  enable_protected_mode,  onde  o  processador 

finalmente é posto em modo protegido.

Nas linhas 46, 47 e 48, o valor do registrador de controle CR0 é copiado para 

EAX (a versão estendida de 32  bits de AX), uma instrução  or,  que representa a 

operação “ou inclusivo”, é usada para ativar o primeiro  bit do registrador para, na 

operação seguinte, colocar o valor de volta em CR0. O primeiro bit de CR0 determina 

se o processador está em modo protegido ou não, portanto, ao ativá-lo, o processador 

está definitivamente em modo protegido.

A linha 50 faz um cálculo para obter o índice do segmento de dados, definido na 

GDT, para, nas linhas 51 a 55, fazer os registradores de segmento DS, ES, FS, GS e 

SS usarem o mesmo segmento de dados.

Figura 15 – Colocando o processador em modo protegido e passando o controle para o 

kernel

Fonte: Elaborado pelo autor (2025)
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A linha 57 é importante por duas razões: a primeira é que ela altera o segmento 

de código, a segunda é que ela é responsável por realizar o salto para o kernel do 

BergOS. O valor de CS não pode ser alterado com uma instrução mov como os outros. 

Portanto, para alterar o segmento de código é necessário alguma instrução de desvio 

de fluxo. A instrução  jmp permite alterar o valor de CS especificando o valor do 

segmento antes do endereço em si.

O  segmento  pode  ser  um  dos  registradores  de  segmento  ou  um  valor 

imediato. A linha 57 faz um jmp para o símbolo main, que é a função principal do kernel 

do BergOS, alterando o valor de CS para o índice do segmento de código, definido na 

GDT.

A função de entrada do BergOS, main, é definida no arquivo ./kernel/main.c, 

como mostra a Figura 16.

Figura 16 – Função main do kernel do BergOS

Fonte: Elaborado pelo autor (2025)
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É uma boa prática em desenvolvimento de sistemas operacionais criar uma 

camada de código que é mais baixo nível, com rotinas que dependem de recursos 

específicos de uma arquitetura, e uma camada mais alto nível que tenta ser o mais 

adequadamente independente. Assim, caso os desenvolvedores queiram portar o 

sistema para uma outra arquitetura, apenas as rotinas de baixo nível precisariam ser 

reescritas. Isso promove uma programação baseada em interfaces, onde o código de 

alto nível invoca rotinas de baixo nível sem se importar com a implementação delas.

No repositório do BergOS, todo código da camada de alto nível está no diretório 

./kernel/, e todo código da camada de baixo nível está no diretório  ./arch/. Dentro 

de ./arch, há  outros  diretórios,  cada  um se  referindo  à  implementação  de  uma 

arquitetura  específica.  Por  exemplo,  a  implementação  para  arquitetura  i386,  a 

estudada neste trabalho, está em ./arch/i386/.

A linha 5 chama a função de baixo nível  kernel_initialize, que é definida no 

cabeçalho  ./kernel/include/kernel.h.  Ela  é  responsável  por  fazer  quaisquer 

configurações  e  inicializações  necessárias  para  o  funcionamento  do  kernel.  Sua 

implementação está em ./arch/i386/kernel.c. No caso da implementação para i386, a 

função  configura  uma  GDT  para  ser  usada  pelo  kernel,  já  que  a  definida  pelo 

bootloader foi  apenas  uma  necessidade  para  colocar  o  processador  em  modo 

protegido. Apesar da GDT configurada por kernel_initialize ser, atualmente, idêntica à 

do bootloader, é uma boa prática torná-las independentes, já que caso futuramente o 

BergOS venha a  ter  separação entre  espaço de  kernel e  espaço de  usuário,  a 

funcionalidade poderia ser implementada facilmente sem fazer com que o bootloader 

perca sua simplicidade.

Na linha 7, a função de baixo nível tty_initialize é chamada. Ela é responsável 

por inicializar o emulador de terminal, que será usado pelo kernel para realizar saída 

de dados.

As linhas 9 e 10 usam a função tty_printf para escrever  strings na tela que, 

juntas, formam a mensagem “Hello, world! I am BergOS”. Por fim, na linha 12, como a 

função main não deve retornar, é chamada a função de baixo nível kernel_halt que 

para a execução do processador.
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A função main apresenta todo o comportamento visível do kernel do BergOS 

para o usuário que executa o sistema. A Figura 17 mostra a execução do BergOS no 

emulador QEMU.

O próximo capítulo apresenta o padrão VGA, como ele pode ser usado para 

se comunicar com o dispositivo de vídeo e termina com um exame detalhado do driver 

de VGA usado pelo BergOS.

Figura 17 – Execução de BergOS

Fonte: Elaborado pelo autor (2025)
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4 DRIVER DE VGA

Computação gráfica é um tópico complexo e extenso que se tornou fundamental na 

computação.  Ferramentas  modernas,  como  Cuda,  facilitam  o  trabalho  dos 

programadores  fornecendo  camadas  de  abstração.  Porém,  décadas  atrás  os 

programadores  não  tinham  esse  luxo  e  eram  obrigados  a  lidar  com  interfaces 

espartanas e problemas de portabilidade.

Um avanço importante foi feito com a introdução do padrão VGA, que, segundo 

Wilson “[…] é um padrão de exibição de vídeo e um tipo de conexão amplamente 

utilizado na indústria de computadores há décadas. Introduzido pela IBM em 1987, o 

VGA rapidamente se tornou o padrão gráfico para PCs e lançou as bases para os 

monitores de computador modernos.” (2024, tradução nossa).

Apesar  de  ser  um padrão antigo,  ele  ainda é  suportado pela  maioria  dos 

dispositivos de vídeo modernos. Portanto é uma boa ideia ter um driver simples de 

VGA para ter  suporte a vídeo logo no estágio inicial  de desenvolvimento de um 

sistema operacional,  com a segurança de que provavelmente ele  funcionará em 

qualquer hardware.

Mesmo que o padrão VGA permita uma resolução de 640 x 480 e tenha suporte 

a 256 cores (WILSON, 2024), nenhum desses recursos é usado no driver do BergOS. 

Na verdade, o padrão VGA tem suporte a vários modos de vídeo, incluindo os antigos 

modos que surgiram nos PCs da IBM anteriores ao PS/2, onde o padrão VGA foi 

introduzido. A Figura 18 mostra os modos de vídeo disponíveis para um IBM PS/2.

Figura 18 – Modos de vídeo disponíveis 

Fonte: IBM (1987)
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Os modos de vídeo variam entre All Points Addressable (APA), que permitem 

uma  manipulação  gráfica  através  de  pixels,  e  Alphanumeric (A/N),  onde  a 

manipulação gráfica ocorre através de caracteres. O driver de VGA do BergOS utiliza 

o modo 3, que permite a escrita de caracteres em uma matriz 80 x 25 com suporte a 16 

cores.

Ainda que a maioria das implementações do BIOS já inicialize com o modo de 

vídeo 3, o bootloader do BergOS garante que a máquina esteja nesse modo utilizando 

a função BIOS Set Mode. Isso é feito antes do kernel ser carregado, como mostra a 

Figura 19.

O valor 0, que representa a função Set Mode nos serviços de vídeo, é posto em 

AH. Logo em seguida o valor 3 é posto em AL, o modo de vídeo desejado, e então uma 

interrupção de vídeo é invocada, garantindo que o modo de vídeo seja 3.

O interessante do padrão VGA é que ele usa E/S mapeada na memória, onde 

para escrever um caractere na tela em algum modo alfanumérico, basta colocar o 

código do caractere em um endereço de memória comum. O endereço de memória 

mapeado depende do modo de vídeo utilizado. No modo 3, os endereços vão de 

0xB8000 a 0xBFFFF (FERRARO, 1994, p. 181).

De  acordo  com  Ferraro  “Nos  modos  alfanuméricos,  os  códigos  que 

representam o caractere e o atributo do caractere são armazenados na memória. Um 

único  byte  é  dedicado  a  cada  código  de  caractere,  permitindo  o  acesso  a  256 

Figura 19 – Definindo o modo de vídeo para 3 

Fonte: Elaborado pelo autor (2025)
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caracteres. Um único byte também é dedicado ao atributo do caractere.” (FERRARO, 

1994, 181).

O byte do caractere é um endereço par e  o atributo desse caractere é o 

endereço ímpar seguinte. A Figura 20 ilustra essa ideia.

Os  modos  alfanuméricos  também  possuem  um  sistema  de  páginas.  No 

entanto, o driver do BergOS não utiliza esse sistema, escrevendo apenas na página 0. 

Sendo assim, há espaço para 80 x 25 (2000) caracteres no emulador de terminal.

O byte de atributo pode ser dividido em um par de 4 bits cada. Os 4 bits menos 

significativos são usados para determinar a foreground color (cor do caractere), e os 4 

bits mais significativos são usados para determinar a background color (cor de fundo). 

A Figura 21 mostra a representação de um byte de atributo juntamente a um byte de 

caractere.

Figura 20 – Organização dos caracteres na memória no padrão VGA

Fonte: Elaborado pelo autor (2025)

Figura 21 – Byte de caractere e byte de atributo

Fonte: Elaborado pelo autor (2025)
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Como uma cor é definida por 4  bits, esse modo de vídeo tem 24 (16) cores 

disponíveis. As cores são definidas através de um padrão RGB. A Figura 22 mostra 

um byte de atributo demarcando esse padrão.

A Tabela 4 mostra todas as combinações possíveis de cores.

Tabela 4 – Combinações de cores RGB possíveis em 4 bits

Código RGB Cor

0000 Preto

0001 Azul

0010 Verde

0011 Ciano

0100 Vermelho

0101 Magenta

0110 Marrom

0111 Branco

1000 Cinza

1001 Azul claro

1010 Verde claro

1011 Ciano claro

1100 Vermelho claro

1101 Magenta claro

1110 Amarelo (Marrom claro)

1111 Branco brilhante

Figura 22 – Byte de atributo

Fonte: Elaborado pelo autor (2025)
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Fonte: Elaborado pelo autor (2025).

Em alguns casos,  os  bits 3 e 7 do  byte de atributo assumem significados 

especiais.  No  entanto,  essas  funcionalidades  não  são  consideradas  na 

implementação do BergOS.

4.1 Definição da interface do driver de VGA

A  interface  do  driver de  VGA  é  definida  no  arquivo  de  cabeçalho 

./arch/i386/video/vga/vga.h. A Figura 23 mostra o conteúdo desse arquivo.

As  linhas  4  e  5  definem  macros  que  se  referem  às  dimensões  da  tela. 

Conforme mencionado,  no  modo  de  vídeo  utilizado  há  uma matriz  de  80  x  25. 

Portanto, a constante VGA_MAXY é definida como 25 e a constante VGA_MAXX é 

definida como 80.

Figura 23 – Definição da interface do driver de VGA

Fonte: Elaborado pelo autor (2025)
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A  interface  também  define  o  tipo  enum VGAColor.  Esse  enum possui 

constantes que representam todas as cores disponíveis, as quais podem ser utilizadas 

como  argumentos  para  as  rotinas  do driver sempre  que  uma  cor  precisar  ser 

especificada.

Na linguagem C, enums funcionam essencialmente como syntactic sugars para 

um int. Isso significa que qualquer valor int válido é um VGAColor válido, mesmo que 

não corresponda a nenhuma das constantes de cor definidas.

Portanto, a definição do tipo VGAColor não proporciona segurança de tipos, já 

que  um  valor  inválido  (diferente  das  constantes  de  cor  pré-definidas)  pode  ser 

atribuído a uma variável desse tipo. Isso faz com que as rotinas do driver tenham que 

validar os argumentos passados.

Ainda assim, a definição de VGAColor é vantajosa por tornar a interface mais 

autoexplicativa. O programador, ao se deparar com uma rotina com um parâmetro do 

tipo VGAColor,  entende  que  deve  usar  uma  das  constantes  de  cor  definidas, 

melhorando a usabilidade da interface.

A linha 26 declara a rotina vga_write para escrita de caracteres. Ela retorna um 

valor diferente de zero em caso de erro e tem os seguintes parâmetros:

• O índice (posição de memória) onde o caractere será escrito.

• O caractere que será escrito.

• A foreground color (cor do caractere).

• A background color (cor de fundo).

A  linha  27  declara  a  rotina  vga_read para  recuperar  informações  de  um 

caractere. Ela retorna um valor diferente de zero em caso de erro e tem os seguintes 

parâmetros:

• O índice (posição de memória) do caractere a ser lido. 

• Um ponteiro para armazenar o caractere daquele índice. 
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• Um  ponteiro  para  armazenar  a  foreground  color (cor  do  caractere)  do 

caractere daquele índice. 

• Um ponteiro para retornar a  background color (cor de fundo) do caractere 

daquele índice.

4.2 Implementação da interface do driver de VGA

A  implementação  da  interface  do  driver de  VGA  está  no  arquivo 

./arch/i386/video/vga/vga.c. A Figura 24 mostra o início do arquivo.

A linha 1 inclui o arquivo de cabeçalho que contém a definição da interface do 

driver. As linhas 2 e 3 incluem cabeçalhos necessários para acessar recursos que 

serão utilizados na implementação do driver, como a constante NULL e tipos inteiros 

de tamanho especificado, como uint16_t.

A linha 5 define a macro VGA_MEMORY como um ponteiro do tipo uint16_t 

(inteiro sem sinal de 16 bits) que aponta para o endereço de memória 0xB8000, local 

onde se inicia o buffer de memória mapeada para vídeo no modo texto.

Esta  definição  permite  utilizar  a  sintaxe  de  arrays da  linguagem  C  para 

manipular diretamente o buffer de vídeo. Cada posição do array acessa uma palavra 

de 16 bits (2  bytes) que contém tanto o caractere quanto seus atributos de cor na 

memória VGA. Dessa forma, operações de leitura e escrita no buffer tornam-se mais 

intuitivas.  A  Figura  25 ilustra  visualmente  este  conceito,  mostrando  como  cada 

elemento do array corresponde a uma posição específica na tela, armazenando em 

Figura 24 – Início do arquivo de implementação do driver de VGA

Fonte: Elaborado pelo autor (2025)
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uma única palavra de 16 bits o código do caractere (byte menos significativo) e seus 

atributos (byte mais significativo).

4.2.1 Implementação da rotina vga_write

A Figura 26 mostra a implementação da rotina vga_write.

Na linha 8 é realizada uma verificação do índice passado como parâmetro. 

Caso o valor seja menor que zero ou maior ou igual ao limite do  buffer de vídeo 

(calculado como 25 linhas por 80 colunas), a função retorna 1. Esse valor, diferente de 

zero, indica a ocorrência de um erro.

Figura 25 – Acesso do byte de caractere e byte de atributo através de indexação de array

Fonte: Elaborado pelo autor (2025)

Byte de Caractere Byte de Atributo

0xB8000 0xB8001

VGA_MEMORY [ 0 ]

Byte de Caractere Byte de Atributo

0xB8002 0xB8003

VGA_MEMORY [ 1 ]

Figura 26 – Implementação da rotina vga_write

Fonte: Elaborado pelo autor (2025)
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A instrução da linha 12 efetua a escrita do caractere na memória de vídeo, 

composição  que  demanda  a  correta  formatação  do  dado  a  ser  armazenado.  A 

composição é feita através de uma série de operações  bit a  bit para construir um 

uint16_t, que forma a unidade fundamental esperada pelo controlador VGA, com o 

byte menos significativo sendo o caractere e o byte mais significativo sendo o atributo. 

A estrutura deste dado é composta da seguinte forma:

• Composição do caractere: Os 8 bits menos significativos (posições de 0 a 7) 

são preenchidos diretamente por character, após uma conversão explícita para 

o tipo uint16_t. Esta etapa assegura a correta interpretação do caractere pelo 

vídeo.

• Composição da foreground color: Os 4 bits subsequentes (posições de 8 a 

11) armazenam o código da foreground color (cor do caractere). O operador de 

deslocamento  à  esquerda  (“<<  8”)  posiciona  este  valor  nos  4  bits menos 

significativos do byte de atributo.

• Composição da background color: Os 4 bits mais significativos (posições de 

12 a 15) são reservados para o código da background color (cor de fundo). O 

deslocamento de 12 posições (“<< 12”) garante seu posicionamento nos 4 bits 

mais significativos do byte de atributo.

A operação de OU bit a bit (|) é então utilizada para fundir esses três elementos 

distintos (caractere, foreground color e background color) em um único valor de 16 

bits.  Por  fim,  este  valor  composto  é  atribuído  à  posição  de  memória  solicitada 

(“VGA_MEMORY[index]”),  o  que  resulta  na  renderização  visual  do  caractere  no 

monitor.

A abordagem de tratar o buffer de memória VGA como um array de uint16_t 

demonstra-se vantajosa devido à característica little-endian da arquitetura x86. Neste 

padrão, os  bytes menos significativos são armazenados nas posições de memória 

iniciais, o que resulta no posicionamento correto do byte de caractere seguido pelo 

byte de atributo no formato exigido pelo controlador VGA. Esta disposição é ilustrada 

na Figura 27.
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Por fim, a função encerra com o retorno 0, indicando que não houve erros.

4.2.2 Implementação da rotina vga_read

A Figura 28 mostra a implementação da rotina vga_read.

Após a verificação inicial dos limites do índice, na linha 17, a função vga_read 

procede  com  a  extração  e  decodificação  do  dado armazenado  na  posição 

especificada do  buffer VGA.  Esta  operação é  inversa  à  realizada por  vga_write, 

Figura 27 – Disposição de um uint16_t no buffer VGA

Fonte: Elaborado pelo autor (2025)

Figura 28 – Implementação da rotina vga_read

Fonte: Elaborado pelo autor (2025)
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desmontando  o  valor uint16_t em  seus  componentes  originais  através  de  três 

estruturas condicionais independentes.

Cada condicional verifica se o ponteiro recebido como parâmetro é diferente 

de NULL antes de acessá-lo. Dessa forma, a implementação permite que o chamador 

recupere seletivamente apenas os componentes de interesse, fornecendo NULL para 

os parâmetros irrelevantes, o que confere flexibilidade à interface da função.

O processo de decodificação ocorre da seguinte forma:

• Extração do caractere: O primeiro condicional recupera diretamente o byte 

menos significativo através de um cast para char, que corresponde ao código do 

caractere armazenado nos 8 bits menos significativos do uint16_t.

• Extração da foreground color: O segundo condicional realiza o deslocamento 

à direita de 8 posições (“>> 8”) para posicionar os 4 bits da cor do caractere nos 

bits menos significativos, aplicando em seguida uma operação E bit a bit (“& 

0xF”)  para isolar  exclusivamente estes 4  bits e  descartar  quaisquer  outros 

valores residuais.

• Extração  da  background  color: O  terceiro  condicional  executa  um 

deslocamento à direita de 12 posições (“>> 12”) para trazer os 4 bits da cor de 

fundo para as posições menos significativas, igualmente aplicando a operação 

E bit a bit para garantir que apenas os 4 bits relevantes sejam preservados.

Por fim, a função encerra com o retorno 0, indicando que não houve erros.

O próximo capítulo faz uma análise do programa do emulador de terminal do 

BergOS, e como ele faz uso do driver de VGA, descrito neste capítulo, para fazer a 

saída de dados.
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5 EMULADOR DE TERMINAL

Um emulador de terminal é um programa que emula os antigos dispositivos terminais 

usados para a entrada e saída de dados com o usuário. BergOS implementa um 

emulador de terminal simples, fornecendo uma interface ao programador para que ele 

possa escrever caracteres,  escrever strings,  formatar  strings e escrever números 

inteiros.

5.1 Definição da interface do emulador de terminal

A interface do emulador de terminal é definida na camada de alto nível, no arquivo 

./kernel/include/tty.h. A Figura 29 mostra o conteúdo do arquivo.

A interface declara as seguintes rotinas para manipulação do emulador de 

terminal:

Figura 29 – Definição da interface do emulador de terminal

Fonte: Elaborado pelo autor (2025)
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• tty_initialize: Inicializa o programa do emulador de terminal. Deve ser chamada 

antes de qualquer outra. Após uma execução bem-sucedida, todo o conteúdo 

da tela será apagado, o cursor estará na posição inicial e o terminal estará em 

modo LF. Retorna um valor diferente de zero em caso de erro.

• tty_clear: Apaga o conteúdo do terminal e volta o cursor para posição inicial. 

Retorna um valor diferente de zero em caso de erro.

• tty_maxy: Retorna o valor máximo do eixo y.

• tty_maxx: Retorna o valor máximo do eixo x.

• tty_gety: Retorna a posição atual do cursor no eixo y.

• tty_getx: Retorna a posição atual do cursor no eixo x.

• tty_sety: Define a posição atual do cursor no eixo y. Retorna um valor diferente 

de zero em caso de erro.

• tty_setx: Define a posição atual do cursor no eixo x. Retorna um valor diferente 

de zero em caso de erro.

• tty_iscrlf: Retorna um valor diferente de zero caso o modo CRLF esteja ativado 

ou um zero caso esteja desativado.

• tty_setcrlf:  Ativa o modo  CRLF se receber  um valor  diferente de zero ou 

desativa caso o contrário.

• tty_putchar: Imprime o caractere recebido como argumento e avança o cursor. 

Retorna um valor diferente de zero em caso de erro.

• tty_printf: Semelhante a printf da biblioteca padrão da linguagem C. Imprime 

uma  string,  aplicando  os  argumentos  adicionais  aos  códigos  de  formato 

presentes na string e avança o cursor. Caso o código de formato seja inválido ou 

não corresponda a um argumento válido o comportamento é indefinido. Os 

códigos de formato são:

o “%c”: Imprime um caractere.
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o “%s”: Imprime uma string.

o “%d”: Imprime um inteiro com sinal.

o “%u”: Imprime um inteiro sem sinal.

o “%x”: Imprime um inteiro sem sinal em formato hexadecimal.

o “%%”: Imprime o caractere “%”.

O cursor determina a posição onde será escrito o próximo caractere.  Sua 

posição  é  atualizada  automaticamente  por  qualquer  rotina  de  impressão  de 

caracteres, mas também pode ser definida manualmente por meio das rotinas tty_sety 

e tty_setx ou através de caracteres de controle.

O emulador de terminal reconhece os caracteres de controle Carriage Return 

(CR, representado por ‘\r’ na linguagem C), e Line Feed (LF, representado por ‘\n’ na 

linguagem C). Conceitualmente, o  CR move o cursor para o início da linha e o LF 

avança o cursor para a linha seguinte. Contudo, o comportamento efetivo desses 

caracteres é determinado pelo modo de operação do terminal.

Após a inicialização do terminal com a função tty_initialize, o terminal opera no 

modo LF. Nesta configuração, cada ocorrência do caractere LF não apenas avança o 

cursor para a próxima linha, mas também o reposiciona para o início dela.

Opcionalmente, o terminal pode operar no modo CRLF, onde é necessária a 

sequência completa de ambos os caracteres (“\r\n”) para efetuar um avanço de linha 

completo. Neste modo, o caractere LF ('\n') executa apenas o avanço vertical para a 

próxima linha, enquanto o CR ('\r') é responsável pelo retorno do cursor ao início da 

linha horizontal.

A Figura 30 mostra como seria a mensagem de saudações do BergOS caso o 

modo CRLF fosse ativado.
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Quando a escrita no terminal atinge o limite inferior da tela, o sistema executa 

uma operação de rolagem vertical.  Este  mecanismo consiste  em “puxar”  todo o 

conteúdo exibido para cima, onde cada linha é movida para a posição imediatamente 

superior. Especificamente, o conteúdo original da primeira linha é descartado, o da 

segunda linha passa a ocupar a primeira, o da terceira linha move-se para a segunda, 

e este processo se repete sequencialmente até que a última linha do terminal seja 

liberada para receber novos caracteres.

5.2 Implementação da interface do emulador de terminal

A  implementação  da  interface  do  emulador  de  terminal  está  no  arquivo 

./arch/i386/tty.c. A Figura 31 mostra o início do arquivo de implementação.

Figura 30 – Mensagem de saudações do BergOS com o terminal operando em CRLF

Fonte: Elaborado pelo autor (2025)
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Nas  linhas  1  a  5,  são  incluídos  arquivos  de  cabeçalho  que  fornecem os 

recursos necessários para a implementação, entre os quais a interface do driver de 

VGA.

Na linha 7, é declarada uma variável global do tipo  int acessível em todo o 

arquivo, que será utilizada para controlar a posição do cursor. Na linha 8, é definida 

uma variável global do tipo bool que indica se o modo de operação CRLF está ativado.

Em  C,  a  palavra-chave  static assume  significados  distintos  conforme  o 

contexto.  Por  padrão,  identificadores  de  escopo  de  arquivo  possuem vinculação 

externa,  podendo  ser  referenciados  por  outros  arquivos  durante  o  processo  de 

linkagem. É por conta desse mecanismo, por exemplo, que a função main do kernel é 

visível para o bootloader.

No entanto, nem sempre é desejável expor um identificador. Para evitar que 

tais identificadores sejam acessados externamente, utiliza-se a palavra-chave static. 

Quando aplicada a variáveis ou funções em escopo de arquivo,  static altera sua 

vinculação para interna, limitando sua visibilidade exclusivamente ao arquivo onde 

foram definidas. Dessa forma, as variáveis cursor e crlf, bem como quaisquer funções 

Figura 31 – Início do arquivo de implementação do emulador de terminal

Fonte: Elaborado pelo autor (2025)
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auxiliares do emulador de terminal, podem ser declaradas como static para restringir 

seu acesso apenas à implementação local.

Esta abordagem oferece dois benefícios fundamentais: primeiro, promove o 

encapsulamento ao ocultar os detalhes de implementação que não fazem parte da 

interface pública; segundo, previne possíveis conflitos de nomes durante a linkagem, 

já que identificadores com vinculação interna não são visíveis para outros arquivos 

objeto.

No contexto do desenvolvimento de  kernels, esse controle de visibilidade é 

particularmente importante, pois permite organizar o código em módulos coesos com 

interfaces bem definidas, reduzindo o acoplamento entre componentes e facilitando a 

manutenção do sistema.

Nas linhas 16 a 22 está a implementação de tty_clear. Primeiramente, um for 

loop é feito para iterar sobre todas as posições do buffer de vídeo, cuja dimensão total 

é determinada pelo produto de  VGA_MAXY e  VGA_MAXX. Para cada posição, a 

função invoca vga_write com o caractere de espaço e os atributos de cor que definem 

o preto tanto para foreground color quanto para background color, removendo todo o 

conteúdo da tela. Após isso, na linha 20 o cursor é posto na posição inicial. A função 

retorna zero indicando que não houve erros.

Nas  linhas  10  a  14,  a  implementação  de  tty_initialize começa  invocando 

tty_clear, que apaga o conteúdo da tela e põe o cursor na posição inicial, desabilita o 

modo CRLF e encerra sua execução retornando zero para sinalizar a não ocorrência 

de erros.

5.2.1 Implementação das rotinas relacionadas a posição do cursor

A Figura 32 mostra a implementação das rotinas relacionadas à posição do cursor.
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Nas linhas 24 a 30 são implementadas as funções tty_maxy e tty_maxx, que 

retornam os valores das macros VGA_MAXY e VGA_MAXX respectivamente. Estas 

macros, definidas na interface do driver de VGA, representam os limites máximos do 

terminal, indicando a última posição válida nos eixos y e x, respectivamente.

Nas linhas 32 a 34, a função tty_gety retorna a posição do cursor no eixo y com 

a divisão da variável global cursor pela macro VGA_MAXX. A operação aproveita o 

truncamento na divisão de inteiros, onde a parte fracionária do resultado é descartada, 

para produzir o índice da posição vertical do cursor.

Complementarmente, nas linhas 36 a 38 a função tty_getx retorna a posição do 

cursor  no  eixo  x  através  da  operação módulo  entre  cursor e  VGA_MAXX.  Esta 

operação produz o resto da divisão entre os valores, que corresponde precisamente à 

posição horizontal do cursor.

Figura 32 – Implementação das rotinas relacionadas a posição do cursor

Fonte: Elaborado pelo autor (2025)
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Nas linhas 40 a 54 estão as implementações das funções tty_sety e tty_setx, 

que definem as coordenadas vertical e horizontal do cursor, respectivamente. Ambas 

as funções verificam se os valores recebidos como parâmetros estão dentro dos 

limites do terminal. Caso a posição seja inválida, as funções encerram sua execução 

retornando o valor 1 para indicar a ocorrência de um erro. Para atualizar a posição 

vertical, tty_sety recalcula o valor de cursor combinando a nova coordenada y com a 

posição  horizontal  corrente,  enquanto  tty_setx ajusta  coordenada  horizontal 

preservando a linha atual. Ambas as funções retornam zero ao fim de sua execução 

para indicar a não ocorrência de erros.

5.2.2 Implementação das rotinas relacionadas a escrita de caracteres

A Figura  33 mostra as implementações das funções  tty_iscrlf e  tty_setcrlf, onde a 

primeira retorna o valor da variável  crlf,  e a segunda usa o valor recebido como 

parâmetro para redefinir o valor de crlf, onde zero é falso e qualquer valor diferente de 

zero é verdadeiro.

Para executar a operação de rolagem vertical, a função auxiliar scroll é definida 

conforme mostra a Figura 34.

Figura 33 – Implementação das funções referentes ao modo de operação do terminal

Fonte: Elaborado pelo autor (2025)



64

Primeiramente, um for loop inicia uma iteração a partir da segunda linha e vai 

até a última posição válida do terminal. A cada iteração, a função vga_read é usada 

para obter e armazenar as informações do caractere na posição correspondente ao 

contador  i para que então essas variáveis sejam usadas como argumentos para a 

função vga_write, que será responsável por escrever o caractere e seus atributos na 

linha superior. O resultado é que ao fim do loop, o conteúdo de todas as linhas tenha 

sido copiado para as linhas imediatamente superiores.

Nas linhas 77 e 79 um outro for loop é feito, dessa vez iterando somente da 

posição horizontal inicial da última linha até a posição final. A cada iteração, a função 

vga_write é usada para escrever um caractere de espaço com o fundo preto, com o 

objetivo de apagar o conteúdo da última linha do terminal, que antes do loop estava 

igual ao da penúltima linha.

Por fim, é subtraído VGA_MAXX da posição do cursor para reposicioná-lo na 

linha superior à que ele estava.

A Figura 35 demonstra a implementação da função tty_putchar.

Figura 34 – Função auxiliar de rolagem vertical

Fonte: Elaborado pelo autor (2025)
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Inicialmente, nas linhas 85 a 87, é verificado se o modo CRLF está desativado e 

o  caractere  a  ser  renderizado é  um LF (‘\n’).  Caso a  condição seja  verdadeira, 

tty_putchar chama a si mesma recursivamente para pôr um CR (‘\r’) antes de LF.

As linhas 89 a 98 usam a estrutura  switch para processar diferencialmente 

caracteres  de  controle  e  caracteres  comuns.  O  bloco  switch define  três 

comportamentos distintos baseados no caractere recebido como parâmetro:

• Para  o  caractere  CR (‘\r’),  a  posição  é  atualizada  com uma operação  de 

subtração que remove o deslocamento horizontal corrente para voltar o cursor 

ao início da linha.

• Para o caractere de LF (‘\n’),  o cursor avança para a linha seguinte através de 

uma  uma  operação  que  adiciona  VGA_MAXX (tamanho  de  uma  linha)  à 

posição atual.

Figura 35 – Função auxiliar de rolagem vertical

Fonte: Elaborado pelo autor (2025)
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• No caso padrão (caracteres comuns),  a  função  vga_write é  invocada para 

renderizar o caractere na posição atual do cursor, com uma cor branca para ele 

e uma cor preta para o fundo, seguido do incremento da posição do cursor.

Após o processamento do caractere, nas linhas 101 a 103, a função invoca 

scroll para realizar a rolagem vertical caso a operação de escrita tenha feito o cursor 

ultrapassar  os limites do terminal,  e  termina sua execução retornando zero para 

indicar a não ocorrência de erros.

5.2.3 Implementação das rotinas relacionadas a formatação de strings

A Figura 36 mostra a definição das funções auxiliares puts e putint.

A função  puts tem a finalidade de imprimir  uma  string de caracteres.  Sua 

implementação é bem simples,  ela “varre” a  string que recebeu como parâmetro 

usando a função tty_putchar para imprimir todos os seus caracteres.

Já  a  função  putint tem  o  objetivo  de  imprimir  um  número  inteiro.  Sua 

implementação é mais elaborada e exige uma análise mais atenta. A função recebe 

três parâmetros:

Figura 36 – Definiçaão das funções auxiliares puts e putint

Fonte: Elaborado pelo autor (2025)
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• num: Um inteiro do tipo uint32_t que será impresso.

• is_negative: Um valor  booleano que determina se a função deve imprimir o 

número acompanhado de um sinal de negatividade.

• base: A base na qual o número será impresso, podendo ir de 2 até 16.

No topo da definição da função, está a declaração de uma string constante 

identificada por DIGITS, que contém todos os dígitos que podem ser demandados nas 

bases suportadas.

Apesar de apenas bases de 2 a 16 serem suportadas, nenhuma validação é 

feita para verificar se o valor de  base atende a essa condição. Isso não é o ideal, 

porém como a função é usada como um auxiliar e não é acessível fora do arquivo, 

optou-se por confiar cegamente no valor passado.

Na linha 117, é declarado um  array de caracteres denominado  stack,  que 

funciona  como  uma  pilha  para  armazenar  os  dígitos  resultantes  da  conversão 

numérica.  Seu tamanho é calculado pela expressão “sizeof(num) *  8 + 1”,  onde 

“sizeof(num) * 8” representa a quantidade de  bits da variável  num.  Como a base 

binária é a que tem a representação numérica mais longa possível, isso garante que 

qualquer valor esteja dentro dos limites do  array,  enquanto o acréscimo de uma 

posição adicional serve para um possível sinal de negatividade. A linha 118 declara 

uma variável inteira para servir de ponteiro para o topo da pilha.

Nas  linhas  120  a  123,  um  loop  do-while utiliza  uma  técnica  clássica  de 

conversão numérica com divisões sucessivas. A cada iteração, o resto da divisão de 

num por  base é utilizado como índice para acessar o caractere correspondente no 

array DIGITS,  sendo armazenado na pilha com posterior  incremento do ponteiro 

stack_top. Em seguida, o valor de num é atualizado pelo quociente inteiro da divisão. 

Este  processo  repete-se  enquanto  o  valor  de  num permanecer  maior  que  zero, 

garantindo que ao fim do loop, a pilha contenha todos os caracteres que representam 

o número na base especificada.

Por fim, nas linhas 129 a 131, após a inserção do caractere de negatividade 

no topo da pilha se necessário, a estrutura de repetição while é usada para recuperar 

os caracteres da pilha na ordem inversa à sua inserção. Com o decremento sucessivo 
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de stack_top, cada elemento é removido do topo da pilha e enviado para saída via 

tty_putchar, garantindo que a representação numérica final seja exibida na orientação 

correta.

As funções  puts e  putint serão, primariamente,  usadas como auxiliares de 

tty_printf, que, como demonstra a Figura 37, possui uma implementação complexa.

Figura 37 – Implementação de tty_printf

Fonte: Elaborado pelo autor (2025)
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A  função  utiliza  os  recursos  da  biblioteca  stdarg.h para  implementar  o 

mecanismo de argumentos variáveis. Na linha 139, é declarado uma variável do tipo 

va_list, que será responsável por armazenar o estado de iteração sobre os parâmetros 

adicionais.

Posteriormente, na linha 140, esta variável é inicializada com o uso da macro 

va_start, que requer dois parâmetros: a variável  va_list previamente declarada e o 

último parâmetro nomeado da função. Esta inicialização estabelece o ponto de partida 

para a leitura dos argumentos variáveis, que agora podem ser obtidos com o uso da 

macro va_arg.

Nas linhas 142 a 177,  há um longo bloco  while que itera sobre todos os 

caracteres da string de formato e os processa apropriadamente. Primeiramente, as 

linhas 143 a 146 verificam se o caractere da iteração é diferente de “%”. Em caso 

afirmativo, a função tty_putchar é invocada para realizar a escrita, o ponteiro da string 

de formato é incrementado e a instrução  continue é  usada para avançar para a 

próxima iteração.

Quando o caractere for igual a “%”, a função incrementa o ponteiro da string de 

formato e entra em um bloco switch, que determinará a formatação apropriada através 

da análise do próximo caractere, que, junto a “%”, forma um código de formato. Na 

maioria dos casos, a macro va_arg será usada para obter o dado a ser formatado na 

lista de argumentos variáveis.

A análise e processamento do código de formato é feita da seguinte forma:

• “%c”:  Manda o caractere obtido na lista de argumentos variáveis para ser 

processado pela função tty_putchar.

• “%s”:  Manda  a  string obtida  na  lista  de  argumento  variáveis  para  ser 

processada pela função auxiliar puts.

• “%d”:  Obtém um inteiro com sinal na lista de argumentos variáveis, cria a 

variável is_negative e atribui o resultado de um teste booleano que indica se o 

valor é negativo ou não, obtém o valor absoluto do número e invoca a função 

auxiliar putint para processá-lo em base decimal, fazendo a devida conversão 



70

para uin32_t e passando a variável is_negative como argumento para a função 

saber se deve imprimi-lo acompanhado de um sinal de negatividade ou não.

• “%u”: Obtém um inteiro sem sinal na lista de argumentos variáveis e o passa 

para a função putint processá-lo como um número em base decimal.

• “%x”:  Obtém um inteiro sem sinal na lista de argumentos variáveis e o passa 

para a função putint processá-lo como um número em base hexadecimal.

• “%%”: Invoca tty_putchar para imprimir o caractere “%”.

Após o fim do bloco switch, o ponteiro da string de formato é incrementado e 

segue-se para a próxima iteração. Quando finalmente a string chegar ao fim e o bloco 

while encerrar sua execução, a função termina retornando o valor zero para indicar a 

não ocorrência de erros.
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6 CONSIDERAÇÕES FINAIS

O presente trabalho teve como objetivo principal aplicar conceitos teóricos referentes 

a sistemas operacionais na construção de kernels  para a arquitetura x86 usando 

linguagem C e assembly,  através  da  análise  minuciosa  de  um  kernel chamado 

BergOS.

Todas as partes principais do BergOS foram apresentadas. O bootloader, que 

foi um importante laboratório para a análise de mecanismos importantes da arquitetura 

x86 como a GDT. O kernel em si, que usa rotinas definidas em interfaces abstratas 

para escrever uma mensagem de saudação na tela e parar sua execução.

Também foi abordado o driver de VGA, que serviu como o exemplo prático do 

conceito de E/S mapeada na memória, e seu uso na implementação da interface do 

emulador de terminal. Com a implementação do emulador de terminal, tanto o kernel 

quanto os futuros programas aplicativos do BergOS têm uma interface simples e 

agradável para escrever caracteres no monitor do usuário. Estando assim, livre das 

complexidades de um driver de vídeo e das especificidades de um hardware. Com 

isso, foi possível observar um exemplo real da abstração fornecida pelos sistemas 

operacionais.

Portanto,  este  trabalho faz sua contribuição ao se aprofundar  na conexão 

inerente entre sistema operacional e hardware. Ilustrando essa conexão através de 

uma longa análise das características de uma arquitetura específica e demonstrando, 

através do BergOS, como elas são usadas para  construir abstrações.

Apesar  deste  trabalho  fornecer  uma  base  sólida  para  a  compreensão  de 

como sistemas operacionais  são programados e  funcionam na prática,  ainda há 

limitações que servem de gancho para trabalhos futuros:

• Separação  de  espaço  de  kernel e  espaço  de  usuário:  Um  conceito 

extremamente  importante  em  qualquer  sistema  operacional  moderno. 

Trabalhos futuros devem explorar como paginação e os anéis de proteção são 

usados na arquitetura x86 para implementar essa separação.

• Interrupções:  Mesmo  que  interrupções  tenham  sido  apresentadas  neste 

trabalho, não houve nenhum exame profundo que fizesse justiça à importância 



72

desse tópico. Estudos posteriores devem se aprofundar nos mecanismos de 

interrupção da arquitetura x86, como a IDT e os controladores de interrupção 

programáveis: PIC e APIC.

• Entrada de dados com teclado: Permitir que o usuário entre dados a partir de 

um dispositivo de entrada como um teclado é o primeiro passo para um sistema 

operacional interativo. Seria proveitosa uma pesquisa que se aprofunde na 

implementação de drivers de teclado que lide diretamente com scan codes, 

typematic e interrupções.

• Processos:  Provavelmente  a  abstração  mais  importante  fornecida  pelos 

sistemas  operacionais.  Trabalhos  futuros  devem  explorar  formas  de  se 

implementar processos, bem como protegê-los de adulteração por parte de 

outros processos. O uso de interrupções na programação de escalonadores é 

fundamental.

Conclui-se, portanto, que o estudo de sistemas operacionais não deve ser 

dissociado do estudo de arquitetura de computadores, e seu funcionamento só pode 

ser plenamente entendido quando se leva em conta o hardware para o qual ele está 

sendo programado, e, nesse sentido, BergOS se mostrou um laboratório frutífero para 

a compreensão dos conceitos teóricos, devido à sua natureza simples e didática.
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APÊNDICE A – PROCESSO DE COMPILAÇÃO DO BERGOS

O processo de compilação de um kernel difere do de em um projeto convencional. No 

geral,  os desenvolvedores estão acostumados com uma compilação que envolve 

apenas  buscar  pelos  arquivos  de  código-fonte  escritos  em  uma  linguagem  de 

programação,  enviá-los  ao  compilador  e  esperar  que  o  binário  gerado  seja 

imediatamente executável, sem passos extras. Porém, um kernel, bem como qualquer 

programa destinado a execução direta por um processador, é um projeto sensível com 

relação à fase de compilação, pois, diferentemente de um projeto de software comum, 

o binário final deve ser construído cuidadosamente.

Os binários pré-compilados de um compilador disponíveis em uma plataforma 

são feitos para gerar binários compatíveis com ela. O GCC, disponível para download 

no repositório público de uma distribuição Linux, por exemplo, foi compilado para que 

o binário gerado esteja no formato ELF, enquanto o MinGW (porte do GCC para 

sistemas Windows), para que o binário gerado esteja no formato PE. Esses formatos 

são feitos para serem processados por um sistema operacional. Eles não apenas 

possuem código de máquina, mas outros dados e informações que serão utilizados 

pelo sistema para carregá-lo na memória e pô-lo em execução. Isso se torna um 

problema para o processo de compilação de um kernel, pois o usuário provavelmente 

tem um compilador que espera gerar código que dependa de um sistema operacional 

e de uma arquitetura específica,  enquanto um  kernel não pode depender de um 

sistema  operacional  e  pode  ter  como  alvo  uma  arquitetura  diferente  daquela 

executada pelo usuário.

O  BergOS  tem  que  contornar  essa  dificuldade,  pois  ele  é  feito  para  ser 

executado sobre um processador de 32 bits, enquanto a maioria dos sistemas, hoje 

em dia, são feitos para executar em processadores de 64 bits. Portanto, o compilador 

que um usuário de Linux terá disponível, por exemplo, irá, a princípio, gerar código no 

formato ELF para 64 bits, diferente do binário “cru” de 32 bits esperado pelo BergOS. 

Para contornar esse problema há duas soluções principais: compilar o próprio 

compilador, para que ele gere um binário compatível com a arquitetura desejada sem 

depender de um sistema operacional; ou usar o compilador disponível na plataforma, 
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mas usar muitas flags de compilação para forçar a geração  de um binário no formato 

desejado.

A primeira solução é mais elegante, recomendada para projetos grandes e 

tende a dar menos problemas, pois se especifica exatamente o que deve ser gerado, 

permitindo, inclusive,  que usuários que não estejam executando um sistema x86 

gerem  códigos  para  ele.  Porém,  a  segunda  solução  é  tentadora  devido  à  sua 

simplicidade, afinal, nenhuma etapa extra é necessária além de instalar o compilador 

já disponível  na plataforma do usuário.  O BergOS segue com a segunda opção, 

justamente para facilitar que o usuário teste o sistema, sem exigir o trabalho extra de 

compilar um compilador apenas para este fim.

Outro problema comum no processo de compilação de  kernels é que eles 

geralmente são escritos em mais de uma linguagem de programação. O kernel Linux, 

por exemplo, é programado em assembly, C e Rust. Isso não apenas aumenta as 

dependências do projeto, como aumenta a complexidade de sua compilação, pois 

agora terá de se pensar em um jeito delas se comunicarem de alguma forma.

Para  atingir  esse  fim,  um  conceito  importante  precisa  ser  analisado:  os 

símbolos, uma das informações mais úteis armazenadas em um arquivo objeto. Um 

símbolo  nada  mais  é  do  que  um  endereço  nomeado.  Esses  símbolos  são 

armazenados  no  arquivo  objeto  em um local  chamado  tabela  de  símbolos.  Um 

símbolo pode ser exportado para ser usado por outros arquivos objetos. Também pode 

ser marcado para ser resolvido no processo de linkagem, permitindo assim que o 

arquivo-fonte interaja com símbolos declarados em outros arquivos-fonte. No fim, o 

trabalho do linker é fazer justamente o que seu nome diz, ligar todos os arquivos objeto 

em um único arquivo final, fazendo cada símbolo presente nos arquivos de entrada se 

referir a um único endereço.

A  forma  como  os  símbolos  são  tratados  depende  do  compilador  e  da 

linguagem de programação. Em assembly, as coisas são mais intuitivas, já que todo 

rótulo, a princípio, se torna um símbolo. Em linguagem C, uma função pode facilmente 

ser convertida em um símbolo de mesmo nome. Por padrão, toda função é um símbolo 

que será exportado, ou seja, será visível para outros arquivos objeto, onde o linker, ao 

encontrar referências a esse símbolo em outros arquivos objeto, resolverá para que no 
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arquivo gerado eles se refiram ao endereço da função correspondente. Quando a 

função é declarada como static, isso diz ao compilador que o símbolo (identificador 

daquela função) não deve ser exportado, ou seja, outros arquivos objeto não devem 

ser capazes de acessá-lo.

Para ser capaz de usar as capacidades do linker e poder compartilhar símbolos 

entre o código-fonte, cada arquivo é compilado, unitariamente, para o formato ELF32 

(a versão de 32 bits do formato ELF), para, na fase de linkagem, esses arquivos objeto 

isolados serem unidos para formarem um único binário “cru”.

A.1 Linker script

Como já estabelecido, no desenvolvimento de  kernels o formato do binário final é 

extremamente importante.  Isso  inclui  a  forma em que o  código e  os  dados são 

dispostos nele. O maior exemplo disso é o caso do bootloader, que, como abordado no 

capítulo 3, deve estar no primeiro setor de um dispositivo para que ele possa ser 

reconhecido. Isso traz a necessidade de posicioná-lo bem no início do binário.

Para especificar a forma do binário final, juntamente com a posição exata dos 

códigos e dos dados, é possível fornecer um linker script para o linker do GCC. O 

linker script é uma ferramenta poderosa, mas relativamente pouco usada já que não 

há tanta necessidade de especificar o formato do binário executável em alto nível. 

Porém, em baixo nível ela se torna indispensável.

O  linker script de BergOS está no arquivo  ./linker.ld.  A Figura  38 mostra o 

conteúdo desse arquivo.
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A primeira linha define que o arquivo a ser gerado é um binário “cru”, ou seja,  

deve conter apenas código executável. Isso impede o linker de produzir formatos que 

não são imediatamente executáveis pelo processador, como ELF. Nas linhas 3 a 24, 

há um longo bloco chamado SECTIONS; é nesse bloco onde a disposição do código e 

dos dados pode ser manualmente definida.

Primeiramente,  na  linha  4,  é  especificado  que  o  código  deve  tratar  seu 

primeiro endereço como sendo 0x7C00. Isso é necessário, pois é nesse endereço de 

memória que o  bootloader será carregado.  Isso faz com que o linker  resolva as 

referências a endereços para corresponder a essa base. Por exemplo, se o código 

Figura 38 – Linker sciprt do BergOS

Fonte: Elaborado pelo autor (2025)
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objeto fizer um salto para o endereço 0x0010, com essa declaração, o linker fará com 

que, no binário final, o salto ocorra para 0x7C10.

Depois disso, as declarações seguintes especificam a posição exata na qual 

as seções dos arquivos objeto devem estar no binário final. Os arquivos ELF possuem 

algumas seções padrão, dentre elas está .text, .data e .bss. A primeira é usada para 

código executável; a segunda para dados inicializados e a última para dados não 

inicializados. A ordem destas no binário final do BergOS não é tão importante. Porém, 

há a necessidade de o código do bootloader estar imediatamente no início do arquivo.

Como foi analisado na seção 3.2 do capítulo 3, o código do bootloader foi posto 

em uma seção personalizada chamada .bootloader. Com esse truque, se torna fácil 

colocar o código do  bootloader no início do binário, bastando apenas pôr a seção 

.bootloader antes das outras.

A.2 GNU Make

O BergOS utiliza o GNU Make para automatizar o processo de compilação. O GNU 

Make  é  uma  ferramenta  popular  no  mundo  Linux,  principalmente  em  projetos 

envolvendo C e assembly. Segundo a Free Software Foundation “O GNU Make é uma 

ferramenta que controla a geração de executáveis e outros arquivos não-fonte de um 

programa  a  partir  dos  arquivos-fonte  do  programa.”  (FREE  SOFTWARE 

FOUNDATION, 2023, tradução nossa).

A popularidade da ferramente se deve muito ao fato dela ter a simplicidade de 

um shell, mas possuir funcionalidades que auxiliam o processo de build. Um exemplo 

disso é a capacidade do Make de reconhecer quais arquivos preciso ser recompilados.

O Make determina automaticamente quais arquivos precisam ser atualizados, 
com  base  nos  arquivos  de  origem  que  foram  alterados.  Ele  também 
determina automaticamente a ordem correta para atualizar os arquivos, caso 
um arquivo não-fonte dependa de outro arquivo não-fonte. Como resultado, 
se  você  alterar  alguns  arquivos  de  origem e  executar  o  Make,  ele  não 
precisará recompilar todo o seu programa. Ele atualizará apenas os arquivos 
não-fonte que dependem direta ou indiretamente dos arquivos de origem que 
você alterou (FREE SOFTWARE FOUNDATION, 2023, tradução nossa).

Os scripts de build são feitos a partir de um arquivo chamado Makefile, que “[…] 

lista cada um dos arquivos não-fonte e como computá-los a partir de outros arquivos. 

Ao escrever um programa, você deve escrever um Makefile para ele, para que seja 
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possível  usar  o  Make para compilar  e  instalar  o  programa.”  (FREE SOFTWARE 

FOUNDATION, 2023, tradução nossa).

A parte mais importante de um Makefile são as rules. São elas que determinam 

como gerar os arquivos desejados.

Uma rule no arquivo Makefile informa ao Make como executar uma série de 
comandos para gerar um arquivo de destino a partir de arquivos de origem. 
Ela também especifica uma lista de dependências do arquivo de destino. 
Essa lista deve incluir todos os arquivos (sejam arquivos de origem ou outros 
arquivos de destino) que são usados como entradas para os comandos na 
rule (FREE SOFTWARE FOUNDATION, 2023, tradução nossa).

O Makefile do BergOS está localizado em ./Makefile. Ele contém rules que vão 

desde compilar o kernel a executá-lo no emulador QEMU.

A Figura 39 mostra o início do Makefile.

Nesse trecho, algumas variáveis importantes são declaradas. Na linha 2, a 

variável ARCH é definida apenas se ela já não tiver valor. Essa variável se refere a 

arquitetura alvo para a qual o BergOS será compilado. Como BergOS pode vir a 

suportar outras arquiteturas, é importante fornecer um meio para o usuário escolher 

para qual arquitetura ele quer compilar. Caso o usuário queira compilar o BergOS para 

x86_64, por exemplo, ele pode definir a variável  ARCH no momento de invocar o 

Figura 39 – Início do Makefile do BergOS

Fonte: Elaborado pelo autor (2025)
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Make, com “make ARCH=x86_64”. O operador de atribuição condicional (“?=”) é útil 

nesse contexto, pois seleciona a arquitetura I386 como padrão caso o usuário não 

defina explicitamente outra.

Nas linhas 5 a 7, são declaradas variáveis referentes aos diretórios do projeto. 

ARCH_DIR se refere ao diretório que contém os códigos da camada de baixo nível 

(dependente de arquitetura), KERNEL_DIR se refere ao diretório com os códigos da 

camada de alto nível (independente de arquitetura) e BUILD_DIR se trata do diretório 

onde os arquivos objeto e o kernel compilado serão colocados.

Na linha 10, a variável  OUTPUT é usada para identificar o caminho onde o 

binário do BergOS compilado será posto. Na linha 11, a variável OUTPUT_SIZE se 

refere ao tamanho do binário do BergOS. O processo de compilação forçará esse 

tamanho, mesmo que a compilação resulte em um arquivo muito menor que esse.

A Figura 40 mostra as variáveis referentes ao assembler.

A váriavel AS demarca o NASM como assembler e a variável AS_FLAGS será 

usada para conter as flags de montagem que serão passadas para o NASM. Apenas a 

flag “-felf32” é usada, que significa que o NASM deve gerar um arquivo objeto no 

formato ELF32 (a versão 32 bits do formato ELF).

A Figura 41 mostra as variáveis referentes compilador C.

Figura 40 – Variáveis referentes ao assembler no Makefile

Fonte: Elaborado pelo autor (2025)
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A variável CC é inicializada com gcc, o compilador que será usado. A variável 

CC_INCLUDES será usada como flag de compilação para que um código fonte C 

possa incluir arquivos de cabeçalho presentes no projeto. A atribuição é feita através 

de um script que busca por todos os diretórios que contém arquivos que terminam com 

“.h”.

Já a parte mais importante está em CC_FLAGS. Como o BergOS pode ser 

compilado por um compilador comum, há a necessidade de se usar muitas flags de 

compilação para forçar a geração do binário no formato desejado.

As flags de compilação usadas são:

• “-std=gnu99”: Faz o compilador usar o padrão gnu99, baseado no padrão c99

mas com expansões de gramática estabelecidas pelo  projeto  GNU.  Essas 

expansões  são  úteis  em  desenvolvimento  de  kernels,  principalmente  por 

fornecerem mecanismos de  inline assembly, uma forma de escrever código 

assembly diretamente em linguagem C.

• “-m32”: Força o GCC a gerar código de 32 bits.

• “-Wall”: Não é estritamente necessário, mas gera avisos úteis em tempo de 

compilação.

• “-Wextra”: Também não é necessário, mas fornece outros alertas em tempo de 

compilação.

• “-nostdlib”: Extremamente importante. O GCC, por padrão, faz a linkagem do 

código com a biblioteca padrão C. Isso é útil em alto nível, porém em baixo nível 

Figura 41 – Variáveis referentes ao compilador C

Fonte: Elaborado pelo autor (2025)
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a maioria dos recursos da biblioteca padrão C não estão disponíveis. Para evitar 

esse problema, esta flag diz para o GCC não fazer essa linkagem.

• “-ffreestanding”:  Diz  para  o  GCC  que  o  código  rodará  em  ambiente 

freestanding. Este é um termo do padrão da linguagem C para se referir a 

ambientes  onde  a  biblioteca  padrão  da  linguagem C  não  está  totalmente 

disponível.

• “-fno-pic”: Faz o GCC gerar código que use endereços absolutos.

• “-fno-stack-protector”: Desativa o mecanismo de proteção de pilha, já que 

este depende de recursos do sistema operacional.

• “-mno-sse”: Diz para o GCC não gerar código que use instruções SSE. Essa é 

uma extensão da arquitetura x86 que não está disponível no 80386.

• “-mno-sse2”: Diz para o GCC não gerar código que use instruções SSE2. Essa 

é uma extensão da arquitetura x86 que não está disponível no 80386.

• “-mno-mmx”: Diz para o GCC não gerar código que use instruções MMX. Essa 

é uma extensão da arquitetura x86 que não está disponível no 80386.

A Figura 42 mostra as variáveis referentes ao linker.

A variável LINKER_SCRIPT referencia o arquivo de linker script, e a variável 

LINKER_FLAGS define  as  flags de  linkagem  a  serem  utilizadas  pelo  linker. 

Figura 42 – Variáveis referentes ao linker

Fonte: Elaborado pelo autor (2025)
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Especificamente,  essa  flag tem a função de instruir  o  linker a utilizar o  script de 

linkagem especificado na variável LINKER_SCRIPT.

A Figura 43 mostra as variáveis relacionadas aos arquivos de código-fonte e 

aos arquivos de código-objeto.

A  variável  CC_SRCS utiliza  o  comando  find do  shell para localizar 

recursivamente  todos  os  arquivos  com  extensão  “.c”  nos  diretórios  ARCH_DIR 

(dependente  de  arquitetura)  e  KERNEL_DIR (independente  de  arquitetura). 

Similarmente,  AS_SRCS coleta  arquivos  assembly que  terminam  com  “.asm” 

exclusivamente do diretório ARCH_DIR.

As variáveis  CC_OBJS e  AS_OBJS mapeiam os arquivos fonte para seus 

respectivos arquivos objetos no diretório de build. Arquivos “.c” são transformados em 

“.c.o” e arquivos “.asm” são transformados em “.asm.o”. A Figura  44 ilustra esse 

mapeamento.

Figura 43 – Variáveis referentes a código-fonte e código-objeto

Fonte: Elaborado pelo autor (2025)

Figura 44 – Mapeamento de arquivos fonte em arquivos objeto

Fonte: Elaborado pelo autor (2025)



85

A Figura 45 mostra as rules responsáveis por compilar os arquivos de código.

A  rule definida na linha 45 especifica como construir  objetos  assembly.  O 

curinga “%” captura o nome base do arquivo.  A linha 46 cria  silenciosamente o 

diretório de destino necessário para o arquivo objeto, onde “$@” expande para o nome 

do alvo. Em seguida, a linha 47 invoca o assembler com as flags apropriadas, onde 

“$<” representa o primeiro pré-requisito (arquivo terminado com “.asm”), gerando o 

objeto especificado.

Analogamente, a rule definida na linha 49 gerencia a compilação de arquivos C. 

Após criar o diretório, na linha 51, o código é compilado com as flags e diretórios de 

inclusão apropriados. A flag “-c” é importante, pois ela indica para o compilador gerar 

apenas o arquivo objeto, sem passar pelo linker.

Por fim, ao compilar todo o código fonte, a imagem do BergOS será gerada. A 

Figura 46 mostra as rules necessárias para isso.

Figura 45 – Compilando os arquivos de código fonte

Fonte: Elaborado pelo autor (2025)
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A rule all constitui o target padrão, sendo executada automaticamente quando o 

Make é invocado sem argumentos. Ela tem como dependência OUTPUT, o que faz 

sua  execução  produzir  a  imagem  do  BergOS.  A  rule definida  na  linha  40  é  a 

responsável por fazer a geração do binário final. Após a criação do diretório, o GCC é 

invocado, mas desta vez para agir como linker. Tanto as flags usadas para compilar 

código C quanto as flags do linker são fornecidas. Desta vez, os arquivos de entrada 

são especificados através de “$^”, que expande para todas as dependências (arquivos 

objeto).

Na linha 43, o comando de shell truncate é usado para ajustar o tamanho da 

imagem gerada para a especificada na variável OUTPUT_SIZE.

A.3 Compilando e executando o BergOS

O projeto BergOS possui três dependências: GCC, NASM e GNU Make. O GCC é 

usado para compilar códigos C e para fazer a linkagem; o NASM é usado para montar 

códigos assembly e o GNU Make é usado para os scripts de build. Será necessário um 

sistema Unix-like  para  realizar  a  compilação.  Em sistemas Windows,  é  possível 

conseguir um ambiente Unix com WSL ou Cygwin.

Figura 46 – Rules para a compilação do BergOS

Fonte: Elaborado pelo autor (2025)
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Para compilar o BergOS, basta invocar o Make em um shell. Se nenhum erro 

ocorrer, a imagem do BergOS compilada estará em ./build/bergos.img. A Figura 47 

mostra a execução do Makefile para compilar o BergOS.

Para executar o BergOS, o usuário pode optar por um emulador de IA-32. O 

QEMU é uma boa opção, pois é simples, multiplataforma e foi o principal ambiente 

usado no desenvolvimento do BergOS. O Makefile  do projeto fornece um  target 

chamado run para executar a imagem do BergOS compilada no QEMU.

A Figura 48 mostra a execução do BergOS no QEMU através do target run do 

Makefile.

Figura 47 – Compilando o BergOS

Fonte: Elaborado pelo autor (2025)
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Por outro lado, é possível executar o BergOS em uma máquina real, desde 

que o processador seja compatível com a arquitetura IA-32. A Figura  49 mostra o 

BergOS executando sobre uma máquina real, com um processador Intel Core i7-7700 

e uma placa-mãe MS-7A15.

Figura 48 – Executando o BergOS no QEMU

Fonte: Elaborado pelo autor (2025)

Figura 49 – Executando o BergOS em uma máquina real

Fonte: Elaborado pelo autor (2025)
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