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RESUMO

Este trabalho tem como objetivo central analisar o funcionamento e o desenvolvimento
de kernels de sistemas operacionais para a arquitetura x86, com o intuito de elucidar
como 0s recursos computacionais sao acessados e abstraidos para fornecer uma
interface simplificada ao usuario e ao programador. Para concretizar este estudo,
adotou-se uma abordagem pratica baseada na analise de um kernel didatico
denominado BergOS, desenvolvido pelo autor em linguagens C e assembly para a
plataforma 1A-32, membro da familia x86. A motivagao reside na premissa de que
conceitos tedricos complexos, como a separagao entre espagos de kernel e usuario,
s6 sdo satisfatoriamente compreendidos quando examinados em implementacdes
reais, as quais sao inerentemente dependentes da arquitetura do hardware. Com base
em uma revisao bibliografica que aborda topicos sobre sistemas operacionais,
arquitetura de computadores, programagao assembly, entre outros, as partes do
BergOS sao analisadas minuciosamente. Comecgando pelo bootloader, que carrega o
kernel na memoaria, passando pelo driver de VGA, que usa E/S mapeada na memoria
para se comunicar com o dispositivo de video e renderizar caracteres na tela, até a
definicdo e implementacdo da interface do emulador de terminal do BergOS, que
fornece rotinas de alto nivel, oferecendo uma camada de abstracao para outras partes
do kernel e programas aplicativos poderem escrever mensagens na tela sem se
preocupar com os detalhes do hardware. A contribuigao deste trabalho esta no fato de
ele se aprofundar na conexao inerente entre sistema operacional e hardware, nao se
limitando apenas ao campo tedrico e abstrato, mas apresentando e analisando uma
implementagdo real e simples dos conceitos. Mesmo abordando detalhes da
arquitetura x86 em profundidade, ainda ha aspectos importantes que n&o sao
estudados neste trabalho, como a separacdo de espago de kernel e espaco de
usuario, mecanismos de interrupgao, entrada de dados com teclado e processos, que
sdo ganchos para estudos futuros. A conclusdo é que o estudo de sistemas
operacionais deve vir acompanhado de um estudo de arquitetura de computadores, e
que, apesar de sua simplicidade, o BergOS demonstra ser uma fonte interessante de
exemplos praticos dos conceitos tedricos abstratos.

Palavras Chave: Sistema Operacional; Kernel; x86.



ABSTRACT

This work aims to analyze the operation and development of operating system kernels
for the x86 architecture, in order to elucidate how computational resources are
accessed and abstracted to provide a simplified interface for the user and programmer.
To carry out this study, we developed a practical approach based on the analysis of a
didactic kernel called BergOS, developed by the author in C and assembly languages
for the IA-32 platform, a member of the x86 family. The motivation lies in the proposition
that complex theoretical concepts, such as the separation between kernel and user
spaces, are only satisfactorily understood when examined in real implementations, as
these are indirectly dependent on the hardware architecture. Based on a literature
review covering details about operating systems, computer architecture, assembly
programming, among others, the parts of BergOS are meticulously verified. Starting
with the bootloader, which loads the kernel into memory, moving on to the VGA driver,
which uses memory-mapped I/O to communicate with the video device and render
characters on the screen, and finally to the definition and implementation of the
BergOS terminal emulator interface, which provides high-level routines, offering an
abstraction layer so that other parts of the kernel and application programs can write
messages to the screen without worrying about hardware details. The contribution of
this work lies in its in-depth exploration of the inherent connection between operating
system and hardware, not limiting itself to the theoretical and abstract field, but
presenting and analyzing a real and simple implementation of the concepts. Even while
addressing details of the x86 architecture in depth, there are still important aspects not
covered in this work, such as the separation of kernel space and user space, interrupt
mechanisms, keyboard input, and processes, which are hooks for future studies. The
conclusion is that the study of operating systems should be accompanied by a study of
computer architecture, and that, despite its simplicity, BergOS proves to be an
interesting source of practical examples of abstract theoretical concepts.

Keywords: Operating System; Kernel; x86.
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1 INTRODUGAO

Este trabalho tem por objetivo analisar o funcionamento e desenvolvimento de kernels

de sistemas operacionais para a familia de arquiteturas x86.

O objetivo geral € apresentar uma visdo sobre como kernels sao programados,
estudando como sao acessados o0s recursos computacionais e como eles sao

abstraidos para apresentar uma interface simples para o usuario e o programador.

Como objetivo especifico, buscou-se analisar um kernel simples para a
arquitetura x86 chamado BergOS, escrito em linguagem C e assembly. Esse kernel,
desenvolvido pelo autor, faz uso de estruturas e recursos da arquitetura e implementa
mecanismos basicos de entrada/saida, servindo, assim, como uma manifestagao

pratica dos conceitos tedricos abordados.

A motivagao para este trabalho esta na certeza de que certos conceitos tedricos
s6 sao satisfatoriamente compreendidos com exemplos reais. A separac¢ao do espacgo
de usuario e espago de kernel, por exemplo, é realizada pelo processador, que é
configurado pelo sistema operacional para se comportar conforme o desejado, o que
torna esse recurso dependente da arquitetura da maquina para a qual ele foi
programado. Uma abordagem geral, que tente ser independente de arquitetura, tera

de se restringir a ideias vagas e abstratas, limitando a compreens&o do tema.

Por outro lado, este trabalho faz um estudo com tecnologias especificas. No
caso, o kernel BergOS, escrito para a arquitetura 1A-32, membro da familia de
arquiteturas x86, usando o GCC como compilador de C e o NASM como assembler. A
implementacéo de conceitos como a comunicagao do kernel com um driver de video
para saida de dados € detalhada através de um estudo dos mecanismos arquiteturais

que permitem a comunicacao do processador com o dispositivo de video.

Este trabalho escolheu a arquitetura x86 por ser uma arquitetura madura, com
abundancia de documentacgao e sistemas operacionais suportados; e por ser comum
em computadores pessoais, tanto desktops quanto laptops, o que torna facil para o

leitor ter a experiéncia de executar o BergOS em uma maquina real.

A escolha da linguagem C se motiva por ser uma linguagem de sistema simples,

que foi projetada especialmente para a programacéao de sistemas operacionais, com
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implementagdes eficientes e uma boa integracdo com outras linguagens de sistema,
muito devido a sua ja mencionada simplicidade. O uso do NASM como assembler é
vantajoso, pois além de ter diretivas de pré-processamento poderosas, a sua sintaxe €

a usada nos manuais da Intel.

O BergOS é um projeto de codigo aberto e pode ser acessado através de um
repositério publico no GitHub (BERGANTON, 2025). Esse repositério também contém

instrugdes para compilar e executar o BergOS.

Como o codigo do BergOS pode evoluir com o tempo ao ponto de ser
substancialmente diferente daquele estudado neste trabalho, uma branch chamada
tcc foi criada no repositorio oficial. O foco dessa branch é apenas servir de referéncia
para este trabalho; portanto, mesmo que o projeto evolua, o cédigo estudado aqui

podera ser acessado facilmente.

Em determinados trechos, neste trabalho, um caminho de diretérios sera usado
para especificar algum arquivo do BergOS. Por exemplo, o cédigo do kernel esta em
/kernel/main.c. Esses caminhos sempre tomam como ponto de partida o diretério raiz

do projeto, conforme o repositorio no GitHub.

O trabalho é dividido em seis capitulos e um apéndice. O capitulo 1 (Introdugéo)
estabelece os objetivos e motivagdes do estudo. O capitulo 2 (Revisao Bibliografica)
faz uma revisao tedrica de tdpicos referentes a sistemas operacionais, arquitetura de
computadores, arquitetura x86 e programacédo em linguagem assembly, que s&o
necessarios para a compreensao dos capitulos seguintes, onde esses conhecimentos

serao aplicados.

O capitulo 3 (Bootloader) trara uma analise minuciosa do programa do
bootloader do BergOS e como ele carrega o kernel para a memoria e deixa a maquina
em um estado esperado por ele. Neste capitulo, os conceitos abordados no capitulo 2
serdo postos em pratica, como programagao em assembly, manipulagdo de

registradores, segmentagao de memoria, interrupgdes de software, dentre outros.

O capitulo 4 (Driver de VGA) comega apresentando o padrdo VGA e como ele
faz uso de mecanismos de E/S mapeada na memoaria para fornecer uma maneira do

programador manipular o video apenas lendo e escrevendo na memoaria principal.
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Apos isso, sera feita uma analise do driver de VGA do BergOS, onde todo o codigo é

estudado, da interface a implementagao.

O capitulo 5 (Emulador de terminal) define e implementa uma interface com
rotinas feitas para manipular o emulador de terminal do BergOS. A implementagao da
interface faz uso do driver de VGA estudado no capitulo 4 para manipular o video e
escrever os caracteres na tela. E neste momento em que o BergOS estabelece uma
camada de abstragao, permitindo que outras partes do kernel e programas aplicativos
sejam programados usando interfaces e protocolos livres das complexidades e
especificidades do hardware. Por fim, o capitulo 6 (Consideragdes finais) conclui o

estudo levantando suas contribui¢oes e limitagdes.

O apéndice A (Processo de Compilacdo do BergOS) aborda dois temas
principais: o processo de compilagdo do BergOS, incluindo suas dificuldades e os
meios para contorna-las; e as questdes referentes a execugao do sistema, e como ele
pode ser executado em emuladores como QEMU e em maquinas reais compativeis

com a arquitetura IA-32.
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2 REVISAO BIBLIOGRAFICA

Neste capitulo serdo introduzidos os conceitos tedricos referentes a sistemas

operacionais e a arquitetura x86.
2.1 Sistema Operacional

Um sistema operacional € um software complexo, e isso ja se torna evidente na
dificuldade em defini-lo. E intuitivo concebé-lo como o conjunto de programas e
aplicativos que vém junto a uma instalagdo de um sistema, como shells, interfaces
graficas, gerenciadores de arquivos etc. Apesar de serem recursos importantes e
Uteis, eles ndo sao, a principio, aspectos substanciais e podem facilmente ser
substituidos sem nenhuma alteragcao profunda no sistema. Um sistema operacional

tem um papel muito mais profundo do que é imediatamente visivel ao usuario comum.

Os programas citados sao classificados como programas aplicativos, isto é,
séo feitos para realizar tarefas especificas e desejadas por usuarios, mas nao tém
relagdo com o sistema computacional em si. Ja os programas de sistema sao
destinados a gerenciar o computador em alguma instancia. O programa de sistema
mais basico é o sistema operacional, que, em uma definicdo sucinta, € “[...] um
programa que gerencia o hardware de um computador. Ele também fornece uma base
para os programas aplicativos e atua como intermediario entre o usuario e o hardware
do computador” (SILBERSCHATZ; GALVIN; GAGNE, 2015, n. p.).

Um sistema operacional tem, entdo, um trabalho complexo. Além de gerenciar
0s recursos de um sistema computacional, também deve facilitar que estes sejam
acessados de forma conveniente e segura, protegendo-os contra usos indevidos. Isso
€ atingido com o auxilio do hardware, que permite a execugdo de um programa em
modo nucleo ou modo usuario. O nucleo do sistema operacional € o que executa em

modo nucleo, como afirma Tanenbaum e Bos (2016, p. 1).

O sistema operacional, a peca mais fundamental de software, opera em modo
nucleo (também chamado modo supervisor). Nesse modo ele tem acesso
completo a todo o hardware e pode executar qualquer instrugdo que a
magquina for capaz de executar. O resto do software opera em modo usuario,
no qual apenas um subconjunto das instru¢ées da maquina esta disponivel.
Em particular, aquelas instrugbes que afetam o controle da maquina ou
realizam E/S (Entrada/Saida) s&o proibidas para programas de modo usuario
(TANENBAUM; BOS, 2016, p. 1).
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A definicdo apresentada pode ser aprofundada. Tanenbaum e Bos detalham
essa perspectiva argumentando que um sistema operacional pode ser entendido
através de duas abordagens, como uma maquina estendida e como um gerenciador

de recursos.
21.1 Sistema Operacional Como Uma Maquina Estendida

Em um sistema computacional, o hardware se apresenta aos programadores com
uma complexidade exotica. “Processadores reais, memodrias, discos e outros
dispositivos sdo muito complicados e apresentam interfaces dificeis, desajeitadas,
idiossincraticas e inconsistentes para as pessoas que tém de escrever softwares para
elas utilizarem” (TANENBAUM; BOS, 2016, p. 3).

Para manipular um processador, por exemplo, é necessario conhecer 0s
detalhes de sua arquitetura, como seus registradores, instru¢ées, mecanismos de
acesso a memoria, mecanismos de seguranga € mecanismos de acesso aos
dispositivos de E/S, o que torna sua programagdo ndo apenas complicada, mas

dependente de uma arquitetura em especifico.

Com dispositivos de E/S a situacao € ainda pior. As interfaces para manipula-
los tendem a ser primitivas e complicadas. Para ler um byte de um disco, por exemplo,
podem ser necessarias varias instrugcbes de maquina. Também € esperado que o
mesmo programa que executa no processador seja capaz de lidar com diferentes

modelos de dispositivos de uma mesma classe.

Em suma, o hardware € complicado, e qualquer programador se beneficiaria de
estar longe de seus detalhes. Sendo assim, Tanenbaum e Bos (2016, p. 3) concluem
que “Uma das principais tarefas dos sistemas operacionais € esconder o hardware e
em vez disso apresentar programas (e seus programadores) com abstracdes de
qualidade, limpas, elegantes e consistentes com as quais trabalhar. Sistemas
operacionais transformam o feio em belo [...]". A Figura 1 traz uma representagéo

visual dessa ideia.
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Figura 1 — Abstracao fornecida pelo sistema operacional

Programas aplicativos

-<— Interface bela

-— Interface feia

Hardware

Fonte: Tanenbaum e Bos (2016)

Essa interface que abstrai as complexidades do hardware fornecendo uma
visdo mais simples do sistema aos programas aplicativos € o que conforma a nogao de
maquina estendida, que permite maior portabilidade e uma programagao conveniente

baseada em abstracdes.
2.1.2 Sistema Operacional Como Um Gerenciador de Recursos

Essa abordagem enxerga o sistema operacional como um programa que administra
os recursos de um sistema computacional. “Resumindo, essa visdo do sistema
operacional sustenta que a sua principal fungdo € manter um controle sobre quais
programas estdao usando qual recurso, conceder recursos requisitados, contabilizar o
seu uso, assim como mediar requisicbes conflitantes de diferentes programas e
usuarios” (TANENBAUM; BOS, 2016, p. 4).

Dado o fato de que computadores modernos permitem que multiplos programas
compartilhem recursos, um gerenciamento cuidadoso passa a fazer parte das
funcionalidades de um sistema operacional. “O gerenciamento de recursos inclui a
multiplexagao (compartilhamento) de recursos de duas maneiras diferentes: no tempo
e no espaco.” (TANENBAUM; BOS, 2016, p. 4).
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A multiplexagéo no tempo € o intervalo no qual um programa tera direito a usar o
processador. Depois de concluir o seu tempo, ou ser bloqueado devido a dependéncia
de um evento externo para continuar sua execugao, o sistema operacional fara outro

programa em espera tomar seu lugar.

A multiplexagao no espaco € o direito dos programas a uma parte do recurso. A
memoria principal, por exemplo, € dividida em particdes que sdo associadas a um
programa cada, de modo que cada um tenha sua prépria memoria e ndo possa

acessar os recursos do outro.
2.1.3 Inconsisténcias na Definigao

Nenhuma definicdo de sistema operacional é totalmente satisfatéria. Se formos mais
rigorosos com o que foi definido até aqui, o firmware Basic Input Output System (BIOS)
de uma placa-mae pode ser considerado um sistema operacional, afinal, ele
administra recursos do sistema computacional com a operagcdo Power On Self Test
(POST), que detecta falhas no hardware, e fornece uma camada de abstragcéo atraves
das fungdes BIOS, formando uma interface mais simples e conveniente para interagéao
com o hardware, ainda que limitada. O sistema MS-DOS, bem como outros sistemas
antigos, era fortemente baseado nas fung¢des BIOS, permitindo que programas
aplicativos as usassem em sua programacao (DODGE; IRVINE; NGUYEN, 2005, p.
80). Sendo assim, as fungbes BIOS compunham boa parte da maquina estendida do

sistema da Microsoft.

A falta de consenso é corroborada por Silberschatz, Galvin e Gagne “[...] néo
temos uma definicdo universalmente aceita sobre o que compde o sistema
operacional”’, e concluem “Uma definicdo mais comum, que € a que costumamos
seguir, é que o sistema operacional é o unico programa que permanece em execugao
no computador durante todo o tempo — chamado, em geral, de kernel’ (2015, n. p.). O
kernel é a parte do sistema operacional que executa em modo nucleo, portanto, tem

acesso a todas as instrucdes do processador.

Mas a afirmacao de que o sistema operacional é o que executa em modo nucleo
também gera problemas. Sistemas embarcados ou processadores antigos podem n&o
ter uma divisdo entre modo nucleo e modo usuario, € mesmo alguns programas que

executam em modo usuario estdo tdo intimamente ligados ao funcionamento do



19

sistema operacional que se torna dificil ndo considera-los como parte dele, assim

como afirma Tanenbaum e Bos (2016, p. 2).

[...] muitas vezes ha um programa que permite aos usuarios que troquem
suas senhas. Nao faz parte do sistema operacional e ndo opera em modo
nacleo, mas claramente realiza uma fungao sensivel e precisa ser protegido
de uma maneira especial. Em alguns sistemas, essa ideia é levada ao
extremo, e partes do que é tradicionalmente entendido como sendo o sistema
operacional (como o sistema de arquivos) é executado em espago do usuario.
Em tais sistemas, é dificil tragar um limite claro. Tudo o que esta sendo
executado em modo nucleo faz claramente parte do sistema operacional, mas
alguns programas executados fora dele também podem ser considerados
uma parte dele, ou pelo menos estdo associados a ele de modo préximo
(TANENBAUM; BOS, 2016, p. 2).

Nao parece correto ou pragmatico considerar o BIOS como um sistema
operacional, tornando uma definigdo muito ampla pouco adequada. O mesmo ocorre
ao desconsiderar um sistema embarcado sem modo nucleo como sistema

operacional, o que também torna uma definigdo muito restrita pouco adequada.

O debate é amplo e excegdes vao existir, mas para fins deste trabalho sera
adotada a defini¢cao ja apresentada de um sistema operacional como um intermediario
entre o usuario e o computador que gerencia o hardware e fornece uma base para os
programas aplicativos (SILBERSCHATZ; GALVIN; GAGNE, 2015, n. p.).

2.2 Arquitetura x86

Como um sistema operacional tem a tarefa de gerenciar o hardware, se torna
fundamental entender em detalhes a arquitetura para qual ele sera programado, bem
como sua arquitetura do conjunto de instrugdes. Como definido por Stallings (2017, p.
2).

Arquitetura de computador refere-se aos atributos de um sistema visiveis a
um programador ou, em outras palavras, aqueles atributos que possuem um
impacto direto sobre a execugao légica de um programa. Um termo que €&
muitas vezes usado de maneira intercambiavel com as arquiteturas de
computadores € arquitetura de conjunto de instrugdo (ISA — do inglés,
Instruction Set Architecture). O ISA define os formatos de instrugdes, cédigos
de operagdo da instrugdo (opcodes), registradores, memoéria de dados e
instrucdo; o efeito das instrugdes executadas nos registradores e na memdria;
e um algoritmo para o controle da execugéo das instrugdes (STALLINGS,
2017, p. 2).



20

2.2.1 Histéria da arquitetura x86

Em 1971 a Intel fez um importante avango para a area da computacido, o
desenvolvimento do 4004, o primeiro microprocessador da historia. Apds esse evento,
a tecnologia de microprocessadores foi evoluindo, culminando no langamento do
microprocessador 8086 em 1978. “O 8086 tem registradores de 16 bits € um
barramento de dados externo de 16 bits, com enderecamento de 20 bits,
proporcionando um espago de enderecamento de 1 MB.” (INTEL CORPORATION,
2025, Vol. 1 2-1, tradugao nossa).

Devido ao sucesso do 8086, a Intel desenvolveu outros processadores que
mantinham compatibilidade com a ISA do 8086, expandindo suas funcionalidades com
novas instrucbes, modos de operagdes e tecnologias. Essa familia de
microprocessadores baseados na ISA do 8086 forma o que é chamado genericamente

de arquitetura x86.

Em 1982 foi langcado o 80286 que, dentre outras novidades, expande a
capacidade de enderecamento do 8086 de 20 bits para 24 bits e adiciona um novo
modo de operagcdo, o modo protegido. “O modo de operagado determina quais
instrugdes e recursos da arquitetura estdo disponiveis” (INTEL CORPORATION,
2025, Vol. 1 3-1, tradugdo nossa). O modo protegido usa os registradores de
segmento como indices para tabelas que descrevem as permissdes e atributos
daquele segmento. Por questdes de compatibilidade com o 8086, o 80286, bem como

seus sucessores, ndo iniciam no modo protegido, mas no modo real.

Em 1985 foi langado o 80386, o primeiro microprocessador de 32 bits da familia
x86. Para permitir a execugdo de programas de 16 bits em modo protegido foi

adicionado o modo virtual-8086.

A familia x86 continuou evoluindo com novos langamentos, como o 80486,
Pentium, Pentium Pro, Pentium II, Pentium Ill, Core 2 etc. A AMD também produz
microprocessadores compativeis com a familia x86. Uma de suas contribuicdes mais
importantes foi o desenvolvimento de uma extensdo da arquitetura, chamada de

x86_64, para processadores de 64 bits. A extensdo também foi adotada pela Intel.
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BergOS €& programado para o 80386, fazendo uso do modo protegido e de
instrugdes de 32 bits. Portanto, a arquitetura correspondente, chamada 1A-32, sera a

estudada neste trabalho.
2.2.2 Assembly

O uso de linguagens de programagao de alto nivel na programacéo de sistemas
operacionais é adequado. Por serem baseadas em maquinas abstratas, apresentam
uma gramatica elegante que torna a programacgao agradavel e menos propensa a
erros. Porém, na programacao de sistemas operacionais € necessario a manipulagéo
da maquina real, que possui diferencas substanciais das maquinas abstratas de
linguagens de alto nivel. Mesmo C, conhecida pelo controle que fornece ao
programador sobre a maquina subjacente, ndo é capaz de manipular recursos
especificos de uma arquitetura como a x86, visto que registradores, segmentacao de
memoria, tabela de descritores, modos de operagao e ponteiros de pilha ndo fazem
parte de sua maquina abstrata. Portanto, mesmo que o uso de uma linguagem de alto
nivel seja recomendado na maior parte do software que compde o sistema
operacional, se torna indispensavel o uso de uma linguagem de baixo nivel, isto é,

uma linguagem de programacéao capaz de expressar instrugdes de uma maquina real.

As linguagens de maquina sdo as linguagens de baixo nivel que sao
diretamente interpretadas por alguma maquina real. Sua programacgao € trabalhosa e
propensa a erros. Para tornar a programacado de baixo nivel mais conveniente,
fornecendo um minimo de abstragdo com notagdes em texto das instrugcbes de
maquina, existem as linguagens de montagem ou linguagens assembly. Como
descreve Zhirkov (2018, n. p.).

A linguagem Assembly para um dado processador € uma linguagem de
programagédo constituida de mnemoénicos para cada possivel instrugédo
binaria codicada (cédigo de maquina). Ela deixa a programagéao em codigos
de maquina muito mais simples, pois o programador entdo nao precisa
memorizar a codicagdo binaria das instrugdes, apenas seus nomes e 0s
parametros (ZHIRKOV, 2018, n. p.).

Apds o programa ter sido escrito, um soffware chamado assembler é usado
para transformar o programa assembly na linguagem de maquina correspondente. O

BergOS é programado usando o assembler NASM.
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Nem toda instrucdo assembly tem uma instru¢cdo em cddigo de maquina
equivalente. Frequentemente assemblers fornecem instru¢des que definem o

comportamento da montagem ou informacdes do binario final.

O assembly da arquitetura x86 tem duas sintaxes distintas. A sintaxe oficial,
usada nos manuais da Intel, € simplesmente chamada de Sintaxe Intel, enquanto a
outra € chamada de Sintaxe AT&T. O assembler NASM usa a Sintaxe Intel, portanto &€

a sintaxe usada nos cédigos do BergOS.
2.2.3 Registradores

A arquitetura x86 é baseada na arquitetura do computador IAS lancada em 1952,
chamada de arquitetura de Von Neumann. A arquitetura de Von Neumann, mesmo
que antiga, ainda é a base para a maioria dos computadores atuais, como reforga
Stallings “Com raras excegdes, todos os computadores de hoje tém essa mesma
estrutura e fungdo geral e sédo, por conseguinte, referidos como maquinas de von
Neumann.” (2017, p. 11).

Um elemento importante da arquitetura de Von Neumann e, portanto, dos
computadores atuais, sdo os registradores. Registradores “Sao células de memoria
colocadas diretamente no chip da CPU.” (ZHIRKOV, 2018, n. p.). Eles sao mais
rapidos que a memoria principal e sdo extensivamente usados na programacgado em
baixo nivel. A maior parte das instrugbées de um programa envolvem mover dados

entre registradores e entre registradores e a memoria.

Como dito por Zhirkov “Na maior parte das vezes, um programador trabalhara
com registradores de propdsito geral.” (2018, n. p.). Os registradores AX, BX, CX, DX,
Sl, DI, BP e SP séo os registradores de proposito geral da arquitetura do 8086,
portanto, todos sao de 16 bits. Eles podem ser usados livremente pelo programador,
mas algumas instru¢ées os usam como operandos ou para armazenar os resultados
de um calculo. Nesse caso, os registradores assumem significados especiais,

conforme pode ser visto na Tabela 1.

Tabela 1 — Significados especiais dos registradores de propdsito geral

Registrador Significado Uso

AX Accumulator Usado em calculos
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aritméticos, para operandos

e resultados.

BX Base Usado como ponteiro para
dados.
CX Counter Usado como contador em

operagodes de strings e
loops.

DX Data Armazena dados de
operacgoes de E/S.

S Source index Ponteiro para origem dos
dados em operagdes de
string.

DI Destination index Ponteiro para o destino dos
dados em operagdes de
string.

BP Base Pointer Ponteiro para a base da
pilha de hardwre.

SP Stack Pointer Ponteiro para o topo da

pilha de hardware.

Fonte: Elaborado pelo autor (2025).

Apesar dos registradores AX, BX, CX e DX terem 16 bits, seus 8 bits mais
significativos podem ser acessados individualmente pelos nomes AH, BH, CH e DH
respectivamente, bem como os menos significativos pelos nomes AL, BL, CL e DL

respectivamente.

Com a introducéo da arquitetura 1A-32 e a expansao do barramento interno,
os registradores de propdsito geral foram expandidos para se adaptar a nova
capacidade de 32 bits, sendo acessiveis pelos nomes EAX, EBX, ECX, EDX, ESI, EDI,
EBP e ESP. Os 16 bits menos significativos dos novos registradores ainda s&o

acessiveis pelos nomes antigos.

Outros registradores importantes da arquitetura x86 sdo o IP (/nstruction

Pointer), que armazena o enderego da proxima instrucdo a ser executada, o
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equivalente ao PC (Program Counter) da arquitetura de Von Neumann; e o FLAGS
que contém um grupo de flags de status, flag de controle e um grupo de flags de
sistemas. Assim como os registradores de propodsito geral, IP e FLAGS também tém

versoes de 32 bits para arquitetura 1A-32, sendo chamados de EIP e EFLAGS.
2.2.4 Segmentos de meméria

Segundo a Intel Corporation, a “segmentacao fornece um mecanismo de isolamento
de mddulos individuais de cddigo, dados e pilha, permitindo que multiplos programas
(ou tarefas) sejam executados no mesmo processador sem interferir um no outro.”
(2025, Vol. 3A 3-1, tradugdo nossa). O mecanismo de segmentacao funciona de forma

diferente no modo real e no modo protegido.

Os registradores de propésito especial CS, DS, ES, FS, GS e SS, chamados de
registradores de segmento, sdo usados no calculo do enderego real que sera

acessado pelo processador. A Tabela 2 descreve os registradores de segmento.

Tabela 2 — Registradores de Segmento

Registrador Significado Uso

CS Code Segment (Segmento de Usado para obter enderecos
Codigo). relacionados a cddigo

executavel.

DS Data Segment (Segmento de  Usada para obter enderecos
Dados). relacionados a dados.

ES Extra Segment (Segmento Nao tem um significado
Extra). especial e pode ser usado

livremente pelo programador.
FS Nao tem um significado
especial e pode ser usado
livremente pelo programador.
GS Nao tem um significado
especial e pode ser usado
livremente pelo programador.
SS Stack Segment (Segmento de Usado para obter enderecos

Pilha). relacionados a pilha.
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Fonte: Elaborado pelo autor (2025).

No modo protegido, a segmentagcao é feita definindo tabelas especiais na
memoria que descrevem os segmentos. Os registradores de segmento passam a
armazenar um valor chamado seletor de segmento, que serve de indice para
selecionar um dos segmentos descritos nessas tabelas especiais (ZHIRKOV, 2018, n.
p.). A Global Descriptor Table (GDT), € a unica tabela de descritores de segmentos
que precisa ser definida para ativar o modo protegido, portanto, sera analisada no

capitulo 3.

Apesar da sua importancia no contexto da arquitetura x86, a segmentagao é
considerada um mecanismo legado. Como confirma Zhirkov “[...] a segmentacgéo é
uma criatura selvagem um tanto quanto dificil de lidar. Ha motivos pelos quais ela néo
foi amplamente adotada pelos sistemas operacionais, nem igualmente pelos

programadores (hoje em dia, ela foi praticamente abandonada).” (2018, n. p.).
2.2.5 Interrupgoes

Em arquitetura de computadores, uma interrupgao € um evento que faz o processador

parar o que esta fazendo para executar um cédigo de tratamento de interrupgao, para

depois retomar a execugao de onde parou. Conforme elabora Zhirkov (2018, n. p.).
As interrupgdes nos permitem alterar o controle de fluxo do programa em um
instante arbitrario no tempo. Enquanto o programa estiver executando,
eventos externos (dispositivos que exijam a atengdo da CPU) ou internos
(divisao por zero, nivel de privilégio insuficiente para executar uma instrugéo,
um endere¢co ndo candnico) poderdo provocar uma interrupgdo, o que
resultara em outro cédigo sendo executado. Esse cddigo é chamado de

handler da interrupcao (interrupt handler) e faz parte do software de um
sistema operacional ou de um driver (ZHIRKOV, 2018, n. p.).

Também € possivel causar uma interrupcao através de uma instrugcédo. Esse
tipo de interrupgao € chamada de interrupgéo por soffware. Como sera elaborado na
secao 2.3, as interrupgdes por software podem ser usadas para acessar as fungdes
BIOS.

Na arquitetura x86, o handler de interrupgdo, bem como seus atributos, &
definido em uma tabela semelhante a GDT chamada Interrupt Descriptor Table (IDT).

BergOS define uma IDT, mas ela ndo sera estudada neste trabalho.
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23 BIOS

O BIOS é “...] uma interface ou ‘camada’ de software que isola os sistemas
operacionais e programas aplicativos de dispositivos de hardware especificos” (IBM,
1987, 1-3, tradugado nossa). Sua fungao é fornecer uma leve abstragao para que o
programador assembly possa manipular dispositivos de bloco ou caractere sem se

preocupar com suas caracteristicas especificas.

A abstracdo é alcancada através de um conjunto de rotinas, as vezes
chamadas de fungdes BIOS. As fungdes BIOS ficam armazenadas em uma Read-
Only Memory (ROM) e s&o carregadas para a memoria principal na inicializagéo do

computador.

As interrupcdes de hardware sao usadas para acessar rotinas do sistema. O
numero da interrupgcdo corresponde ao tipo de servigo solicitado; por exemplo, a
interrupcdo de numero 0x10 refere-se a servigos de video. O valor definido no
registrador AH determina a fungéo especifica do BIOS a ser executada. Algumas
rotinas exigem parametros adicionais, que sao passados por meio de outros
registradores. As fungbes BIOS disponiveis no servico de video podem ser

consultadas na Figura 2.

Figura 2 — Fungdes BIOS disponiveis no servigo de video

{AH) = 00H — Set Mode

(AH) = 01H — Set Cursor Type

(AH) = 02H — Set Cursor Position

(AH) = 03H — Read Cursor Position

(AH) = 04H — Read Light Pen Position

(AH) = 05H — Select Active Display Page

(AH) = 06H — Scroll Active Page Up

(AH) = O7H — Scroll Active Page Down

(AH) = 08H — Read Attribute/Character at Current Cursor Position
(AH) = 09H — Write Attribute/Character at Current Cursor Position
{AH) = 0OAH — Write Character at Current Cursor Position

(AH)} = OBH — Set Color Palette

(AH) = OCH — Write Dot

(AH) = ODH — Read Dot

(AH) = OEH — Write Teletype to Active Page

(AH) = OFH — Read Current Video State

(AH) = 10H — Set Palette Registers

(AH) = 11H — Character Generator

(AH) = 12H — Alternate Select

(AH) = 13H — Write String

(AH) = 14H — Load LCD Character Font/Set LCD High-Intensity Substitute
(AH) = 15H — Return Physical Display Parameters for Active Dispiay
(AH) = 16H to 19H — Reserved

(AH) = 1AH — Read/Write Display Combination Code

(AH) = 1BH — Return Functionality/State Information

(AH) = 1CH — Save/Restore Video State

({AH) = 1DH to FFH — Reserved

Fonte: IBM (1987)
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E comum em programacdo de baixo nivel o uso de nimeros hexadecimais
para representar valores, principalmente enderecos de meméria. Neste trabalho, todo

valor precedido por “0x” deve ser entendido como um valor hexadecimal.

Para escrever um caractere na tela, por exemplo, a fungcédo BIOS Write Teletype
to Active Page pode ser usada. A Figura 3 mostra um cddigo NASM que usa a fungéo

BIOS citada para imprimir o caractere

Figura 3 — Imprimindo um caractere usando uma funcdo BIOS

mov ah, 0Ox0e
mov al,

int 0x10

Fonte: Elaborado pelo autor (2025)

Primeiro o registrador AH é definido com o valor OXE para selecionar a fungao
BIOS que escreve na pagina ativa, depois o registrador AL € definido com o valor do
caractere “I” (0 NASM converte caracteres em aspas simples para valores ASCII), e,
por fim, uma interrup¢cao 0x10 é disparada por software, fazendo com que a funcao
BIOS execute.

Além da camada de abstracao, o BIOS cumpre outras fungdes importantes no
sistema computacional. De acordo com Dodge, Irvine e Nguyen “As funcionalidades
do BIOS podem ser divididas em trés areas: POST, Setup e Boot.” (2005, p. 80,

traducao nossa).

A operagao POST detecta e inicializa os componentes de hardware. Apés a
conclusao de POST, o sistema BIOS fornece ao usuario a possibilidade de entrar em
modo Setup, onde é possivel alterar algumas configuragées do BIOS como a ordem
de boot. Por fim, o BIOS executa a interrupcdo de numero 0x19 que procura, na

sequéncia definida pela ordem de boot, por um dispositivo bootavel, carrega seu
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primeiro setor para a memoria e transfere o controle para o programa contido nele,
geralmente um bootloader (DODGE, IRVINE, NGUYEN, 2005, p. 80).

2.4 E/S mapeada na memoéria

Qualquer arquitetura deve apresentar maneiras de se comunicar com dispositivos de
E/S. Esses dispositivos podem ter interfaces muito complexas, o que faz da
programacgao com instru¢des préprias de E/S inconveniente, verbosa e propensa a
erros. Contudo, ha uma técnica chamada de E/S mapeada na memoria que contorna
esse problema, tornando a programacao de dispositivos de E/S mais facil por fazer o
dispositivo acessivel através da meméria principal. Como elabora Stallings (2017, p.
200).
Com a E/S mapeada na memodria, existe um Unico espacgo de enderego para
locais de memoéria e dispositivos de E/S. O processador trata os registradores
de estado e dados dos mddulos de E/S como locais de meméria e usa as
mesmas instrucdes de maquina para acessar a memoria e os dispositivos de
E/S. Assim, por exemplo, com dez linhas de enderego, um total combinado de

210 = 1.024 locais de memodria e enderecos de E/S podem ser aceitos, em
qualquer combinagao (STALLINGS, 2017, p. 200).

O emulador de terminal do BergOS usa um driver de Video Graphics Array
(VGA), que utiliza a técnica de E/S mapeada na memoaria para permitir que o programa

escreva ou desenhe na tela através da manipulagdo de enderegos de memodria.

O préximo capitulo apresentara o bootloader do BergOS acompanhado de uma
analise que expde o processo de carregar o kernel na memoria e passar o controle da

maquina para ele.
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3 BOOTLOADER

Um bootloader tem o objetivo de carregar o kernel na memoria e colocar a maquina em
um estado esperado por ele. O bootloader do BergOS entrega o controle da maquina
para o kernel com o processador em modo protegido, com as interrup¢des desligadas

e o0 modo de video definido para 3.
3.1 Pré-bootloader

Na etapa de setup, o BIOS fornece ao usuario a opgao de alterar a ordem de boot, que
€ uma lista contendo dispositivos de armazenamento em massa, como HDs e SSDs. O
BIOS |€ o primeiro setor de cada dispositivo procurando por um dispositivo bootavel.
Um dispositivo bootavel € aquele no qual os ultimos dois bytes do seu primeiro setor
contém um numero magico chamado de assinatura de boot, o valor 0XAAS55. Apds um
dispositivo bootavel ter sido localizado, o BIOS executa a interrupgao 0x19, que
carrega o primeiro setor do dispositivo para o enderego 0x7C00 e salta para ele,
transferindo o controle para o programa carregado. O estado da maquina apos o fim
da etapa de boot consiste no registrador CS com o valor zero, o registrador IP com o
valor 0x7CO00 e o registrador DL com o numero do dispositivo no qual o boot ocorreu
(IBM, 1987, 2-113).

Como apenas um setor do dispositivo € carregado, o bootloader nao tem
espaco para ser muito complexo. Caso mais de 512 bytes, tamanho de um setor,
sejam necessarios, um multi-stage bootloader pode ser usado, que “em vez de um
unico programa que carrega o sistema operacional diretamente, os multi-stage
bootloaders dividem suas funcionalidades em programas menores que carregam uns
aos outros sucessivamente.” (DODGE; IRVINE; NGUYEN, 2005, p. 80, tradugéo
nossa). O bootloader do BergOS é simples e consegue ser contido em apenas um

setor.

O bootloader do BergOS é um codigo assembly localizado no arquivo
./arch/i386/boot/bootloader.asm, no qual as duas ultimas linhas sao responsaveis pela

assinatura de boot, como mostra a Figura 4:
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Figura 4 — Assinatura de boot

times 510 - ($ - $$) db 0x00

dw Oxaads

Fonte: Elaborado pelo autor (2025)

A linha 81 é responsavel por preencher o resto do setor com zeros. O NASM
possui “pseudo-instrugdes” que sao instrugdes que nao fazem parte da arquitetura
x86, mas instruem o montador a realizar alguma ag¢do. A instrugdo times € uma
pseudo-instrucao que diz para o NASM repetir uma instrugao por determinado nimero
de vezes. A pseudo-instrugao db significa que, naquela parte do binario final, o NASM
deve preencher com um byte de valor definido. O trecho “510 - ($- $$)” € uma forma de
obter quantos bytes ainda nao foram preenchidos para completar 510 byfes. A
instrugcdo toda diz para o NASM preencher o binario de zeros até o byte 510,
reservando os ultimos dois bytes para a assinatura de boot. Por fim, na linha 82, a
pseudo-instrucdo dw, semelhante a db, com a excecédo de que preenche com uma
word (2 bytes) em vez de um byte, coloca o valor 0xAA55 nos ultimos dois bytes do
binario final, o que torna o dispositivo cujo primeiro setor contém o binario de

bootloader.asm em um dispositivo bootavel.
3.2 Definindo os segmentos e a pilha

A Figura 5 mostra o inicio do bootloader do BergOS.

Figura 5 — Cabecalho do bootloader

%define KERNEL_OFFSET 0x7e00

section .bootloader

extern main

[bits 16]
Fonte: Elaborado pelo autor (2025)
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A primeira linha de bootloader.asm define a macro KERNEL _OFFSET com o
valor 0x7EQ0, que € o endere¢co de memodria para o qual o kernel do BergOS sera
carregado. A linha 3 informa ao NASM para pér o codigo em uma secao

chamada .bootloader.

O processo de compilagao de BergOS, primeiro compila todo o codigo para o
formato ELF32 e apenas no processo de linkagem é transformado em binario puro.
Como o bootloadertem que estar no primeiro setor do disco, definir uma segéo propria
para ele torna possivel definir um script de linkagem que garanta que ele seja posto
logo no comego do binario final. Uma explicacdo detalhada sobre esse script de
linkagem pode ser encontrada no Apéndice A. A linha 5 informa ao NASM que um
simbolo chamado main é externo e deve ser resolvido durante o processo de
linkagem. Esse simbolo refere-se a funcéo principal main, escrita em linguagem C,
que serve como ponto de entrada do kernel do BergOS. A linha 7 € uma diretiva que
instrui o NASM a montar as instrugdes subsequentes no formato de 16 bits, o que €

necessario uma vez que o processador € inicializado no modo real.

O inicio do programa do bootloader se da pelo rotulo set_segmentation. Esse
rétulo, assim como outros, ndo € necessario e ndo sera usado em instrucdes de desvio
de fluxo como jmp ou call, ele serve apenas para tornar o codigo assembly mais

estruturado e facil de compreender. A Figura 6 mostra o cédigo de set_segmentation.

Figura 6 — Definicao dos registradores de segmento no bootloader
[bits 16]
set_segmentation:
xor ax, ax
mov ds, ax

mov es, ax
mov ss, ax

Fonte: Elaborado pelo autor (2025)

A instrucdo xor, que representa a operacdo “ou exclusivo”, recebe dois
operandos, um registrador e um valor que pode vir de outro registrador ou da memoria,
aplica a operagédo e armazena o resultado no registrador do primeiro operando. A

operagéao de “ou exclusivo” quando aplicada a valores iguais resulta em zero, portanto
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a instrugao serve para zerar o valor de AX. O mesmo resultado poderia ser obtido com
‘mov ax, 0”7, porém essa instrugdo, junto ao operando, ocupa 3 bytes, enquanto a
instrugdo equivalente com xor ocupa 2 bytes. E uma pratica comum em programacao
assembly poupar bytes com instrugbes mais econbmicas. Pratica inteligente de se
seguir, ja que o programa do bootloader esta limitado a 512 bytes. Com o valor de AX

zerado ele é usado para definir todos os registradores de segmento como zero.

Depois de definir os registradores de segmento, os registradores de pilha sao
configurados no rétulo set_stack. O programa faz os registradores BP e SP apontar
para o enderegco 0x7CO00. A pilha “cresce para baixo”, o que significa que push
(instrugédo que coloca um valor na pilha) subtrai o valor de SP enquanto pop (instru¢ao
que remove um valor da pilha) soma o valor de SP, o que garante que a pilha néo
sobrescrevera o programa do bootloader durante a execugao. A Figura 7 mostra

set_stack.

Figura 7 — Definindo a pilha

set_stack:

mov bp, 0x7c00
mov sp, bp

Fonte: Elaborado pelo autor (2025)

Apo6s definir a pilha, no rétulo set video_mode o bootloader executa uma
interrupgao para acessar uma fungao de video do BIOS chamada Set Mode, com a
finalidade de alterar o modo de video para 3. Isso sera util para o driver de VGA do
BergOS, que depende que o modo de video seja este. O codigo de set_video _mode

sera explicado no capitulo 4.
3.3 Carregando o kernel para a memoéria

Os primeiros 512 bytes do binario de BergOS sao reservados para o bootloader. Nos
bytes seguintes fica localizado o kernel. O kernel do BergOS esta, portanto, a partir do

segundo setor do disco no qual o bootloader foi executado.
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H& varias maneiras de ler um disco. Umas mais antigas e outras mais

modernas.

Historicamente, o enderecamento dos blocos usava um padrao denominado
CHS (Cylinder-Head-Sector): para acessar cada bloco, era necessario
informar a cabega (ou seja, a face), o cilindro (trilha) e o setor do disco onde
se encontra o bloco. Esse sistema foi mais tarde substituido pelo padrdo LBA
(Logical Block Addressing), no qual os blocos sdo enderecados linearmente
(0,1, 2,3, ...), o que é muito mais facil de gerenciar pelo sistema operacional.
Como a estrutura fisica do disco rigido continua a ter faces, trilhas e setores,
uma conversdo entre enderecos LBA e CHS ¢é feita pelo firmware do disco
rigido, de forma transparente para o restante do sistema (MAZIERO, p. 262).

As fungdes BIOS suportavam, originalmente, apenas o padrao Cylinder-Head-
Sector (CHS). Posteriormente algumas implementagdes comecgaram a fornecer
extensdes para suportar Logical Block Addressing (LBA). A Phoenix Technologies
formalizou, em 1994, um padrao chamado de Enhanced Disk Drive, que expande as
capacidades do servico de disco, acessadas pela interrupgao 0x13, para lidar com
padrées de disco mais modernos, incluindo LBA. BergOS usa fungdes disponiveis

nessa extensao para ler o disco e carregar o kernel para a memoria.

O rétulo read_kernel identifica o codigo responsavel pela leitura do kernel:

Figura 8 — Carregando o kernel para a memoria

read_kernel:
mov ah, 0x42
mov si, DAP
int 0x13

jnc load_gdt

mov ah, 0x13
mov al, 0x01

mov bp, ERROR_KERNEL

mov cx, ERROR_KERNEL_LEN
mov bl, Ox0Ff

xor dx, dx

int 0x10

cli

Fonte: Elaborado pelo autor (2025)
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Na linha 24, o valor 0x42 é posto em AH, o cddigo que identifica a fungéo BIOS
Extended Read. A fungdo também exige que o numero do dispositivo que ela deve ler
seja posto no registrador DL, porém, como o BIOS ja inicializa esse registrador com o

valor que identifica o disco em que o boot ocorreu, ndo é necessario altera-lo.

Na linha 25, o registrador S/ recebe um endereco de memoria onde esta contida
uma estrutura chamada Disk Address Packet (DAP). Por fim, uma interrupgédo 0x13 &

disparada para invocar a funcao BIOS.

Caso um erro ocorra, a flag carry do registrador FLAGS sera ligada (definida
para 1). A instrugdo jnc faz um salto para o enderecgo especificado se a flag carry nao
estiver definida. Ou seja, se nenhum erro ocorreu € a leitura do kernel foi concluida, o
programa salta para o rétulo load gdt, caso contrario, as linhas 30 a 39 séao
responsaveis por imprimir uma mensagem de erro e parar a execugdo do

processador.

Embora a funcdo pareca simples, os parametros mais complexos sao
definidos no DAP, e ndo em registradores. E nele onde sera especificado quantos
blocos serao lidos, a partir de qual bloco sera lido e em qual endereco o conteudo lido
sera colocado. Segundo a Phoenix Technologies “A estrutura de dados fundamental
para as extensdes Int 0x13 é o Disk Address Packet. Int 0x13 converte as informacgdes
de enderegamento do Disk Address Packet para parametros fisicos apropriados para

a midia.” (1995, p. 7). A Tabela 3 descreve os campos do DAP.

Tabela 3 — Disk Address Packet

Offset Tipo Descricao

0 Byte Tamanho do DAP em bytes.
Deve ser maior ou igual a 16.

1 Byte Reservado, deve ser 0.

2 Byte Numero de blocos para
transferir.

3 Byte Reservado, deve ser 0.

4 Double Word (4 bytes) O endereco, no padrao

segmento:offset, em que as

operacoes de escrita/leitura
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serdo realizadas.

8 Quad Word (8 bytes) Numero do primeiro bloco, no
padrao LBA, em que as
operacoes de escrita/leitura

serdo realizadas.

Fonte: Elaborado pelo autor (2025).

O DAP usado pelo bootloader do BergOS ¢é definido no rétulo DAP. A Figura 9

mostra a definicdo do DAP para a leitura do kernel.

Figura 9 — Definicao do DAP

DAP:
db 0x10 * Tamanho do DAP. Deve ser 16 (0x10).
db 0x00 : Reservado.
dw 0x0010 : Deve ler 16 (0x10) blocos.
dw KERNEL_OFFSET ; Deve ler para o offset definido por ENTRY_OFFSET.

dw Ox0000 ; Deve ler para o segmento 0.

dd 0x0001 » Deve ler a partir do bloco 1.

dd 0x0000 - Se junta com o campo anterior.
DAP.end:

Fonte: Elaborado pelo autor (2025)

Juntando o segmento com o offset, 0 enderec¢o para onde o kernel sera lido é
0x0000:KERNEL_OFFSET, que, com a expansao da macro KERNEL OFFSET,
resulta em 0x0000:0x7EOQQ.

3.4 Colocando o processador em modo protegido

Colocar o processador em modo protegido é simples, bastando apenas mudar um bit
em um registrador. Porém, para que ele funcione apropriadamente, uma GDT deve
ser definida. Uma GDT é uma tabela de descritores de segmentos que, segundo a Intel
Corporation, “[...] & um array de descritores de segmento. Uma tabela de descritores é
variavel em tamanho e pode conter até 8192 (2') descritores de 8 bytes.” (2025, Vol.
3A 3-14, traducado nossa). No modo protegido, diferentemente do modo real, os
registradores de segmento deixam de ser usados diretamente no calculo de

enderecos e passam a atuar como indices que selecionam um descritor em uma
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tabela de descritores de segmentos. Esses descritores descrevem atributos do
segmento como enderego base, nivel de privilégio, tipo do segmento (cédigo, data)

dentre outros.

Ha outras tabelas de descritores na arquitetura x86 como a IDT, fundamental
para tornar a arquitetura multitarefa, ja que é ela a responsavel por lidar com as rotinas
de tratamento de interrupcdo; e a Local Descriptor Table (LDT) que é muito
semelhante a uma GDT e tinha o propdsito de auxiliar os sistemas operacionais na
alternancia de tarefas, mas os projetistas de sistemas operacionais néo a adotaram.
Para o modo protegido, apenas a GDT é necessaria. A Figura 10 mostra a estrutura de
uma GDT e uma LDT.

Figura 10 — A estrutura de uma GDT e uma IDT

Global Local
Descriptor Descriptor
Table (GDT) Table (LDT)
T ¢ #
nto s
Segment
Selector

56 56
43 48
40 40
32 32
24 24
16 16

8 8

First Descriptor in
GDTisNotUsed |0 0
Y »
GDTR Regqister | \‘ LDTR Register
Limit_| [ it
Base Address Base Address
Seq. Sel.

Fonte: Intel Corporation (2025)

Cada entrada de uma GDT é um descritor de segmento e ocupa 8 bytes. O

primeiro descritor de uma GDT nao € usado. Os registradores de segmento CS, DS,
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ES, FS, GS e SS armazenam um valor que serve como um indice para obter o

descritor de segmento correspondente na GDT.

A Figura 11 mostra a estrutura de um descritor de segmento.

Figura 11 — A estrutura de um descritor de segmento

3 242322212019 1615141312 11 8 7 0
D| |A| Seg. D
Base 31:24 Gl/|L|v| Lmit |P| p [5]| Type Base 23:16 4
B Ll 19:16 L
31 1615 0
Base Address 15:00 Segment Limit 15:00 0
L — 64-bit code segment (1A-32e mode only)

AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)

DPL — Descriptor privilege level

G  — Granularity

LIMIT — Segment Limit

P — Segment present

] — Descriptor type (0 = system; 1 = code or data)

TYPE — Segment type

Fonte: Intel Corporation (2025)

A estrutura de um descritor de segmento € composta por campos distribuidos

de maneira nao contigua ao longo de 64 bits. Essa disposi¢cao cadtica e confusa existe

para manter compatibilidade com versdes antigas da arquitetura x86. Os campos da

GDT desempenham o seguinte papel:

* Base Address: O endereco base é definido por trés campos fragmentados:
“‘Base 31:24”. “Base 23:16” e “Base Address 15:00”, que, em conjunto, formam

um valor de 32 bits que indica o inicio do segmento.

+ Segment Limit. O limite de segmento é determinado por dois campos: “Seg.
Limit 19:16” e “Segment Limit 15:00”, que compdem um valor de 20 bits. Esse

valor define o tamanho do segmento. Se o bit de granularidade (G) estiver

definido como 0, o limite & calculado em incrementos de bytes, permitindo
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segmentos de até 1 MB (2%°). Se G for 1, o limite é calculado em incrementos de
4 KB, possibilitando segmentos de até 4 GB (2% * 4 KB).

+ P (segment present): Indica se o0 segmento esta presente na memoaria.

« DPL (descriptor privilege level): Define o nivel de privilégio necessario para
acessar o segmento. Pode assumir valor de 0 a 3, sendo 0 o mais privilegiado e

3 0 menos privilegiado.

* S (descriptor Type): Se for 0 indica que o segmento € um segmento de

sistema, se for 1 indica que é um segmento de cédigo ou dados.

* TYPE: Se o valor de S for 1, este campo serve para selecionar entre um

segmento de cdédigo ou segmento de dados e definir suas caracteristicas.

* D/B (default operation size): Se for 0, o segmento é tratado como um
segmento de 16 bits, se for 1, o segmento é tratado como um segmento de 32
bits.

* G (granularity): Determina a escala do campo Segment Limit.

* L (64-bit code segment). Disponivel apenas em plataformas que suportam
IA-32e.

* AVL (available and reserved bits): Disponivel para ser usado pelo sistema.

A GDT desempenha um papel fundamental na separacao do espacgo de usuario
e do espaco de kernel. O campo DPL é usado para definir os niveis de privilégio de um
segmento. Apesar desse campo poder assumir 4 valores diferentes, historicamente os
sistemas operacionais fazem uso de apenas dois deles, com o nivel 0 sendo usado

para o espaco de kernel e o nivel 3 sendo usado para o espago de usuario.

Para que o processador passe a usar a GDT definida, seu endereco e tamanho
precisam ser carregados para um registrador especial chamado GDTR (INTEL
CORPORATION, 2025, Vol. 3A 3-1). Para isso, outra estrutura na memoaria sera

necessaria. A Figura 12 ilustra essa estrutura.
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Figura 12 — Estrutura para GDTR
31 16 15 0

Endereco Base Tamanho

Fonte: Elaborado pelo autor (2025)

A estrutura é autoexplicativa, mas um detalhe importante € que o campo
“Tamanho” deve conter o tamanho real da GDT subtraido por 1. Isso decorre do fato
de que 16 bits podem representar nimeros em um intervalo de 0 a 65535 (2'° — 1).
Porém, como ndao ha GDT com tamanho de zero bytes, o valor 0 representa uma GDT

de 1 byte, o valor 1 uma GDT de 2 bytes e assim sucessivamente.

A Figura 13 mostra a GDT usada pelo bootloader do BergOS, com a definicao

da estrutura a ser carregada na GDTR e dos descritores de segmento.

Figura 13 — Definicao da GDT usada pelo bootloader do BergOS

GDT:
dw .end - .begin - 1
dd .begin
.begin:

.null: db 0x00, O0x00, 0Ox00, Ox00, 0x00, ObOOGOOGOO, OLHOOOEOOLOO, OXOO

.code: db Oxff, Oxff, Ox00, Ox00, 0x00, 0b1606011010, 0b11061111, OXxO0

.data: db Oxff, Oxff, Ox00, Ox00, 0x00, 0b10016010, 0b11061111, Ox00
GDT.end:

Fonte: Elaborado pelo autor (2025)

O rétulo GDT demarca o inicio das estruturas referentes a GDT. Na linha 70, a
pseudo-instrucdo dw é usada para definir o valor de 16 bits que representa o tamanho
da GDT. Um calculo com enderecos ¢ feito para obter o tamanho da GDT subtraido
por 1. Enquanto a linha 71 usa a pseudo-instrucdo dd para um valor de 32 bits que

representa o endereco da GDT.

O rétulo local .begin marca o inicio da GDT propriamente dita. Como BergOS

nao faz uso de segmentacgéo, por ser um mecanismo obsoleto, e nem faz separagéo
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do espacgo de kernel e espago de usuario, os segmentos definidos na GDT sdo bem

simples.

A GDT usada pelo bootloader do BergOS define apenas dois segmentos
validos: um para cédigo e outro para dados. A unica diferenga entre eles € um bit que
determina qual é o segmento de cddigo e qual € o segmento de dados. De resto,
ambos tém as mesmas caracteristicas: enderego base igual a 0, limite do segmento

igual a OxFFFFF (tamanho maximo), nivel de privilégio igual a O (mais privilegiado).

Como o primeiro descritor de uma GDT nao é usado, o rétulo local .null
preenche essa entrada com zeros. Ja os rétulos locais .code e .data definem os

descritores de segmento de cddigo e de dados, respectivamente.

Apds a definicdo dessa estrutura, o registrador GDTR pode finalmente ser
carregado com o endereco dela. Isso é feito no rétulo load _gdt que foi para onde o
programa do bootloader saltou apds carregar o kernel. A Figura 14 mostra o rotulo
load_gdt.

Figura 14 — Definindo o registrador GDTR

load_gdt:

cli
lgdt [GDT]

Fonte: Elaborado pelo autor (2025)

Primeiramente, as interrupgdes sdo desligadas com a instrugao cli, depois a
estrutura é carregada para o registrador GDTR através da instrugao /gdt. Desligar as
interrupgdes serve tanto para evitar comportamentos indesejados quanto para cumprir
0 contrato entre o bootloader e o kernel onde o primeiro deve entregar o controle da

maquina para o segundo com as interrupgdes desligadas.
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A Figura 15 mostra o rétulo enable_protected_mode, onde o processador

finalmente é posto em modo protegido.

Figura 15 — Colocando o processador em modo protegido e passando o controle para o

kernel

enable_protected_mode:
mov eax, cro
or eax, 0x01
mov cr@, eax

mov ax, (GDT.data - GDT.begin)
mov ds, ax
mov es, ax
mov fs, ax
mov gs, ax
mov ss, ax

jmp (GDT.code - GDT.begin):main

Fonte: Elaborado pelo autor (2025)

Nas linhas 46, 47 e 48, o valor do registrador de controle CRO é copiado para
EAX (a versao estendida de 32 bits de AX), uma instrugdo or, que representa a
operagao “ou inclusivo”, é usada para ativar o primeiro bit do registrador para, na
operagao seguinte, colocar o valor de volta em CRO. O primeiro bit de CRO determina
se o0 processador esta em modo protegido ou nao, portanto, ao ativa-lo, o processador

esta definitivamente em modo protegido.

A linha 50 faz um calculo para obter o indice do segmento de dados, definido na
GDT, para, nas linhas 51 a 55, fazer os registradores de segmento DS, ES, FS, GS e

SS usarem o mesmo segmento de dados.
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A linha 57 é importante por duas razdes: a primeira € que ela altera o segmento
de cddigo, a segunda é que ela é responsavel por realizar o salto para o kernel do
BergOS. O valor de CS nao pode ser alterado com uma instrugao mov como os outros.
Portanto, para alterar o segmento de cédigo € necessario alguma instrugdo de desvio
de fluxo. A instrugcdo jmp permite alterar o valor de CS especificando o valor do

segmento antes do endereg¢o em si.

O segmento pode ser um dos registradores de segmento ou um valor
imediato. A linha 57 faz um jmp para o simbolo main, que € a fungao principal do kernel
do BergQS, alterando o valor de CS para o indice do segmento de cddigo, definido na
GDT.

A funcao de entrada do BergOS, main, é definida no arquivo ./kernel/main.c,

como mostra a Figura 16.

Figura 16 — Funcdo main do kernel do BergOS

Blinclude "kernel.h"
#include "tty.h"

void main(void) A
kernel_initialize();

tty_initialize();

tty_printf("Hello, world!\n");
tty_printf("I am Berg0S!\n");

kernel_halt():

Fonte: Elaborado pelo autor (2025)
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E uma boa pratica em desenvolvimento de sistemas operacionais criar uma
camada de cédigo que € mais baixo nivel, com rotinas que dependem de recursos
especificos de uma arquitetura, e uma camada mais alto nivel que tenta ser o mais
adequadamente independente. Assim, caso os desenvolvedores queiram portar o
sistema para uma outra arquitetura, apenas as rotinas de baixo nivel precisariam ser
reescritas. Isso promove uma programagao baseada em interfaces, onde o codigo de

alto nivel invoca rotinas de baixo nivel sem se importar com a implementacao delas.

No repositorio do BergOS, todo coddigo da camada de alto nivel esta no diretério
/kernel/, e todo cédigo da camada de baixo nivel esta no diretério ./arch/. Dentro
de ./arch, ha outros diretérios, cada um se referindo a implementacdo de uma
arquitetura especifica. Por exemplo, a implementagcdo para arquitetura i386, a

estudada neste trabalho, esta em ./arch/i386/.

A linha 5 chama a funcédo de baixo nivel kernel initialize, que é definida no
cabecalho ./kernel/include/kernel.h. Ela €& responsavel por fazer quaisquer
configuragbes e inicializagdes necessarias para o funcionamento do kernel. Sua
implementacao esta em ./arch/i386/kernel.c. No caso da implementacio para i386, a
funcdo configura uma GDT para ser usada pelo kernel, ja que a definida pelo
bootloader foi apenas uma necessidade para colocar o processador em modo
protegido. Apesar da GDT configurada por kernel_initialize ser, atualmente, idéntica a
do bootloader, € uma boa pratica torna-las independentes, ja que caso futuramente o
BergOS venha a ter separagcédo entre espago de kernel e espago de usuario, a
funcionalidade poderia ser implementada facilmente sem fazer com que o bootloader

perca sua simplicidade.

Na linha 7, a funcao de baixo nivel tty initialize € chamada. Ela é responsavel
por inicializar o emulador de terminal, que sera usado pelo kernel para realizar saida
de dados.

As linhas 9 e 10 usam a fungao ftty_ printf para escrever strings na tela que,
juntas, formam a mensagem “Hello, world! | am BergOS”. Por fim, na linha 12, como a
funcdo main nao deve retornar, € chamada a fungao de baixo nivel kernel_halt que

para a execugao do processador.
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A funcdo main apresenta todo o comportamento visivel do kernel do BergOS

para o usuario que executa o sistema. A Figura 17 mostra a execugao do BergOS no
emulador QEMU.

Figura 17 — Execucao de BergOS

ello, world!?

[ am Berg0S!

Fonte: Elaborado pelo autor (2025)

O proximo capitulo apresenta o padrdao VGA, como ele pode ser usado para
se comunicar com o dispositivo de video e termina com um exame detalhado do driver
de VGA usado pelo BergOS.
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4 DRIVER DE VGA

Computagao grafica é um topico complexo e extenso que se tornou fundamental na
computagdo. Ferramentas modernas, como Cuda, facilitam o trabalho dos
programadores fornecendo camadas de abstracdo. Porém, décadas atras os
programadores nao tinham esse luxo e eram obrigados a lidar com interfaces

espartanas e problemas de portabilidade.

Um avanco importante foi feito com a introdugao do padrao VGA, que, segundo
Wilson “[...] € um padrdo de exibicdo de video e um tipo de conexdo amplamente
utilizado na industria de computadores ha décadas. Introduzido pela IBM em 1987, o
VGA rapidamente se tornou o padrao grafico para PCs e langou as bases para os

monitores de computador modernos.” (2024, tradugao nossa).

Apesar de ser um padrao antigo, ele ainda € suportado pela maioria dos
dispositivos de video modernos. Portanto é uma boa ideia ter um driver simples de
VGA para ter suporte a video logo no estagio inicial de desenvolvimento de um
sistema operacional, com a seguranga de que provavelmente ele funcionara em

qualquer hardware.

Mesmo que o padrao VGA permita uma resolucao de 640 x 480 e tenha suporte
a 256 cores (WILSON, 2024), nenhum desses recursos € usado no driver do BergOS.
Na verdade, o padrédo VGA tem suporte a varios modos de video, incluindo os antigos
modos que surgiram nos PCs da IBM anteriores ao PS/2, onde o padrao VGA foi

introduzido. A Figura 18 mostra os modos de video disponiveis para um IBM PS/2.

Figura 18 — Modos de video disponiveis

Mode Maximum Alpha Buffer

{Hex) Type Colors Format Start
o, 1 AN 16 40%25 BB8000
2,3 AN 16 80x25 B800O
4,5 APA 4 40x25 B8000
6 APA 2 B0x25 B8000
i AN Mono 80x25 B0O000
8 APA 16 20x25 B0O0O0O
9 APA 16 40x25 BO00O
A APA 4 80x25 B0O00O
B,C —Reserved—
D APA 16 40x25 A0000
E APA 16 B80x25 A000O0
F APA Mono B0Ox25 AO00C
10 APA 16 B80x25 A0000
11 APA 2 BOx30 AD000
12 APA 16 BOx30 AQ000
13 APA 256 40x25 AO000

APA — All Points Addressable (Graphics)
A/N — Alphanumeric (Text)

Fonte: IBM (1987)
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Os modos de video variam entre All Points Addressable (APA), que permitem
uma manipulacdo grafica através de pixels, e Alphanumeric (A/N), onde a
manipulacao grafica ocorre através de caracteres. O driver de VGA do BergOS utiliza
o0 modo 3, que permite a escrita de caracteres em uma matriz 80 x 25 com suporte a 16

cores.

Ainda que a maioria das implementac¢des do BIOS ja inicialize com o modo de
video 3, o bootloader do BergOS garante que a maquina esteja nesse modo utilizando
a funcao BIOS Set Mode. Isso é feito antes do kernel ser carregado, como mostra a

Figura 19.

Figura 19 — Definindo o modo de video para 3

set_video_mode:
mov ah, 0x00

mov al, 0x03
int Ox10

Fonte: Elaborado pelo autor (2025)

O valor 0, que representa a fungcdo Set Mode nos servigos de video, € posto em
AH. Logo em seguida o valor 3 € posto em AL, o modo de video desejado, e entdo uma

interrupgao de video € invocada, garantindo que o modo de video seja 3.

O interessante do padrdao VGA ¢é que ele usa E/S mapeada na memoria, onde
para escrever um caractere na tela em algum modo alfanumérico, basta colocar o
cédigo do caractere em um enderego de memoéria comum. O enderego de memoria
mapeado depende do modo de video utilizado. No modo 3, os enderegos vao de
0xB8000 a OxBFFFF (FERRARO, 1994, p. 181).

De acordo com Ferraro “Nos modos alfanuméricos, os cdodigos que
representam o caractere e o atributo do caractere sdo armazenados na memoéria. Um

unico byte € dedicado a cada codigo de caractere, permitindo o acesso a 256
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caracteres. Um unico byte também é dedicado ao atributo do caractere.” (FERRARO,
1994, 181).

O byte do caractere € um enderego par e o atributo desse caractere é o

endereco impar seguinte. A Figura 20 ilustra essa ideia.

Figura 20 — Organizagao dos caracteres na memoria no padrao VGA

0xB&000 Caractere 1

0xB&001 Atributo do caractere 1

0xB&002 Caractere 2

0xBE003 Atributo do caractere 2

0xB&004 Caractere 3

0xB8005 Atributo do caractere 3

Fonte: Elaborado pelo autor (2025)

Os modos alfanuméricos também possuem um sistema de paginas. No
entanto, o driver do BergOS nao utiliza esse sistema, escrevendo apenas na pagina 0.

Sendo assim, ha espaco para 80 x 25 (2000) caracteres no emulador de terminal.

O byte de atributo pode ser dividido em um par de 4 bits cada. Os 4 bits menos
significativos sado usados para determinar a foreground color (cor do caractere), e os 4
bits mais significativos s&o usados para determinar a background color (cor de fundo).
A Figura 21 mostra a representacdao de um byte de atributo juntamente a um byte de

caractere.

Figura 21 — Byte de caractere e byte de atributo
Byte de Caractere Byte de Atributo

bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 bit7 | bit6 | bit5 | bit4 | | bit3 | bit2 | bit1 | bit0

Background Color Foreground Color

Fonte: Elaborado pelo autor (2025)
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Como uma cor é definida por 4 bits, esse modo de video tem 2* (16) cores

disponiveis. As cores sao definidas através de um padrdao RGB. A Figura 22 mostra

um byte de atributo demarcando esse padréo.

Figura 22 — Byte de atributo

| Intensidade

Verde
(G)

!

hit 3

hit2 | bit1 | hit 0

T

Vermelho Azul

L ® | (B

Fonte: Elaborado pelo autor (2025)

A Tabela 4 mostra todas as combinacdes possiveis de cores.

Tabela 4 — Combinacgdes de cores RGB possiveis em 4 bits

Codigo RGB Cor

0000 Preto

0001 Azul

0010 Verde

0011 Ciano

0100 Vermelho

0101 Magenta

0110 Marrom

0111 Branco

1000 Cinza

1001 Azul claro
1010 Verde claro
1011 Ciano claro
1100 Vermelho claro
1101 Magenta claro
1110 Amarelo (Marrom claro)

1111

Branco brilhante
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Fonte: Elaborado pelo autor (2025).

Em alguns casos, os bits 3 e 7 do byte de atributo assumem significados

especiais. No entanto,

implementagédo do BergOS.

essas funcionalidades n&o sao consideradas na

41 Definicao da interface do driver de VGA

A interfface do driver de VGA ¢é definida

no arquivo de cabegalho

Jarch/i386/video/vga/vga.h. A Figura 23 mostra o conteudo desse arquivo.

1 [Bifndef VGA_H

#define VGA_H

|

#define VGA_MAXY 25

#define VGA_MAXX 80

|

typedef enum o
VGA_COLOR_BLACK
VGA_COLOR_BLUE
VGA_COLOR_GREEN
VGA_COLOR_CYAN
VGA_COLOR_RED
VGA_COLOR_MAGENTA
VGA_COLOR_BROWN
VGA_COLOR_WHITE
VGA_COLOR_GRAY
VGA_COLOR_LIGHT_BLUE
VGA_COLOR_LIGHT_GREEN
VGA_COLOR_LIGHT_CYAN
VGA_COLOR_LIGHT_RED
VGA_COLOR_LIGHT_MAGENTA
VGA_COLOR_YELLOW
VGA_COLOR_BRIGHT_WHITE

} VGAColor;

Figura 23 — Definicado da interface do driver de VGA

8b0AA0,
8b0eA1,
Bbee1e,
800011,
0b0160,
Bb0161,
Bb0110,
800111,
0b1000,
Bb1001,
8b1010,
Bb1011,
Bb1160,
b1161,
Bb1110,
Bb1111,

int vga_write(int index, char character, VGAColor foreground, VGAColor background);
int vga_read(int index, char *character, VGAColor *foreground, VGAColor xbackground);

#endif

Fonte: Elaborado pelo autor (2025)

As linhas 4 e 5 definem macros que se referem as dimensdes da tela.
Conforme mencionado, no modo de video utilizado ha uma matriz de 80 x 25.
Portanto, a constante VGA_MAXY é definida como 25 e a constante VGA_MAXX é

definida como 80.



50

A interface também define o tipo enum VGAColor. Esse enum possui
constantes que representam todas as cores disponiveis, as quais podem ser utilizadas
como argumentos para as rotinas do driver sempre que uma cor precisar ser

especificada.

Na linguagem C, enums funcionam essencialmente como syntactic sugars para
um int. Isso significa que qualquer valor int valido € um VGAColor valido, mesmo que

nao corresponda a nenhuma das constantes de cor definidas.

Portanto, a definigdo do tipo VGAColor ndo proporciona seguranga de tipos, ja
que um valor invalido (diferente das constantes de cor pré-definidas) pode ser
atribuido a uma variavel desse tipo. Isso faz com que as rotinas do driver tenham que

validar os argumentos passados.

Ainda assim, a definicdo de VGAColor é vantajosa por tornar a interface mais
autoexplicativa. O programador, ao se deparar com uma rotina com um parédmetro do
tipo VGAColor, entende que deve usar uma das constantes de cor definidas,

melhorando a usabilidade da interface.

A linha 26 declara a rotina vga_write para escrita de caracteres. Ela retorna um

valor diferente de zero em caso de erro e tem os seguintes parametros:
* O indice (posicao de memdria) onde o caractere sera escrito.
» O caractere que sera escrito.
» A foreground color (cor do caractere).
» A background color (cor de fundo).

A linha 27 declara a rotina vga_read para recuperar informagdes de um
caractere. Ela retorna um valor diferente de zero em caso de erro e tem os seguintes

parametros:
* O indice (posigao de memaria) do caractere a ser lido.

* Um ponteiro para armazenar o caractere daquele indice.
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* Um ponteiro para armazenar a foreground color (cor do caractere) do

caractere daquele indice.

* Um ponteiro para retornar a background color (cor de fundo) do caractere

daquele indice.
4.2 Implementacao da interface do driver de VGA

A implementagdo da interface do driver de VGA esta no arquivo

.Jarch/i386/video/vga/vga.c. A Figura 24 mostra o inicio do arquivo.

Figura 24 — Inicio do arquivo de implementacao do driver de VGA
#include "vga.h"
#include <stdint.h>
#include <stddef.h>

#define VGA_MEMORY ((uintl6_t*) 0xb8606)

Fonte: Elaborado pelo autor (2025)

A linha 1 inclui o arquivo de cabecgalho que contém a definicao da interface do
driver. As linhas 2 e 3 incluem cabecgalhos necessarios para acessar recursos que
serao utilizados na implementacao do driver, como a constante NULL e tipos inteiros

de tamanho especificado, como uint16_t.

A linha 5 define a macro VGA MEMORY como um ponteiro do tipo uint16 _t
(inteiro sem sinal de 16 bits) que aponta para o enderego de memaria 0xB8000, local

onde se inicia o buffer de memoria mapeada para video no modo texto.

Esta definicdo permite utilizar a sintaxe de arrays da linguagem C para
manipular diretamente o buffer de video. Cada posi¢cao do array acessa uma palavra
de 16 bits (2 bytes) que contém tanto o caractere quanto seus atributos de cor na
memoéria VGA. Dessa forma, operacdes de leitura e escrita no buffer tornam-se mais
intuitivas. A Figura 25 ilustra visualmente este conceito, mostrando como cada

elemento do array corresponde a uma posicao especifica na tela, armazenando em
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uma unica palavra de 16 bits o cédigo do caractere (byte menos significativo) e seus

atributos (byte mais significativo).

Figura 25 — Acesso do byte de caractere e byte de atributo através de indexacgao de array
VGA_MEMORY [0] VGA_MEMORY [1]

0xB8000 0xB8001 0xB8002 0xB8003

Byte de Caractere Byte de Atributo Byte de Caractere Byte de Atributo

Fonte: Elaborado pelo autor (2025)

4.2.1 Implementacgao da rotina vga_write

A Figura 26 mostra a implementacao da rotina vga_write.

Figura 26 — Implementacéo da rotina vga write

int vga_write(int index, char character, VGAColor foreground, VGAColor background) {
if (index < @ || index = VBA_MAXY * VGA_MAXX) {
return 1;

VGA_MEMORY[index] = (vint1é_t) character | foreground << 8 | (background << 12);
return 0;

Fonte: Elaborado pelo autor (2025)

Na linha 8 é realizada uma verificagdo do indice passado como parametro.
Caso o valor seja menor que zero ou maior ou igual ao limite do buffer de video
(calculado como 25 linhas por 80 colunas), a fungéo retorna 1. Esse valor, diferente de

zero, indica a ocorréncia de um erro.
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A instrucdo da linha 12 efetua a escrita do caractere na memodria de video,
composi¢cao que demanda a correta formatacdo do dado a ser armazenado. A
composicao é feita através de uma série de operagdes bit a bit para construir um
uint16_t, que forma a unidade fundamental esperada pelo controlador VGA, com o
byte menos significativo sendo o caractere e o byte mais significativo sendo o atributo.

A estrutura deste dado é composta da seguinte forma:

+ Composicgao do caractere: Os 8 bits menos significativos (posi¢coes de 0 a 7)
sao preenchidos diretamente por character, apdés uma conversao explicita para
o tipo uint16_t. Esta etapa assegura a correta interpretagao do caractere pelo

video.

+ Composicgao da foreground color: Os 4 bits subsequentes (posi¢cdes de 8 a
11) armazenam o cédigo da foreground color (cor do caractere). O operador de
deslocamento a esquerda (“<< 8”) posiciona este valor nos 4 bits menos

significativos do byte de atributo.

+ Composicgao da background color: Os 4 bits mais significativos (posi¢des de
12 a 15) sao reservados para o cédigo da background color (cor de fundo). O
deslocamento de 12 posi¢des (“<< 12”) garante seu posicionamento nos 4 bits

mais significativos do byte de atributo.

A operacao de OU bit a bit (|) € entao utilizada para fundir esses trés elementos
distintos (caractere, foreground color e background color) em um unico valor de 16
bits. Por fim, este valor composto & atribuido a posicdo de memdria solicitada
(“"VGA_MEMORY]Jindex]’), o que resulta na renderizagdo visual do caractere no

monitor.

A abordagem de tratar o buffer de memadria VGA como um array de uint16_t
demonstra-se vantajosa devido a caracteristica little-endian da arquitetura x86. Neste
padrdo, os bytes menos significativos sdo armazenados nas posicdes de memoria
iniciais, o que resulta no posicionamento correto do byte de caractere seguido pelo
byte de atributo no formato exigido pelo controlador VGA. Esta disposicao ¢€ ilustrada

na Figura 27.
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Figura 27 — Disposi¢cao de um uint16 _t no buffer VGA

bit 15 [ bit 14 [ bit 13 | bit 12 | bit 11 [bit 10 [ bit9 | bit8 | bit7 | bit& | bitd | bit4 [ bit3 | bit2 | bit1 | bit0

VGA_MEMORY [0]

0xB8000 0xB8001
bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 bit 0 bit 15 [ bit 14 [ bit 13 [ bit 12 | bit 11 | bit 10 | bit9 | bit 8
Byte de Caractere Byte de Atributo

Fonte: Elaborado pelo autor (2025)

Por fim, a fungdo encerra com o retorno 0, indicando que n&o houve erros.
4.2.2 Implementagao da rotina vga_read

A Figura 28 mostra a implementagao da rotina vga_read.

Figura 28 — Implementacao da rotina vga read

int vga_read(int index, char #*character, VBAColor *foreground, VGAColor *background) f{
if (index < 0 || index = VGA_MAXY * VGA_MAXX) {
return 1;

if (character == NULL) {
*character = (char) VGA_MEMORY[index];

if (foreground == NULL) {
*foreground = (VGAColor) VGA_MEMORY[index] >> 8 & Oxf;

if (background == NULL) {
*background = (VGAColor) VGA_MEMORY[index] >> 12 & 0xf;

return 0;

Fonte: Elaborado pelo autor (2025)

Apos a verificagao inicial dos limites do indice, na linha 17, a fungcéo vga read

procede com a extracdo e decodificacdo do dado armazenado na posi¢cao

especificada do buffer VGA. Esta operagdo € inversa a realizada por vga_ write,
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desmontando o valor uint16_t em seus componentes originais através de trés

estruturas condicionais independentes.

Cada condicional verifica se o ponteiro recebido como parametro é diferente

de NULL antes de acessa-lo. Dessa forma, a implementacéo permite que o chamador

recupere seletivamente apenas os componentes de interesse, fornecendo NULL para

os parametros irrelevantes, o que confere flexibilidade a interface da fungéo.

O processo de decodificagdo ocorre da seguinte forma:

Extracao do caractere: O primeiro condicional recupera diretamente o byte
menos significativo através de um cast para char, que corresponde ao codigo do

caractere armazenado nos 8 bits menos significativos do uint16_t.

Extragdo da foreground color: O segundo condicional realiza o deslocamento
a direita de 8 posicoes (“>> 8”) para posicionar os 4 bits da cor do caractere nos
bits menos significativos, aplicando em seguida uma operacéo E bit a bit (“&
OxF”) para isolar exclusivamente estes 4 bits e descartar quaisquer outros

valores residuais.

Extracdo da background color: O terceiro condicional executa um
deslocamento a direita de 12 posi¢des (“>> 12”) para trazer os 4 bits da cor de
fundo para as posi¢gdes menos significativas, igualmente aplicando a operagéo

E bit a bit para garantir que apenas os 4 bits relevantes sejam preservados.
Por fim, a fungéo encerra com o retorno 0, indicando que n&do houve erros.

O proximo capitulo faz uma analise do programa do emulador de terminal do

BergOS, e como ele faz uso do driver de VGA, descrito neste capitulo, para fazer a

saida de dados.



5 EMULADOR DE TERMINAL

Um emulador de terminal € um programa que emula os antigos dispositivos terminais
usados para a entrada e saida de dados com o usuario. BergOS implementa um
emulador de terminal simples, fornecendo uma interface ao programador para que ele

possa escrever caracteres, escrever strings, formatar strings e escrever nimeros

inteiros.

5.1 Definigado da interface do emulador de terminal

A interface do emulador de terminal é definida na camada de alto nivel, no arquivo

/kernel/include/tty.h. A Figura 29 mostra o conteudo do arquivo.

A interface declara as seguintes rotinas para manipulagdo do emulador de

terminal:

Figura 29 — Definicao da interface do emulador de terminal

=1fndef TTY_H
#define TTY_H

|
int
int
|
int
int
|
int
int
|
int
int
|
int
int
|
int
int

tty_initialize(void);
tty_clear(void);

tty_maxy(void);
tty_maxx(void);

tty_gety(void);
tty_getx(void);

tty_sety(int y);
tty_setx(int x);

tty_iscrlf(void);
tty_setcrlf(int status);:

tty_putchar(int ch);
tty_printf(const char *format,

#endif

Fonte: Elaborado pelo autor (2025)
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tty initialize: Inicializa o programa do emulador de terminal. Deve ser chamada
antes de qualquer outra. Apds uma execugao bem-sucedida, todo o conteudo
da tela sera apagado, o cursor estara na posigao inicial e o terminal estara em

modo LF. Retorna um valor diferente de zero em caso de erro.

tty _clear: Apaga o conteudo do terminal e volta o cursor para posi¢ao inicial.

Retorna um valor diferente de zero em caso de erro.
tty_maxy: Retorna o valor maximo do eixo y.
tty_maxx: Retorna o valor maximo do eixo x.

tty _gety: Retorna a posigao atual do cursor no eixo y.
tty _getx: Retorna a posigao atual do cursor no eixo x.

tty _sety: Define a posigao atual do cursor no eixo y. Retorna um valor diferente

de zero em caso de erro.

tty _setx: Define a posicao atual do cursor no eixo x. Retorna um valor diferente

de zero em caso de erro.

tty _iscrlf: Retorna um valor diferente de zero caso o modo CRLF esteja ativado

ou um zero caso esteja desativado.

tty_setcrif: Ativa o modo CRLF se receber um valor diferente de zero ou

desativa caso o contrario.

tty _putchar: Imprime o caractere recebido como argumento e avanga o cursor.

Retorna um valor diferente de zero em caso de erro.

tty _printf: Semelhante a printf da biblioteca padrédo da linguagem C. Imprime
uma string, aplicando os argumentos adicionais aos coédigos de formato
presentes na string e avanga o cursor. Caso o codigo de formato seja invalido ou
nao corresponda a um argumento valido o comportamento € indefinido. Os

cbdigos de formato séo:

o “%c”: Imprime um caractere.
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o “%s”: Imprime uma string.

o “%d”: Imprime um inteiro com sinal.

o “%u”: Imprime um inteiro sem sinal.

o “%x”: Imprime um inteiro sem sinal em formato hexadecimal.
o “%%”: Imprime o caractere “%”.

O cursor determina a posi¢cao onde sera escrito o proximo caractere. Sua
posicdo € atualizada automaticamente por qualquer rotina de impressao de
caracteres, mas também pode ser definida manualmente por meio das rotinas tty sety

e tty _setx ou através de caracteres de controle.

O emulador de terminal reconhece os caracteres de controle Carriage Return
(CR, representado por \r’ na linguagem C), e Line Feed (LF, representado por \n’ na
linguagem C). Conceitualmente, o CR move o cursor para o inicio da linha e o LF
avanga o cursor para a linha seguinte. Contudo, o comportamento efetivo desses

caracteres € determinado pelo modo de operacao do terminal.

Ap6és a inicializagao do terminal com a fungéo ftty_initialize, o terminal opera no
modo LF. Nesta configuragéo, cada ocorréncia do caractere LF ndo apenas avanga o

cursor para a proxima linha, mas também o reposiciona para o inicio dela.

Opcionalmente, o terminal pode operar no modo CRLF, onde é necessaria a
sequéncia completa de ambos os caracteres (“\r\n”) para efetuar um avanco de linha
completo. Neste modo, o caractere LF ('\n') executa apenas o avancgo vertical para a
préxima linha, enquanto o CR (\r') é responsavel pelo retorno do cursor ao inicio da

linha horizontal.

A Figura 30 mostra como seria a mensagem de saudagdes do BergOS caso o

modo CRLF fosse ativado.
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Figura 30 — Mensagem de saudacbes do BergOS com o terminal operando em CRLF
lello, world!

I am Berg0S!

Fonte: Elaborado pelo autor (2025)

Quando a escrita no terminal atinge o limite inferior da tela, o sistema executa
uma operacao de rolagem vertical. Este mecanismo consiste em “puxar” todo o
conteudo exibido para cima, onde cada linha € movida para a posigédo imediatamente
superior. Especificamente, o conteudo original da primeira linha é descartado, o da
segunda linha passa a ocupar a primeira, o da terceira linha move-se para a segunda,
e este processo se repete sequencialmente até que a ultima linha do terminal seja

liberada para receber novos caracteres.
5.2 Implementagao da interface do emulador de terminal

A implementacdo da interface do emulador de terminal esta no arquivo

/Jarch/i386/tty.c. A Figura 31 mostra o inicio do arquivo de implementagao.
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Figura 31 — Inicio do arquivo de implementacdo do emulador de terminal

#include "tty.h"
#include "vga.h"
#include <stdarg.h>
#include <stdint.h>
#include <stdbool.h>

static int cursor;
static bool crlf;

int tty_initialize(void) {
tty_clear();

crlf = false;

return 0O;

1
k)

int tty_clear(void) {

for (int i = 8; i < VGA_MAXY * VGA_MAXX; i++) {
vga_write(i, ' ', VGA_COLOR_BLACK, VGA_COLOR_BLACK);

4

J

cursor = 0;

return 0O;

Fonte: Elaborado pelo autor (2025)

Nas linhas 1 a 5, sdo incluidos arquivos de cabecalho que fornecem os
recursos necessarios para a implementacao, entre os quais a interface do driver de
VGA.

Na linha 7, & declarada uma variavel global do tipo int acessivel em todo o
arquivo, que sera utilizada para controlar a posi¢cao do cursor. Na linha 8, é definida

uma variavel global do tipo bool que indica se o modo de operagao CRLF esta ativado.

Em C, a palavra-chave static assume significados distintos conforme o
contexto. Por padrao, identificadores de escopo de arquivo possuem vinculagao
externa, podendo ser referenciados por outros arquivos durante o processo de
linkagem. E por conta desse mecanismo, por exemplo, que a fungdo main do kernel é

visivel para o bootloader.

No entanto, nem sempre é desejavel expor um identificador. Para evitar que
tais identificadores sejam acessados externamente, utiliza-se a palavra-chave static.
Quando aplicada a variaveis ou fungbes em escopo de arquivo, static altera sua
vinculagédo para interna, limitando sua visibilidade exclusivamente ao arquivo onde

foram definidas. Dessa forma, as variaveis cursor e crif, bem como quaisquer funcdes
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auxiliares do emulador de terminal, podem ser declaradas como static para restringir

seu acesso apenas a implementacgao local.

Esta abordagem oferece dois beneficios fundamentais: primeiro, promove o
encapsulamento ao ocultar os detalhes de implementagcdo que néo fazem parte da
interface publica; segundo, previne possiveis conflitos de nomes durante a linkagem,
ja que identificadores com vinculagao interna ndo séo visiveis para outros arquivos

objeto.

No contexto do desenvolvimento de kernels, esse controle de visibilidade é
particularmente importante, pois permite organizar o codigo em modulos coesos com
interfaces bem definidas, reduzindo o acoplamento entre componentes e facilitando a

manutencao do sistema.

Nas linhas 16 a 22 esta a implementacao de tty clear. Primeiramente, um for
loop é feito para iterar sobre todas as posigdes do buffer de video, cuja dimenséo total
€ determinada pelo produto de VGA MAXY e VGA_MAXX. Para cada posi¢ao, a
funcao invoca vga_write com o caractere de espacgo e os atributos de cor que definem
o preto tanto para foreground color quanto para background color, removendo todo o
conteudo da tela. Apos isso, na linha 20 o cursor é posto na posicao inicial. A fungao

retorna zero indicando que nao houve erros.

Nas linhas 10 a 14, a implementacdo de ftty initialize comega invocando
tty clear, que apaga o conteudo da tela e pde o cursor na posigao inicial, desabilita o
modo CRLF e encerra sua execugao retornando zero para sinalizar a nao ocorréncia

de erros.
5.2.1 Implementacao das rotinas relacionadas a posi¢ao do cursor

A Figura 32 mostra a implementagao das rotinas relacionadas a posig¢ao do cursor.
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Figura 32 — Implementacao das rotinas relacionadas a posi¢cao do cursor

int tty_maxy(void) {
return VGA_MAXY;

}

int tty_maxx(void) {
return VGA_MAXX;

nt tty_gety(void) {
return cursor / VGA_MAXX;

int tty_getx(void) {
return cursor % VGA_MAXX;

1
i)

int tty_sety(int y) {
if (y <0 Il y >= VBA_MAXY) {
return 1;
4
J
cursor = y * VGA_MAXY + tty_getx();
return 0;

int tty_setx(int x) {
if (x <0 || x >= VBA_MAXX) {
return 1;
ks
cursor += x - tty_getx();
return 0;

Fonte: Elaborado pelo autor (2025)

Nas linhas 24 a 30 sdo implementadas as fungdes fty maxy e tty _maxx, que
retornam os valores das macros VGA_MAXY e VGA_MAXX respectivamente. Estas
macros, definidas na interface do driver de VGA, representam os limites maximos do

terminal, indicando a ultima posicao valida nos eixos y € X, respectivamente.

Nas linhas 32 a 34, a fungao tty _gety retorna a posi¢éo do cursor no eixo y com
a divisdo da variavel global cursor pela macro VGA_MAXX. A operagao aproveita o
truncamento na divisado de inteiros, onde a parte fracionaria do resultado é descartada,

para produzir o indice da posicao vertical do cursor.

Complementarmente, nas linhas 36 a 38 a fungao tty getx retorna a posigéo do
cursor no eixo x através da operagdo moédulo entre cursor e VGA MAXX. Esta
operacao produz o resto da divisao entre os valores, que corresponde precisamente a
posigao horizontal do cursor.
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Nas linhas 40 a 54 estdo as implementacdes das funcdes tty sety e tty setx,
que definem as coordenadas vertical e horizontal do cursor, respectivamente. Ambas
as funcdes verificam se os valores recebidos como parametros estdo dentro dos
limites do terminal. Caso a posi¢ao seja invalida, as fun¢des encerram sua execugao
retornando o valor 1 para indicar a ocorréncia de um erro. Para atualizar a posigao
vertical, fty_sety recalcula o valor de cursor combinando a nova coordenada y com a
posicdo horizontal corrente, enquanto fty setx ajusta coordenada horizontal
preservando a linha atual. Ambas as fung¢des retornam zero ao fim de sua execugao

para indicar a n&o ocorréncia de erros.
5.2.2 Implementagao das rotinas relacionadas a escrita de caracteres

A Figura 33 mostra as implementacdes das funcodes tty iscrif e tty setcrlf, onde a
primeira retorna o valor da variavel crif, e a segunda usa o valor recebido como
parametro para redefinir o valor de crif, onde zero é falso e qualquer valor diferente de

zero é verdadeiro.

Figura 33 — Implementacao das funcbes referentes ao modo de operagéo do terminal

int tty_iscrlf(void) {
return crlf;

int tty_setcrlf(int status) {
crlf = status;
return 0;

Fonte: Elaborado pelo autor (2025)

Para executar a operagao de rolagem vertical, a fungao auxiliar scroll é definida

conforme mostra a Figura 34.
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Figura 34 — Funcgao auxiliar de rolagem vertical

]

static void scroll(void) {
int i;

for (i = VGA_MAXX; i < VGA_MAXY % VGA_MAXX; i++) {
char character;
VGAColor foreground;
VGAColor background;

vga_read(i, &character, &foreground, &background);
vga_write(i - VGA_MAXX, character, foreground, background);

1
J

for (i -= VGA_MAXX; i < VGA_MAXX * VGA_MAXY; i++) {
vga_write(i, ' ', VGA_COLOR_BLACK, VGA_COLOR_BLACK);

1
J

cursor -= VGA_MAXX;
.
J

Fonte: Elaborado pelo autor (2025)

Primeiramente, um for loop inicia uma iteragédo a partir da segunda linha e vai
até a ultima posicao valida do terminal. A cada iteragdo, a fungdo vga_read € usada
para obter e armazenar as informacdes do caractere na posicdo correspondente ao
contador / para que entdo essas variaveis sejam usadas como argumentos para a
funcdo vga_write, que sera responsavel por escrever o caractere e seus atributos na
linha superior. O resultado € que ao fim do loop, o conteudo de todas as linhas tenha

sido copiado para as linhas imediatamente superiores.

Nas linhas 77 e 79 um outro for loop é feito, dessa vez iterando somente da
posicao horizontal inicial da ultima linha até a posigao final. A cada iteragao, a fungéo
vga_write € usada para escrever um caractere de espaco com o fundo preto, com o
objetivo de apagar o conteudo da ultima linha do terminal, que antes do loop estava

igual ao da penultima linha.

Por fim, é subtraido VGA MAXX da posi¢ao do cursor para reposiciona-lo na

linha superior a que ele estava.

A Figura 35 demonstra a implementac¢ao da fungao tty putchar.
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Figura 35 — Func¢ao auxiliar de rolagem vertical

r

int tty_putchar(int ch) {
if (lerlf & ch == '\n') {
tty_putchar('\r');
I3
switch (ch) {
case '\r':
cursor -= tty_getx();
break;
case '\n':
cursor += VGA_MAXX;
break;
default:
vga_write(cursor, ch, VGA_COLOR_WHITE, VGA_COLOR_BLACK);
CUPSOr++;

1
J

if (cursor >= VGA_MAXY * VGA_MAXX) {
scroll();

1
J

return 0;

Fonte: Elaborado pelo autor (2025)

Inicialmente, nas linhas 85 a 87, € verificado se 0 modo CRLF esta desativado e
o caractere a ser renderizado € um LF (\n’). Caso a condigdo seja verdadeira,

tty putchar chama a si mesma recursivamente para por um CR (‘\r') antes de LF.

As linhas 89 a 98 usam a estrutura switch para processar diferencialmente
caracteres de controle e caracteres comuns. O bloco switch define trés

comportamentos distintos baseados no caractere recebido como parametro:

* Para o caractere CR (\r'), a posi¢cdo € atualizada com uma operacédo de
subtracdo que remove o deslocamento horizontal corrente para voltar o cursor

ao inicio da linha.

» Para o caractere de LF (\n’), o cursor avanga para a linha seguinte através de
uma uma operagao que adiciona VGA_MAXX (tamanho de uma linha) a

posicao atual.



66

* No caso padrdo (caracteres comuns), a fungdo vga write é invocada para
renderizar o caractere na posigao atual do cursor, com uma cor branca para ele

e uma cor preta para o fundo, seguido do incremento da posigéo do cursor.

Apods o processamento do caractere, nas linhas 101 a 103, a fungao invoca
scroll para realizar a rolagem vertical caso a operacéo de escrita tenha feito o cursor
ultrapassar os limites do terminal, e termina sua execug¢ao retornando zero para

indicar a ndo ocorréncia de erros.
5.2.3 Implementagao das rotinas relacionadas a formatagao de strings

A Figura 36 mostra a definigdo das fung¢des auxiliares puts e putint.

Figura 36 — Definigado das fungdes auxiliares puts e putint

r

static void puts(const char *s) {
while (*s) {
tty_putchar(*s++) ;

[

static void putint(uint32_t num, bool is_negative, int base) {
static const char DIGITS[] = "B123456789abcdef";

char stack[sizeof(num) * 8 + 11;
int stack_top = 0;

do {

stack[stack_top++] DIGITS[num % basel;
num /= base;
} while (num > 8);

f

if (is_negative) {
stack[stack_top++]

1
k)

while (stack_top > 0) {
tty_putchar(stack[--stack_top]l);

Fonte: Elaborado pelo autor (2025)

A funcéo puts tem a finalidade de imprimir uma string de caracteres. Sua
implementacdo € bem simples, ela “varre” a string que recebeu como parametro

usando a fungao tty putchar para imprimir todos os seus caracteres.

Ja a funcado putint tem o objetivo de imprimir um numero inteiro. Sua
implementacao € mais elaborada e exige uma analise mais atenta. A funcéo recebe

trés parametros:
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* num: Um inteiro do tipo uint32_t que sera impresso.

* is_negative: Um valor booleano que determina se a fungdo deve imprimir o

numero acompanhado de um sinal de negatividade.
* base: A base na qual o numero sera impresso, podendo ir de 2 até 16.

No topo da definicdo da fungao, esta a declaracdo de uma string constante
identificada por DIGITS, que contém todos os digitos que podem ser demandados nas

bases suportadas.

Apesar de apenas bases de 2 a 16 serem suportadas, nenhuma validagao é
feita para verificar se o valor de base atende a essa condig&o. Isso n&o é o ideal,
porém como a funcdo é usada como um auxiliar € ndo é acessivel fora do arquivo,

optou-se por confiar cegamente no valor passado.

Na linha 117, é declarado um array de caracteres denominado stack, que
funciona como uma pilha para armazenar os digitos resultantes da conversao
numeérica. Seu tamanho é calculado pela expressédo “sizeof(num) * 8 + 17, onde
“sizeof(num) * 8” representa a quantidade de bits da variavel num. Como a base
binaria € a que tem a representagdo numérica mais longa possivel, isso garante que
qualquer valor esteja dentro dos limites do array, enquanto o acréscimo de uma
posicao adicional serve para um possivel sinal de negatividade. A linha 118 declara

uma variavel inteira para servir de ponteiro para o topo da pilha.

Nas linhas 120 a 123, um Joop do-while utiliza uma técnica classica de
conversao numeérica com divisdes sucessivas. A cada iteragao, o resto da divisdo de
num por base é utilizado como indice para acessar o caractere correspondente no
array DIGITS, sendo armazenado na pilha com posterior incremento do ponteiro
stack_top. Em seguida, o valor de num é atualizado pelo quociente inteiro da divisao.
Este processo repete-se enquanto o valor de num permanecer maior que zero,
garantindo que ao fim do /oop, a pilha contenha todos os caracteres que representam

0 numero na base especificada.

Por fim, nas linhas 129 a 131, apds a inser¢cao do caractere de negatividade
no topo da pilha se necessario, a estrutura de repeticao while é usada para recuperar

os caracteres da pilha na ordem inversa a sua inser¢do. Com o decremento sucessivo
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de stack top, cada elemento € removido do topo da pilha e enviado para saida via

tty putchar, garantindo que a representagao numérica final seja exibida na orientagao
correta.

As fungdes puts e putint serdo, primariamente, usadas como auxiliares de

tty printf, que, como demonstra a Figura 37, possui uma implementagdo complexa.

Figura 37 — Implementacao de tty printf

int tty_printf(const char *format,
va_list args;
va_start(args, format);

while (*format) {
if (*format != '%') {
tty_putchar(*format++) ;
continue;

" format++;
switch (xformat) {

case 'c':
tty_putchar(va_arg(args, int));
break;

case 's':
puts(va_arg(args, charx));
break;

case 'd':
int num va_argl(args, int);
bool is_negative = num < 0;
num = is_negative ? -num : num;
putint((uint32_t) num, is_negative, 10);

} break;

case 'vu': {
int nu va_argl(args, unsigned int);
putint((uint32_t) num, false, 10);

} break;

case 'x': {
int num = va_arg(args, unsigned int);

putint((uint32_t) num, false, 16);
} break;
case '%':
tty_putchar('%');

break;
format++;
I

return 0;

Fonte: Elaborado pelo autor (2025)
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A funcédo utiliza os recursos da biblioteca stdarg.h para implementar o
mecanismo de argumentos variaveis. Na linha 139, é declarado uma variavel do tipo
va_list, que sera responsavel por armazenar o estado de iteragado sobre os parametros

adicionais.

Posteriormente, na linha 140, esta variavel é inicializada com o uso da macro
va_start, que requer dois parametros: a variavel va_list previamente declarada e o
ultimo parametro nomeado da fungao. Esta inicializacio estabelece o ponto de partida
para a leitura dos argumentos variaveis, que agora podem ser obtidos com o uso da

macro va_arg.

Nas linhas 142 a 177, ha um longo bloco while que itera sobre todos os
caracteres da string de formato e os processa apropriadamente. Primeiramente, as
linhas 143 a 146 verificam se o caractere da iteracdo € diferente de “%”. Em caso
afirmativo, a funcgéo tty putchar é invocada para realizar a escrita, o ponteiro da string
de formato é incrementado e a instrucdo continue é usada para avancgar para a

proxima iteragao.

Quando o caractere for igual a “%”, a fungao incrementa o ponteiro da string de
formato e entra em um bloco switch, que determinara a formatacao apropriada através
da analise do proximo caractere, que, junto a “%”, forma um cédigo de formato. Na
maioria dos casos, a macro va_arg sera usada para obter o dado a ser formatado na

lista de argumentos variaveis.
A analise e processamento do cédigo de formato é feita da seguinte forma:

* “%c”: Manda o caractere obtido na lista de argumentos variaveis para ser

processado pela fungéao tty putchar.

* “%s”: Manda a string obtida na lista de argumento variaveis para ser

processada pela fungao auxiliar puts.

* “%d”: Obtém um inteiro com sinal na lista de argumentos variaveis, cria a
variavel is_negative e atribui o resultado de um teste booleano que indica se o
valor é negativo ou ndo, obtém o valor absoluto do numero e invoca a fungao

auxiliar putint para processa-lo em base decimal, fazendo a devida conversao
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para uin32_t e passando a variavel is_negative como argumento para a fungao

saber se deve imprimi-lo acompanhado de um sinal de negatividade ou nao.

* “%u”: Obtém um inteiro sem sinal na lista de argumentos variaveis e o passa

para a fungao putint processa-lo como um numero em base decimal.

* “%x”: Obtém um inteiro sem sinal na lista de argumentos variaveis e o passa

para a funcao putint processa-lo como um numero em base hexadecimal.
* “%%”: Invoca tty putchar para imprimir o caractere “%”.

Apds o fim do bloco switch, o ponteiro da string de formato é incrementado e
segue-se para a proxima iteracdo. Quando finalmente a string chegar ao fim e o bloco
while encerrar sua execugao, a funcao termina retornando o valor zero para indicar a

nao ocorréncia de erros.
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6 CONSIDERAGOES FINAIS

O presente trabalho teve como objetivo principal aplicar conceitos tedricos referentes
a sistemas operacionais na construcido de kernels para a arquitetura x86 usando
linguagem C e assembly, através da analise minuciosa de um kernel chamado
BergOS.

Todas as partes principais do BergOS foram apresentadas. O bootloader, que
foi um importante laboratério para a analise de mecanismos importantes da arquitetura
x86 como a GDT. O kernel em si, que usa rotinas definidas em interfaces abstratas

para escrever uma mensagem de saudacgao na tela e parar sua execugao.

Também foi abordado o driver de VGA, que serviu como o exemplo pratico do
conceito de E/S mapeada na meméria, e seu uso na implementagao da interface do
emulador de terminal. Com a implementag¢ao do emulador de terminal, tanto o kernel
quanto os futuros programas aplicativos do BergOS tém uma interface simples e
agradavel para escrever caracteres no monitor do usuario. Estando assim, livre das
complexidades de um driver de video e das especificidades de um hardware. Com
isso, foi possivel observar um exemplo real da abstragao fornecida pelos sistemas

operacionais.

Portanto, este trabalho faz sua contribuicdo ao se aprofundar na conexao
inerente entre sistema operacional e hardware. llustrando essa conexdo através de
uma longa andlise das caracteristicas de uma arquitetura especifica e demonstrando,

através do BergOS, como elas sao usadas para construir abstragoes.

Apesar deste trabalho fornecer uma base sdlida para a compreensao de
como sistemas operacionais sdo programados e funcionam na pratica, ainda ha

limitagdes que servem de gancho para trabalhos futuros:

* Separagao de espaco de kernel e espago de usuario: Um conceito
extremamente importante em qualquer sistema operacional moderno.
Trabalhos futuros devem explorar como paginagao e os anéis de prote¢ao sao

usados na arquitetura x86 para implementar essa separagao.

* Interrupgcoes: Mesmo que interrupgdes tenham sido apresentadas neste

trabalho, ndo houve nenhum exame profundo que fizesse justiga a importancia
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desse topico. Estudos posteriores devem se aprofundar nos mecanismos de
interrupgao da arquitetura x86, como a IDT e os controladores de interrupgao

programaveis: PIC e APIC.

* Entrada de dados com teclado: Permitir que o usuario entre dados a partir de
um dispositivo de entrada como um teclado € o primeiro passo para um sistema
operacional interativo. Seria proveitosa uma pesquisa que se aprofunde na
implementacao de drivers de teclado que lide diretamente com scan codes,

typematic e interrupgoes.

* Processos: Provavelmente a abstragdo mais importante fornecida pelos
sistemas operacionais. Trabalhos futuros devem explorar formas de se
implementar processos, bem como protegé-los de adulteragdo por parte de
outros processos. O uso de interrupgdes na programacgao de escalonadores é

fundamental.

Conclui-se, portanto, que o estudo de sistemas operacionais ndo deve ser
dissociado do estudo de arquitetura de computadores, e seu funcionamento sé pode
ser plenamente entendido quando se leva em conta o hardware para o qual ele esta
sendo programado, e, nesse sentido, BergOS se mostrou um laboratério frutifero para

a compreensao dos conceitos tedricos, devido a sua natureza simples e didatica.
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APENDICE A - PROCESSO DE COMPILAGAO DO BERGOS

O processo de compilagdo de um kernel difere do de em um projeto convencional. No
geral, os desenvolvedores estdo acostumados com uma compilagdo que envolve
apenas buscar pelos arquivos de codigo-fonte escritos em uma linguagem de
programacgao, envia-los ao compilador e esperar que o binario gerado seja
imediatamente executavel, sem passos extras. Porém, um kernel, bem como qualquer
programa destinado a execucéao direta por um processador, € um projeto sensivel com
relacédo a fase de compilagao, pois, diferentemente de um projeto de software comum,

o binario final deve ser construido cuidadosamente.

Os binarios pré-compilados de um compilador disponiveis em uma plataforma
sao feitos para gerar binarios compativeis com ela. O GCC, disponivel para download
no repositério publico de uma distribuicdo Linux, por exemplo, foi compilado para que
o binario gerado esteja no formato ELF, enquanto o MinGW (porte do GCC para
sistemas Windows), para que o binario gerado esteja no formato PE. Esses formatos
sao feitos para serem processados por um sistema operacional. Eles ndo apenas
possuem codigo de maquina, mas outros dados e informagdes que seréo utilizados
pelo sistema para carrega-lo na memoria e pbé-lo em execugdo. Isso se torna um
problema para o processo de compilagdo de um kernel, pois o usuario provavelmente
tem um compilador que espera gerar codigo que dependa de um sistema operacional
e de uma arquitetura especifica, enquanto um kernel nao pode depender de um
sistema operacional e pode ter como alvo uma arquitetura diferente daquela

executada pelo usuario.

O BergOS tem que contornar essa dificuldade, pois ele é feito para ser
executado sobre um processador de 32 bits, enquanto a maioria dos sistemas, hoje
em dia, sao feitos para executar em processadores de 64 bits. Portanto, o compilador
que um usuario de Linux tera disponivel, por exemplo, ira, a principio, gerar cédigo no

formato ELF para 64 bits, diferente do binario “cru” de 32 bits esperado pelo BergOS.

Para contornar esse problema ha duas solug¢des principais: compilar o préprio
compilador, para que ele gere um binario compativel com a arquitetura desejada sem

depender de um sistema operacional; ou usar o compilador disponivel na plataforma,
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mas usar muitas flags de compilagéo para forgar a geragcdo de um binario no formato

desejado.

A primeira solugédo é mais elegante, recomendada para projetos grandes e
tende a dar menos problemas, pois se especifica exatamente o que deve ser gerado,
permitindo, inclusive, que usuarios que ndo estejam executando um sistema x86
gerem codigos para ele. Porém, a segunda solugdo é tentadora devido a sua
simplicidade, afinal, nenhuma etapa extra é necessaria além de instalar o compilador
ja disponivel na plataforma do usuario. O BergOS segue com a segunda opgéao,
justamente para facilitar que o usuario teste o sistema, sem exigir o trabalho extra de

compilar um compilador apenas para este fim.

Outro problema comum no processo de compilacdo de kernels é que eles
geralmente sdo escritos em mais de uma linguagem de programacgéo. O kernel Linux,
por exemplo, é programado em assembly, C e Rust. Isso ndo apenas aumenta as
dependéncias do projeto, como aumenta a complexidade de sua compilagdo, pois

agora tera de se pensar em um jeito delas se comunicarem de alguma forma.

Para atingir esse fim, um conceito importante precisa ser analisado: os
simbolos, uma das informagdes mais uteis armazenadas em um arquivo objeto. Um
simbolo nada mais € do que um endere¢co nomeado. Esses simbolos sao
armazenados no arquivo objeto em um local chamado tabela de simbolos. Um
simbolo pode ser exportado para ser usado por outros arquivos objetos. Também pode
ser marcado para ser resolvido no processo de linkagem, permitindo assim que o
arquivo-fonte interaja com simbolos declarados em outros arquivos-fonte. No fim, o
trabalho do linker é fazer justamente o que seu nome diz, ligar todos os arquivos objeto
em um unico arquivo final, fazendo cada simbolo presente nos arquivos de entrada se

referir a um unico endereco.

A forma como os simbolos sdo tratados depende do compilador e da
linguagem de programacao. Em assembly, as coisas sao mais intuitivas, ja que todo
rotulo, a principio, se torna um simbolo. Em linguagem C, uma fung¢ao pode facilmente
ser convertida em um simbolo de mesmo nome. Por padrao, toda fungdo € um simbolo
que sera exportado, ou seja, sera visivel para outros arquivos objeto, onde o linker, ao

encontrar referéncias a esse simbolo em outros arquivos objeto, resolvera para que no
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arquivo gerado eles se refiram ao endereco da fungdo correspondente. Quando a
funcao é declarada como static, isso diz ao compilador que o simbolo (identificador
daquela fungao) nao deve ser exportado, ou seja, outros arquivos objeto ndo devem

ser capazes de acessa-lo.

Para ser capaz de usar as capacidades do linker e poder compartilhar simbolos
entre o cédigo-fonte, cada arquivo é compilado, unitariamente, para o formato ELF32
(a versao de 32 bits do formato ELF), para, na fase de linkagem, esses arquivos objeto

isolados serem unidos para formarem um unico binario “cru”.
A.1 Linker script

Como ja estabelecido, no desenvolvimento de kernels o formato do binario final é
extremamente importante. Isso inclui a forma em que o cddigo e os dados sao
dispostos nele. O maior exemplo disso € o caso do bootloader, que, como abordado no
capitulo 3, deve estar no primeiro setor de um dispositivo para que ele possa ser

reconhecido. Isso traz a necessidade de posiciona-lo bem no inicio do binario.

Para especificar a forma do binario final, juntamente com a posi¢cao exata dos
codigos e dos dados, é possivel fornecer um linker script para o linker do GCC. O
linker script € uma ferramenta poderosa, mas relativamente pouco usada ja que nao
ha tanta necessidade de especificar o formato do binario executavel em alto nivel.

Porém, em baixo nivel ela se torna indispensavel.

O linker script de BergOS esta no arquivo .Jlinker.ld. A Figura 38 mostra o

conteudo desse arquivo.
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Figura 38 — Linker sciprt do BergOS
OUTPUT_FORMAT (binary)
SECTIONS {

= 0x7c00;

.bootloader : {
*(.bootloader)
+

text @ {
*(.text)
*(.text.x)

I

.data : {
*(.data)
*(.data.*)

Fonte: Elaborado pelo autor (2025)

A primeira linha define que o arquivo a ser gerado € um binario “cru”, ou seja,
deve conter apenas codigo executavel. Isso impede o linker de produzir formatos que
nao sao imediatamente executaveis pelo processador, como ELF. Nas linhas 3 a 24,
ha um longo bloco chamado SECTIONS; é nesse bloco onde a disposi¢ao do codigo e

dos dados pode ser manualmente definida.

Primeiramente, na linha 4, é especificado que o cédigo deve tratar seu
primeiro endereco como sendo 0x7CO00. Isso é necessario, pois € nesse enderego de
memoria que o bootloader sera carregado. Isso faz com que o linker resolva as

referéncias a enderegos para corresponder a essa base. Por exemplo, se o cédigo
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objeto fizer um salto para o enderegco 0x0010, com essa declaragao, o linker fara com

que, no binario final, o salto ocorra para 0x7C10.

Depois disso, as declaragdes seguintes especificam a posi¢do exata na qual
as segoes dos arquivos objeto devem estar no binario final. Os arquivos ELF possuem
algumas sec¢des padrao, dentre elas esta .text, .data e .bss. A primeira € usada para
coédigo executavel; a segunda para dados inicializados e a ultima para dados n&o
inicializados. A ordem destas no binario final do BergOS nao é tdo importante. Porém,

ha a necessidade de o codigo do bootloader estar imediatamente no inicio do arquivo.

Como foi analisado na sec¢éo 3.2 do capitulo 3, o cédigo do bootloader foi posto
em uma sec¢ao personalizada chamada .bootloader. Com esse truque, se torna facil
colocar o cédigo do bootloader no inicio do binario, bastando apenas pér a sec¢ao

.bootloader antes das outras.
A.2 GNU Make

O BergOS utiliza o GNU Make para automatizar o processo de compilagdo. O GNU
Make é uma ferramenta popular no mundo Linux, principalmente em projetos
envolvendo C e assembly. Segundo a Free Software Foundation “O GNU Make é uma
ferramenta que controla a geragédo de executaveis e outros arquivos n&o-fonte de um
programa a partir dos arquivos-fonte do programa.” (FREE SOFTWARE
FOUNDATION, 2023, tradugéo nossa).

A popularidade da ferramente se deve muito ao fato dela ter a simplicidade de
um shell, mas possuir funcionalidades que auxiliam o processo de build. Um exemplo

disso é a capacidade do Make de reconhecer quais arquivos preciso ser recompilados.

O Make determina automaticamente quais arquivos precisam ser atualizados,
com base nos arquivos de origem que foram alterados. Ele também
determina automaticamente a ordem correta para atualizar os arquivos, caso
um arquivo nao-fonte dependa de outro arquivo ndo-fonte. Como resultado,
se vocé alterar alguns arquivos de origem e executar o Make, ele nao
precisara recompilar todo o seu programa. Ele atualizara apenas os arquivos
nao-fonte que dependem direta ou indiretamente dos arquivos de origem que
vocé alterou (FREE SOFTWARE FOUNDATION, 2023, tradug&o nossa).

Os scripts de build sao feitos a partir de um arquivo chamado Makefile, que “[...]
lista cada um dos arquivos ndo-fonte e como computa-los a partir de outros arquivos.

Ao escrever um programa, vocé deve escrever um Makefile para ele, para que seja
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possivel usar o Make para compilar e instalar o programa.” (FREE SOFTWARE
FOUNDATION, 2023, tradugéo nossa).

A parte mais importante de um Makefile sdo as rules. Sao elas que determinam

como gerar os arquivos desejados.

Uma rule no arquivo Makefile informa ao Make como executar uma série de
comandos para gerar um arquivo de destino a partir de arquivos de origem.
Ela também especifica uma lista de dependéncias do arquivo de destino.
Essa lista deve incluir todos os arquivos (sejam arquivos de origem ou outros
arquivos de destino) que sao usados como entradas para os comandos na
rule (FREE SOFTWARE FOUNDATION, 2023, tradug&o nossa).

O Makefile do BergOS esta localizado em ./Makefile. Ele contém rules que vao

desde compilar o kernel a executa-lo no emulador QEMU.

A Figura 39 mostra o inicio do Makefile.

Figura 39 — Inicio do Makefile do BergOS
# Architecture

ARCH ?= 1386

# Directories

ARCH_DIR := arch/$(ARCH)
KERNEL_DIR := kernel
BUILD_DIR := build

# Output

OUTPUT := $(BUILD_DIR)/bergos.img
OUTPUT_SIZE := 64k

Fonte: Elaborado pelo autor (2025)

Nesse trecho, algumas variaveis importantes sdo declaradas. Na linha 2, a
variavel ARCH é definida apenas se ela ja nao tiver valor. Essa variavel se refere a
arquitetura alvo para a qual o BergOS sera compilado. Como BergOS pode vir a
suportar outras arquiteturas, € importante fornecer um meio para o usuario escolher
para qual arquitetura ele quer compilar. Caso o usuario queira compilar o BergOS para

x86_64, por exemplo, ele pode definir a variavel ARCH no momento de invocar o
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Make, com “make ARCH=x86_64". O operador de atribui¢do condicional (“?=") é util
nesse contexto, pois seleciona a arquitetura 1386 como padrdo caso o usuario nao

defina explicitamente outra.

Nas linhas 5 a 7, sdo declaradas variaveis referentes aos diretorios do projeto.
ARCH_DIR se refere ao diretério que contém os codigos da camada de baixo nivel
(dependente de arquitetura), KERNEL DIR se refere ao diretério com os cédigos da
camada de alto nivel (independente de arquitetura) e BUILD DIR se trata do diretoério

onde os arquivos objeto e 0 kernel compilado serao colocados.

Na linha 10, a variavel OUTPUT ¢é usada para identificar o caminho onde o
binario do BergOS compilado sera posto. Na linha 11, a variavel OUTPUT_SIZE se
refere ao tamanho do binario do BergOS. O processo de compilacdo forcara esse

tamanho, mesmo que a compilagao resulte em um arquivo muito menor que esse.

A Figura 40 mostra as variaveis referentes ao assembler.

Figura 40 — Variaveis referentes ao assembler no Makefile

# Assembler

AS_FLAGS := -felf32

Fonte: Elaborado pelo autor (2025)

A variavel AS demarca o NASM como assembler e a variavel AS _FLAGS sera
usada para conter as flags de montagem que serao passadas para o NASM. Apenas a
flag “-felf32” é usada, que significa que o NASM deve gerar um arquivo objeto no
formato ELF32 (a versao 32 bits do formato ELF).

A Figura 41 mostra as variaveis referentes compilador C.
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Figura 41 — Variaveis referentes ao compilador C

# C Compiler
CC := gce
CC_FLAGS := -std=gnu99 -m32 -Wall -Wextra -nostdlib -ffreestanding -fno-pic -fno-stack-protector -

mNo-sse -mno-sse2 -mno-mmx
CC_INCLUDES := $(addprefix -I,$(dir $(shell find $(ARCH_DIR) $(KERNEL_DIR) -type f -name '%.h')))

Fonte: Elaborado pelo autor (2025)

A variavel CC é inicializada com gcc, o compilador que sera usado. A variavel
CC_INCLUDES sera usada como flag de compilagdo para que um codigo fonte C
possa incluir arquivos de cabecgalho presentes no projeto. A atribuicao é feita através
de um script que busca por todos os diretérios que contém arquivos que terminam com
“h”.

Ja a parte mais importante estda em CC_FLAGS. Como o BergOS pode ser
compilado por um compilador comum, ha a necessidade de se usar muitas flags de

compilagao para forgar a geragao do binario no formato desejado.
As flags de compilagédo usadas séo:

» “-std=gnu99”: Faz o compilador usar o padrdo gnu99, baseado no padrao c99
mas com expansdes de gramatica estabelecidas pelo projeto GNU. Essas
expansdes sdo uteis em desenvolvimento de kernels, principalmente por
fornecerem mecanismos de inline assembly, uma forma de escrever codigo

assembly diretamente em linguagem C.
+ “-m32”: Forga o GCC a gerar codigo de 32 bits.

« “-Wall”: Nao é estritamente necessario, mas gera avisos uteis em tempo de

compilagao.

» “.Wextra”: Também nao € necessario, mas fornece outros alertas em tempo de

compilagao.

» “-nostdlib”: Extremamente importante. O GCC, por padréao, faz a linkagem do

cbdigo com a biblioteca padrao C. Isso é util em alto nivel, porém em baixo nivel
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a maioria dos recursos da biblioteca padrao C n&o estao disponiveis. Para evitar

esse problema, esta flag diz para o GCC nao fazer essa linkagem.

» “ffreestanding”: Diz para o GCC que o cddigo rodard& em ambiente
freestanding. Este € um termo do padrdao da linguagem C para se referir a
ambientes onde a biblioteca padrdao da linguagem C n&o esta totalmente

disponivel.
» “-fno-pic”: Faz o GCC gerar cddigo que use enderegos absolutos.

+ “-fno-stack-protector”. Desativa 0 mecanismo de protegdo de pilha, ja que

este depende de recursos do sistema operacional.

* “-mno-sse”: Diz para o GCC nao gerar codigo que use instrucbes SSE. Essa é

uma extensao da arquitetura x86 que nao esta disponivel no 80386.

* “-mno-sse2”: Diz para o GCC nao gerar cédigo que use instrugdes SSE2. Essa

€ uma extensao da arquitetura x86 que néo esta disponivel no 80386.

* ““mno-mmx”: Diz para o GCC néo gerar codigo que use instrugdes MMX. Essa

€ uma extensao da arquitetura x86 que nao esta disponivel no 80386.

A Figura 42 mostra as variaveis referentes ao linker.

Figura 42 — Variaveis referentes ao linker

# Linker

LINKER_SCRIPT := linker.ld
LINKER_FLAGS := -T $(LINKER_SCRIPT)

Fonte: Elaborado pelo autor (2025)

A variavel LINKER _SCRIPT referencia o arquivo de linker script, e a variavel

LINKER_FLAGS define as flags de linkagem a serem utilizadas pelo linker.
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Especificamente, essa flag tem a funcdo de instruir o linker a utilizar o script de
linkagem especificado na variavel LINKER_SCRIPT.

A Figura 43 mostra as variaveis relacionadas aos arquivos de codigo-fonte e

aos arquivos de codigo-objeto.

Figura 43 — Variaveis referentes a codigo-fonte e codigo-objeto

# Sources
CC_SRCS := $(shell find $(ARCH_DIR) $(KERNEL_DIR) -type f -name '*.c')
AS_SRCS := $(shell find $(ARCH_DIR) -type f -name '*.asm')

CC_OBJS := $(patsubst %.c,%.c.o,$(addprefix $(BUILD_DIR)/,$(CC_SRCS)))
AS_0BJS := $(patsubst %.asm,%.asm.o,$(addprefix $(BUILD_DIR)/,$(AS_SRCS)))

Fonte: Elaborado pelo autor (2025)

A variavel CC_SRCS utliza o comando find do shell para localizar
recursivamente todos os arquivos com extensao “.c” nos diretérios ARCH_DIR
(dependente de arquitetura) e KERNEL DIR (independente de arquitetura).

Similarmente, AS_SRCS coleta arquivos assembly que terminam com “.asm

exclusivamente do diretério ARCH_DIR.

As variaveis CC_OBJS e AS_OBJS mapeiam os arquivos fonte para seus
respectivos arquivos objetos no diretdrio de build. Arquivos “.¢” sdo transformados em
“.c.0” e arquivos “.asm” sdo transformados em “.asm.o”. A Figura 44 ilustra esse

mapeamento.

Figura 44 — Mapeamento de arquivos fonte em arquivos objeto

CC_SRCS CC_OBJS
/kernel/main.c » ./build/kernel/main.o
.Jarch/i386/tty.c » ./build/arch/i386/tty.o

AS_SRCS AS_OBJS

.Jarch/i386/boot/bootloaderasm —> ./build/arch/i386/boot/bootloader.o
Jarch/i386/cpu/gdt/gdt.asm — > ./build/arch/i386/cpu/gdt/gdt.o

Fonte: Elaborado pelo autor (2025)
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A Figura 45 mostra as rules responsaveis por compilar os arquivos de cdodigo.

Figura 45 — Compilando os arquivos de cédigo fonte

$(BUILD_DIR)/%.asm.o: %.asm
emkdir -p $(dir $@)
§(AS) $(AS_FLAGS) -0 $@ $<

$(BUILD_DIR)/%.c.0: %.cC

emkdir -p $(dir $@)
$(CC) $(CC_FLAGS) $(CC_INCLUDES) -c -0 $@ $<

Fonte: Elaborado pelo autor (2025)

A rule definida na linha 45 especifica como construir objetos assembly. O
curinga “%” captura o nome base do arquivo. A linha 46 cria silenciosamente o
diretério de destino necessario para o arquivo objeto, onde “$@” expande para o nome
do alvo. Em seguida, a linha 47 invoca o assembler com as flags apropriadas, onde
“$<” representa o primeiro pré-requisito (arquivo terminado com “.asm”), gerando o

objeto especificado.

Analogamente, a rule definida na linha 49 gerencia a compilagéo de arquivos C.
Ap0s criar o diretdrio, na linha 51, o cédigo € compilado com as flags e diretérios de
inclusao apropriados. A flag “-c” € importante, pois ela indica para o compilador gerar

apenas o arquivo objeto, sem passar pelo linker.

Por fim, ao compilar todo o codigo fonte, a imagem do BergOS sera gerada. A

Figura 46 mostra as rules necessarias para isso.
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Figura 46 — Rules para a compilagao do BergOS

# Targets
all: $(OUTPUT)

$(OUTPUT) : $(AS_0BJS) $(CC_0BJS)

emkdir -p $(dir $@)
$(cC) $(CC_FLAGS) $(LINKER_FLAGS) -0 $@ $
@truncate --size=$(0UTPUT_SIZE) $@

Fonte: Elaborado pelo autor (2025)

A rule all constitui o target padrao, sendo executada automaticamente quando o
Make é invocado sem argumentos. Ela tem como dependéncia OUTPUT, o que faz
sua execucao produzir a imagem do BergOS. A rule definida na linha 40 é a
responsavel por fazer a geragéo do binario final. Apds a criagao do diretorio, o GCC é
invocado, mas desta vez para agir como linker. Tanto as flags usadas para compilar
cédigo C quanto as flags do linker sao fornecidas. Desta vez, os arquivos de entrada
sdo especificados através de “$*”, que expande para todas as dependéncias (arquivos

objeto).

Na linha 43, o comando de shell truncate € usado para ajustar o tamanho da

imagem gerada para a especificada na variavel OUTPUT_SIZE.
A.3 Compilando e executando o BergOS

O projeto BergOS possui trés dependéncias: GCC, NASM e GNU Make. O GCC é
usado para compilar codigos C e para fazer a linkagem; o NASM é usado para montar
codigos assembly e o GNU Make € usado para os scripts de build. Sera necessario um
sistema Unix-like para realizar a compilagdo. Em sistemas Windows, é possivel

conseguir um ambiente Unix com WSL ou Cygwin.
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Para compilar o BergOS, basta invocar o Make em um shell. Se nenhum erro

ocorrer, a imagem do BergOS compilada estara em ./build/bergos.img. A Figura 47

mostra a execugao do Makefile para compilar o BergOS.

lberganton: ~/programas/projetos/bergos

> make

nasm -felf32 -o build/arch/i386/cpu/idt/idt.asm.o arch/1386/cpu/idt/idt.asm

nasm -felf32 -o build/arch/i386/cpu/gdt/gdt.asm.o arch/i386/cpu/gdt/gdt.asm

nasm -felf32 -o build/arch/i386/boot/bootloader.asm.o arch/i386/boot/bootloader.asm

gcc -std=gnu99 -m32 -Wall -Wextra -nostdlib -ffreestanding -fno-pic -fno-stack-protector
cpu/idt/ -Iarch/i386/cpu/gdt/ -Iarch/i386/video/vga/ -Ikernel/include/ -Ikernel/include/
dt.c

gcc -std=gnu99 -m32 -Wall -Wextra -nostdlib -ffreestanding -fno-pic -fno-stack-protector
cpu/idt/ -Iarch/i386/cpu/gdt/ -Iarch/i386/video/vga/ -Ikernel/include/ -Ikernel/include/
gcc -std=gnu99 -m32 -Wall -Wextra -nostdlib -ffreestanding -fno-pic -fno-stack-protector
cpu/idt/ -Iarch/i386/cpu/gdt/ -Iarch/i386/video/vga/ -Ikernel/include/ -Ikernel/include/
ga/vga.c

gce -std=gnu99 -m32 -Wall -Wextra -nostdlib -ffreestanding -fno-pic -fno-stack-protector
cpu/idt/ -TIarch/i386/cpu/gdt/ -Iarch/i386/video/vga/ -Ikernel/include/ -Ikernel/include/
gcc -std=gnu99 -m32 -Wall -Wextra -nostdlib -ffreestanding -fno-pic -fno-stack-protector
cpu/idt/ -TIarch/i386/cpu/gdt/ -Iarch/i386/video/vga/ -Ikernel/include/ -Ikernel/include/
gcc -std=gnu99 -m32 -Wall -Wextra -nostdlib -ffreestanding -fno-pic -fno-stack-protector

Figura 47 — Compilando o BergOS

-mno-sse -mno-sse2 -mno-mmx -Iarch/i386/cpu/ -Iarch/i386/
-c -0 build/arch/i386/cpu/idt/idt.c.o arch/i386/cpu/idt/i

-mno-sse -mno-sse2 -mno-mmx -Iarch/i386/cpu/ -Iarch/i386/
-c -0 build/arch/i386/tty.c.o arch/i386/tty.c

-mno-sse -mno-sse2 -mno-mmx -Iarch/i386/cpu/ -Iarch/i386/
-c -0 build/arch/i386/video/vga/vga.c.o arch/i386/video/v

-mno-sse -mno-sse2 -mno-mmx -Iarch/i386/cpu/ -Iarch/i386/
-c -0 build/arch/i386/kernel.c.o arch/i386/kernel.c
-mno-sse -mno-sse2 -mno-mmx -Iarch/i386/cpu/ -Iarch/i386/
-c -0 build/kernel/main.c.o kernel/main.c

-mno-sse -mno-sse2 -mno-mmx -T linker.ld -o build/bergos.

img build/arch/i386/cpu/idt/idt.asm.o build/arch/i386/cpu/gdt/gdt.asm.o build/arch/i386/boot/bootloader.asm.o build/arch/i386/cpu/idt/idt.c.o buil
d/arch/i386/tty.c.o build/arch/i386/video/vga/vga.c.o build/arch/i386/kernel.c.o build/kernel/main.c.o

lberganton: ~/programas/projetos/bergos
>

Fonte: Elaborado pelo autor (2025)

Para executar o BergOS, o usuario pode optar por um emulador de 1A-32. O

QEMU é uma boa opgéo, pois € simples, multiplataforma e foi o principal ambiente

usado no desenvolvimento do BergOS. O Makefile do projeto fornece um target

chamado run para executar a imagem do BergOS compilada no QEMU.

A Figura 48 mostra a execugao do BergOS no QEMU através do target run do

Makefile.
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Figura 48 — Executando o BergOS no QEMU

lberganton: ~/programas/projetos/bergos
> make run

gemu-system-i386 -no-reboot -monitor stdio -drive format=raw,file=build/bergos.img
QEMU 10.1.2 monitor - type 'help' for more information
(gemu) []

Machine View

ello, world?

Fonte: Elaborado pelo autor (2025)

Por outro lado, € possivel executar o BergOS em uma maquina real, desde
que o processador seja compativel com a arquitetura I1A-32. A Figura 49 mostra o

BergOS executando sobre uma maquina real, com um processador Intel Core i7-7700
e uma placa-mae MS-7A15.

Figura 49 — Executando o BergOS em uma magquina real

FREESYNC 1w

Hello, world?
1 am Berg0S?

Fonte: Elaborado pelo autor (2025)
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