
Faculdade de Tecnologia de Americana “Ministro Ralph Biasi”

Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas

Lucas Henrique Barbosa Berganton

Introdução ao desenvolvimento de kernels de sistemas

operacionais para a arquitetura x86

Americana, SP

2025

Lucas Henrique Barbosa Berganton

Introdução ao desenvolvimento de kernels de sistemas

operacionais para a arquitetura x86

Trabalho de Conclusão de Curso desenvolvido

em cumprimento à exigência curricular do Curso

Superior de Tecnologia em Análise e

Desenvolvimento de Sistemas na área de

concentração em Sistema Operacional.

Orientador: Prof. Me. Rossano Pablo Pinto

Este trabalho corresponde à versão final do

Trabalho de Conclusão de Curso

apresentado por Lucas Henrique Barbosa

Berganton e orientado pelo Prof. Me.

Rossano Pablo Pinto.

Americana, SP

2025

AGRADECIMENTOS

Em primeiro lugar, agradeço à meu pai Odair Berganton e à minha mãe Silvane
Silverio Barbosa Berganton, pelo apoio e amor que sempre me deram.

À meus amigos, que sempre me motivaram e sempre estiveram comigo em todos os
momentos.

Aos meus professores, que contribuíram fortemente na formação do meu caráter
acadêmico e profissional.

E ao meu orientador, Prof. Me. Rossano Pablo Pinto, pelo acompanhamento e auxílio
que me guiaram na realização deste trabalho.

RESUMO

Este trabalho tem como objetivo central analisar o funcionamento e o desenvolvimento
de kernels de sistemas operacionais para a arquitetura x86, com o intuito de elucidar
como os recursos computacionais são acessados e abstraídos para fornecer uma
interface simplificada ao usuário e ao programador. Para concretizar este estudo,
adotou-se uma abordagem prática baseada na análise de um kernel didático
denominado BergOS, desenvolvido pelo autor em linguagens C e assembly para a
plataforma IA-32, membro da família x86. A motivação reside na premissa de que
conceitos teóricos complexos, como a separação entre espaços de kernel e usuário,
só são satisfatoriamente compreendidos quando examinados em implementações
reais, as quais são inerentemente dependentes da arquitetura do hardware. Com base
em uma revisão bibliográfica que aborda tópicos sobre sistemas operacionais,
arquitetura de computadores, programação assembly, entre outros, as partes do
BergOS são analisadas minuciosamente. Começando pelo bootloader, que carrega o
kernel na memória, passando pelo driver de VGA, que usa E/S mapeada na memória
para se comunicar com o dispositivo de vídeo e renderizar caracteres na tela, até a
definição e implementação da interface do emulador de terminal do BergOS, que
fornece rotinas de alto nível, oferecendo uma camada de abstração para outras partes
do kernel e programas aplicativos poderem escrever mensagens na tela sem se
preocupar com os detalhes do hardware. A contribuição deste trabalho está no fato de
ele se aprofundar na conexão inerente entre sistema operacional e hardware, não se
limitando apenas ao campo teórico e abstrato, mas apresentando e analisando uma
implementação real e simples dos conceitos. Mesmo abordando detalhes da
arquitetura x86 em profundidade, ainda há aspectos importantes que não são
estudados neste trabalho, como a separação de espaço de kernel e espaço de
usuário, mecanismos de interrupção, entrada de dados com teclado e processos, que
são ganchos para estudos futuros. A conclusão é que o estudo de sistemas
operacionais deve vir acompanhado de um estudo de arquitetura de computadores, e
que, apesar de sua simplicidade, o BergOS demonstra ser uma fonte interessante de
exemplos práticos dos conceitos teóricos abstratos.

Palavras Chave: Sistema Operacional; Kernel; x86.

ABSTRACT

This work aims to analyze the operation and development of operating system kernels
for the x86 architecture, in order to elucidate how computational resources are
accessed and abstracted to provide a simplified interface for the user and programmer.
To carry out this study, we developed a practical approach based on the analysis of a
didactic kernel called BergOS, developed by the author in C and assembly languages
for the IA-32 platform, a member of the x86 family. The motivation lies in the proposition
that complex theoretical concepts, such as the separation between kernel and user
spaces, are only satisfactorily understood when examined in real implementations, as
these are indirectly dependent on the hardware architecture. Based on a literature
review covering details about operating systems, computer architecture, assembly
programming, among others, the parts of BergOS are meticulously verified. Starting
with the bootloader, which loads the kernel into memory, moving on to the VGA driver,
which uses memory-mapped I/O to communicate with the video device and render
characters on the screen, and finally to the definition and implementation of the
BergOS terminal emulator interface, which provides high-level routines, offering an
abstraction layer so that other parts of the kernel and application programs can write
messages to the screen without worrying about hardware details. The contribution of
this work lies in its in-depth exploration of the inherent connection between operating
system and hardware, not limiting itself to the theoretical and abstract field, but
presenting and analyzing a real and simple implementation of the concepts. Even while
addressing details of the x86 architecture in depth, there are still important aspects not
covered in this work, such as the separation of kernel space and user space, interrupt
mechanisms, keyboard input, and processes, which are hooks for future studies. The
conclusion is that the study of operating systems should be accompanied by a study of
computer architecture, and that, despite its simplicity, BergOS proves to be an
interesting source of practical examples of abstract theoretical concepts.

Keywords: Operating System; Kernel; x86.

SUMÁRIO

1 INTRODUÇÃO...12

2 REVISÃO BIBLIOGRÁFICA..15

2.1 Sistema Operacional...15

2.1.1 Sistema Operacional Como Uma Máquina Estendida.......................................16

2.1.2 Sistema Operacional Como Um Gerenciador de Recursos..............................17

2.1.3 Inconsistências na Definição..18

2.2 Arquitetura x86..19

2.2.1 História da arquitetura x86...20

2.2.2 Assembly..21

2.2.3 Registradores...22

2.2.4 Segmentos de memória...24

2.2.5 Interrupções..25

2.3 BIOS..26

2.4 E/S mapeada na memória...28

3 BOOTLOADER..29

3.1 Pré-bootloader...29

3.2 Definindo os segmentos e a pilha...30

3.3 Carregando o kernel para a memória...32

3.4 Colocando o processador em modo protegido...35

4 DRIVER DE VGA...45

4.1 Definição da interface do driver de VGA...49

4.2 Implementação da interface do driver de VGA...51

4.2.1 Implementação da rotina vga_write...52

4.2.2 Implementação da rotina vga_read..54

5 EMULADOR DE TERMINAL...56

5.1 Definição da interface do emulador de terminal...56

5.2 Implementação da interface do emulador de terminal..59

5.2.1 Implementação das rotinas relacionadas a posição do cursor..........................61

5.2.2 Implementação das rotinas relacionadas a escrita de caracteres.....................63

5.2.3 Implementação das rotinas relacionadas a formatação de strings....................66

6 CONSIDERAÇÕES FINAIS...71

REFERÊNCIAS...73

APÊNDICE A – PROCESSO DE COMPILAÇÃO DO BERGOS.................................75

A.1 Linker script...77

A.2 GNU Make..79

A.3 Compilando e executando o BergOS...86

LISTA DE FIGURAS

Figura 1 – Abstração fornecida pelo sistema operacional..17

Figura 2 – Funções BIOS disponíveis no serviço de vídeo..26

Figura 3 – Imprimindo um caractere usando uma função BIOS.................................27

Figura 4 – Assinatura de boot...30

Figura 5 – Cabeçalho do bootloader...30

Figura 6 – Definição dos registradores de segmento no bootloader..........................31

Figura 7 – Definindo a pilha..32

Figura 8 – Carregando o kernel para a memória..33

Figura 9 – Definição do DAP...35

Figura 10 – A estrutura de uma GDT e uma IDT..36

Figura 11 – A estrutura de um descritor de segmento..37

Figura 12 – Estrutura para GDTR...39

Figura 13 – Definição da GDT usada pelo bootloader do BergOS.............................39

Figura 14 – Definindo o registrador GDTR...40

Figura 15 – Colocando o processador em modo protegido e passando o controle para

o kernel..41

Figura 16 – Função main do kernel do BergOS..42

Figura 17 – Execução de BergOS...44

Figura 18 – Modos de vídeo disponíveis..45

Figura 19 – Definindo o modo de vídeo para 3...46

Figura 20 – Organização dos caracteres na memória no padrão VGA......................47

Figura 21 – Byte de caractere e byte de atributo..47

Figura 22 – Byte de atributo..48

Figura 23 – Definição da interface do driver de VGA...49

Figura 24 – Início do arquivo de implementação do driver de VGA...........................51

Figura 25 – Acesso do byte de caractere e byte de atributo através de indexação de

array...52

Figura 26 – Implementação da rotina vga_write...52

Figura 27 – Disposição de um uint16_t no buffer VGA...54

Figura 28 – Implementação da rotina vga_read...54

Figura 29 – Definição da interface do emulador de terminal......................................56

Figura 30 – Mensagem de saudações do BergOS com o terminal operando em CRLF

...59

Figura 31 – Início do arquivo de implementação do emulador de terminal................60

Figura 32 – Implementação das rotinas relacionadas a posição do cursor...............62

Figura 33 – Implementação das funções referentes ao modo de operação do terminal

...63

Figura 34 – Função auxiliar de rolagem vertical...64

Figura 35 – Função auxiliar de rolagem vertical...65

Figura 36 – Definiçaão das funções auxiliares puts e putint.......................................66

Figura 37 – Implementação de tty_printf...68

Figura 38 – Linker sciprt do BergOS...78

Figura 39 – Início do Makefile do BergOS..80

Figura 40 – Variáveis referentes ao assembler no Makefile.......................................81

Figura 41 – Variáveis referentes ao compilador C..82

Figura 42 – Variáveis referentes ao linker..83

Figura 43 – Variáveis referentes a código-fonte e código-objeto...............................84

Figura 44 – Mapeamento de arquivos fonte em arquivos objeto................................84

Figura 45 – Compilando os arquivos de código fonte...85

Figura 46 – Rules para a compilação do BergOS..86

Figura 47 – Compilando o BergOS...87

Figura 48 – Executando o BergOS no QEMU..88

Figura 49 – Executando o BergOS em uma máquina real...88

LISTA DE TABELAS

Tabela 1 – Significados especiais dos registradores de propósito geral....................22

Tabela 2 – Registradores de Segmento...24

Tabela 3 – Disk Address Packet...34

Tabela 4 – Combinações de cores RGB possíveis em 4 bits.....................................48

12

1 INTRODUÇÃO

Este trabalho tem por objetivo analisar o funcionamento e desenvolvimento de kernels

de sistemas operacionais para a família de arquiteturas x86.

O objetivo geral é apresentar uma visão sobre como kernels são programados,

estudando como são acessados os recursos computacionais e como eles são

abstraídos para apresentar uma interface simples para o usuário e o programador.

Como objetivo específico, buscou-se analisar um kernel simples para a

arquitetura x86 chamado BergOS, escrito em linguagem C e assembly. Esse kernel,

desenvolvido pelo autor, faz uso de estruturas e recursos da arquitetura e implementa

mecanismos básicos de entrada/saída, servindo, assim, como uma manifestação

prática dos conceitos teóricos abordados.

A motivação para este trabalho está na certeza de que certos conceitos teóricos

só são satisfatoriamente compreendidos com exemplos reais. A separação do espaço

de usuário e espaço de kernel, por exemplo, é realizada pelo processador, que é

configurado pelo sistema operacional para se comportar conforme o desejado, o que

torna esse recurso dependente da arquitetura da máquina para a qual ele foi

programado. Uma abordagem geral, que tente ser independente de arquitetura, terá

de se restringir a ideias vagas e abstratas, limitando a compreensão do tema.

Por outro lado, este trabalho faz um estudo com tecnologias específicas. No

caso, o kernel BergOS, escrito para a arquitetura IA-32, membro da família de

arquiteturas x86, usando o GCC como compilador de C e o NASM como assembler. A

implementação de conceitos como a comunicação do kernel com um driver de vídeo

para saída de dados é detalhada através de um estudo dos mecanismos arquiteturais

que permitem a comunicação do processador com o dispositivo de vídeo.

Este trabalho escolheu a arquitetura x86 por ser uma arquitetura madura, com

abundância de documentação e sistemas operacionais suportados; e por ser comum

em computadores pessoais, tanto desktops quanto laptops, o que torna fácil para o

leitor ter a experiência de executar o BergOS em uma máquina real.

A escolha da linguagem C se motiva por ser uma linguagem de sistema simples,

que foi projetada especialmente para a programação de sistemas operacionais, com

13

implementações eficientes e uma boa integração com outras linguagens de sistema,

muito devido à sua já mencionada simplicidade. O uso do NASM como assembler é

vantajoso, pois além de ter diretivas de pré-processamento poderosas, a sua sintaxe é

a usada nos manuais da Intel.

O BergOS é um projeto de código aberto e pode ser acessado através de um

repositório público no GitHub (BERGANTON, 2025). Esse repositório também contém

instruções para compilar e executar o BergOS.

Como o código do BergOS pode evoluir com o tempo ao ponto de ser

substancialmente diferente daquele estudado neste trabalho, uma branch chamada

tcc foi criada no repositório oficial. O foco dessa branch é apenas servir de referência

para este trabalho; portanto, mesmo que o projeto evolua, o código estudado aqui

poderá ser acessado facilmente.

Em determinados trechos, neste trabalho, um caminho de diretórios será usado

para especificar algum arquivo do BergOS. Por exemplo, o código do kernel está em

./kernel/main.c. Esses caminhos sempre tomam como ponto de partida o diretório raiz

do projeto, conforme o repositório no GitHub.

O trabalho é dividido em seis capítulos e um apêndice. O capítulo 1 (Introdução)

estabelece os objetivos e motivações do estudo. O capítulo 2 (Revisão Bibliográfica)

faz uma revisão teórica de tópicos referentes a sistemas operacionais, arquitetura de

computadores, arquitetura x86 e programação em linguagem assembly, que são

necessários para a compreensão dos capítulos seguintes, onde esses conhecimentos

serão aplicados.

O capítulo 3 (Bootloader) trará uma análise minuciosa do programa do

bootloader do BergOS e como ele carrega o kernel para a memória e deixa a máquina

em um estado esperado por ele. Neste capítulo, os conceitos abordados no capítulo 2

serão postos em prática, como programação em assembly, manipulação de

registradores, segmentação de memória, interrupções de software, dentre outros.

O capítulo 4 (Driver de VGA) começa apresentando o padrão VGA e como ele

faz uso de mecanismos de E/S mapeada na memória para fornecer uma maneira do

programador manipular o vídeo apenas lendo e escrevendo na memória principal.

14

Após isso, será feita uma análise do driver de VGA do BergOS, onde todo o código é

estudado, da interface à implementação.

O capítulo 5 (Emulador de terminal) define e implementa uma interface com

rotinas feitas para manipular o emulador de terminal do BergOS. A implementação da

interface faz uso do driver de VGA estudado no capítulo 4 para manipular o vídeo e

escrever os caracteres na tela. É neste momento em que o BergOS estabelece uma

camada de abstração, permitindo que outras partes do kernel e programas aplicativos

sejam programados usando interfaces e protocolos livres das complexidades e

especificidades do hardware. Por fim, o capítulo 6 (Considerações finais) conclui o

estudo levantando suas contribuições e limitações.

O apêndice A (Processo de Compilação do BergOS) aborda dois temas

principais: o processo de compilação do BergOS, incluindo suas dificuldades e os

meios para contorná-las; e as questões referentes à execução do sistema, e como ele

pode ser executado em emuladores como QEMU e em máquinas reais compatíveis

com a arquitetura IA-32.

15

2 REVISÃO BIBLIOGRÁFICA

Neste capítulo serão introduzidos os conceitos teóricos referentes a sistemas

operacionais e a arquitetura x86.

2.1 Sistema Operacional

Um sistema operacional é um software complexo, e isso já se torna evidente na

dificuldade em defini-lo. É intuitivo concebê-lo como o conjunto de programas e

aplicativos que vêm junto a uma instalação de um sistema, como shells, interfaces

gráficas, gerenciadores de arquivos etc. Apesar de serem recursos importantes e

úteis, eles não são, a princípio, aspectos substanciais e podem facilmente ser

substituídos sem nenhuma alteração profunda no sistema. Um sistema operacional

tem um papel muito mais profundo do que é imediatamente visível ao usuário comum.

Os programas citados são classificados como programas aplicativos, isto é,

são feitos para realizar tarefas específicas e desejadas por usuários, mas não têm

relação com o sistema computacional em si. Já os programas de sistema são

destinados a gerenciar o computador em alguma instância. O programa de sistema

mais básico é o sistema operacional, que, em uma definição sucinta, é “[…] um

programa que gerencia o hardware de um computador. Ele também fornece uma base

para os programas aplicativos e atua como intermediário entre o usuário e o hardware

do computador” (SILBERSCHATZ; GALVIN; GAGNE, 2015, n. p.).

Um sistema operacional tem, então, um trabalho complexo. Além de gerenciar

os recursos de um sistema computacional, também deve facilitar que estes sejam

acessados de forma conveniente e segura, protegendo-os contra usos indevidos. Isso

é atingido com o auxílio do hardware, que permite a execução de um programa em

modo núcleo ou modo usuário. O núcleo do sistema operacional é o que executa em

modo núcleo, como afirma Tanenbaum e Bos (2016, p. 1).

O sistema operacional, a peça mais fundamental de software, opera em modo
núcleo (também chamado modo supervisor). Nesse modo ele tem acesso
completo a todo o hardware e pode executar qualquer instrução que a
máquina for capaz de executar. O resto do software opera em modo usuário,
no qual apenas um subconjunto das instruções da máquina está disponível.
Em particular, aquelas instruções que afetam o controle da máquina ou
realizam E/S (Entrada/Saída) são proibidas para programas de modo usuário
(TANENBAUM; BOS, 2016, p. 1).

16

A definição apresentada pode ser aprofundada. Tanenbaum e Bos detalham

essa perspectiva argumentando que um sistema operacional pode ser entendido

através de duas abordagens, como uma máquina estendida e como um gerenciador

de recursos.

2.1.1 Sistema Operacional Como Uma Máquina Estendida

Em um sistema computacional, o hardware se apresenta aos programadores com

uma complexidade exótica. “Processadores reais, memórias, discos e outros

dispositivos são muito complicados e apresentam interfaces difíceis, desajeitadas,

idiossincráticas e inconsistentes para as pessoas que têm de escrever softwares para

elas utilizarem” (TANENBAUM; BOS, 2016, p. 3).

Para manipular um processador, por exemplo, é necessário conhecer os

detalhes de sua arquitetura, como seus registradores, instruções, mecanismos de

acesso à memória, mecanismos de segurança e mecanismos de acesso aos

dispositivos de E/S, o que torna sua programação não apenas complicada, mas

dependente de uma arquitetura em específico.

Com dispositivos de E/S a situação é ainda pior. As interfaces para manipulá-

los tendem a ser primitivas e complicadas. Para ler um byte de um disco, por exemplo,

podem ser necessárias várias instruções de máquina. Também é esperado que o

mesmo programa que executa no processador seja capaz de lidar com diferentes

modelos de dispositivos de uma mesma classe.

Em suma, o hardware é complicado, e qualquer programador se beneficiaria de

estar longe de seus detalhes. Sendo assim, Tanenbaum e Bos (2016, p. 3) concluem

que “Uma das principais tarefas dos sistemas operacionais é esconder o hardware e

em vez disso apresentar programas (e seus programadores) com abstrações de

qualidade, limpas, elegantes e consistentes com as quais trabalhar. Sistemas

operacionais transformam o feio em belo […]”. A Figura 1 traz uma representação

visual dessa ideia.

17

Essa interface que abstrai as complexidades do hardware fornecendo uma

visão mais simples do sistema aos programas aplicativos é o que conforma a noção de

máquina estendida, que permite maior portabilidade e uma programação conveniente

baseada em abstrações.

2.1.2 Sistema Operacional Como Um Gerenciador de Recursos

Essa abordagem enxerga o sistema operacional como um programa que administra

os recursos de um sistema computacional. “Resumindo, essa visão do sistema

operacional sustenta que a sua principal função é manter um controle sobre quais

programas estão usando qual recurso, conceder recursos requisitados, contabilizar o

seu uso, assim como mediar requisições conflitantes de diferentes programas e

usuários” (TANENBAUM; BOS, 2016, p. 4).

Dado o fato de que computadores modernos permitem que múltiplos programas

compartilhem recursos, um gerenciamento cuidadoso passa a fazer parte das

funcionalidades de um sistema operacional. “O gerenciamento de recursos inclui a

multiplexação (compartilhamento) de recursos de duas maneiras diferentes: no tempo

e no espaço.” (TANENBAUM; BOS, 2016, p. 4).

Figura 1 – Abstração fornecida pelo sistema operacional

Fonte: Tanenbaum e Bos (2016)

18

A multiplexação no tempo é o intervalo no qual um programa terá direito a usar o

processador. Depois de concluir o seu tempo, ou ser bloqueado devido à dependência

de um evento externo para continuar sua execução, o sistema operacional fará outro

programa em espera tomar seu lugar.

A multiplexação no espaço é o direito dos programas a uma parte do recurso. A

memória principal, por exemplo, é dividida em partições que são associadas a um

programa cada, de modo que cada um tenha sua própria memória e não possa

acessar os recursos do outro.

2.1.3 Inconsistências na Definição

Nenhuma definição de sistema operacional é totalmente satisfatória. Se formos mais

rigorosos com o que foi definido até aqui, o firmware Basic Input Output System (BIOS)

de uma placa-mãe pode ser considerado um sistema operacional, afinal, ele

administra recursos do sistema computacional com a operação Power On Self Test

(POST), que detecta falhas no hardware, e fornece uma camada de abstração através

das funções BIOS, formando uma interface mais simples e conveniente para interação

com o hardware, ainda que limitada. O sistema MS-DOS, bem como outros sistemas

antigos, era fortemente baseado nas funções BIOS, permitindo que programas

aplicativos as usassem em sua programação (DODGE; IRVINE; NGUYEN, 2005, p.

80). Sendo assim, as funções BIOS compunham boa parte da máquina estendida do

sistema da Microsoft.

A falta de consenso é corroborada por Silberschatz, Galvin e Gagne “[…] não

temos uma definição universalmente aceita sobre o que compõe o sistema

operacional”, e concluem “Uma definição mais comum, que é a que costumamos

seguir, é que o sistema operacional é o único programa que permanece em execução

no computador durante todo o tempo — chamado, em geral, de kernel” (2015, n. p.). O

kernel é a parte do sistema operacional que executa em modo núcleo, portanto, tem

acesso a todas as instruções do processador.

Mas a afirmação de que o sistema operacional é o que executa em modo núcleo

também gera problemas. Sistemas embarcados ou processadores antigos podem não

ter uma divisão entre modo núcleo e modo usuário, e mesmo alguns programas que

executam em modo usuário estão tão intimamente ligados ao funcionamento do

19

sistema operacional que se torna difícil não considerá-los como parte dele, assim

como afirma Tanenbaum e Bos (2016, p. 2).

[…] muitas vezes há um programa que permite aos usuários que troquem
suas senhas. Não faz parte do sistema operacional e não opera em modo
núcleo, mas claramente realiza uma função sensível e precisa ser protegido
de uma maneira especial. Em alguns sistemas, essa ideia é levada ao
extremo, e partes do que é tradicionalmente entendido como sendo o sistema
operacional (como o sistema de arquivos) é executado em espaço do usuário.
Em tais sistemas, é difícil traçar um limite claro. Tudo o que está sendo
executado em modo núcleo faz claramente parte do sistema operacional, mas
alguns programas executados fora dele também podem ser considerados
uma parte dele, ou pelo menos estão associados a ele de modo próximo
(TANENBAUM; BOS, 2016, p. 2).

Não parece correto ou pragmático considerar o BIOS como um sistema

operacional, tornando uma definição muito ampla pouco adequada. O mesmo ocorre

ao desconsiderar um sistema embarcado sem modo núcleo como sistema

operacional, o que também torna uma definição muito restrita pouco adequada.

O debate é amplo e exceções vão existir, mas para fins deste trabalho será

adotada a definição já apresentada de um sistema operacional como um intermediário

entre o usuário e o computador que gerencia o hardware e fornece uma base para os

programas aplicativos (SILBERSCHATZ; GALVIN; GAGNE, 2015, n. p.).

2.2 Arquitetura x86

Como um sistema operacional tem a tarefa de gerenciar o hardware, se torna

fundamental entender em detalhes a arquitetura para qual ele será programado, bem

como sua arquitetura do conjunto de instruções. Como definido por Stallings (2017, p.

2).

Arquitetura de computador refere-se aos atributos de um sistema visíveis a
um programador ou, em outras palavras, aqueles atributos que possuem um
impacto direto sobre a execução lógica de um programa. Um termo que é
muitas vezes usado de maneira intercambiável com as arquiteturas de
computadores é arquitetura de conjunto de instrução (ISA — do inglês,
Instruction Set Architecture). O ISA define os formatos de instruções, códigos
de operação da instrução (opcodes), registradores, memória de dados e
instrução; o efeito das instruções executadas nos registradores e na memória;
e um algoritmo para o controle da execução das instruções (STALLINGS,
2017, p. 2).

20

2.2.1 História da arquitetura x86

Em 1971 a Intel fez um importante avanço para a área da computação, o

desenvolvimento do 4004, o primeiro microprocessador da história. Após esse evento,

a tecnologia de microprocessadores foi evoluindo, culminando no lançamento do

microprocessador 8086 em 1978. “O 8086 tem registradores de 16 bits e um

barramento de dados externo de 16 bits, com endereçamento de 20 bits,

proporcionando um espaço de endereçamento de 1 MB.” (INTEL CORPORATION,

2025, Vol. 1 2-1, tradução nossa).

Devido ao sucesso do 8086, a Intel desenvolveu outros processadores que

mantinham compatibilidade com a ISA do 8086, expandindo suas funcionalidades com

novas instruções, modos de operações e tecnologias. Essa família de

microprocessadores baseados na ISA do 8086 forma o que é chamado genericamente

de arquitetura x86.

Em 1982 foi lançado o 80286 que, dentre outras novidades, expande a

capacidade de endereçamento do 8086 de 20 bits para 24 bits e adiciona um novo

modo de operação, o modo protegido. “O modo de operação determina quais

instruções e recursos da arquitetura estão disponíveis” (INTEL CORPORATION,

2025, Vol. 1 3-1, tradução nossa). O modo protegido usa os registradores de

segmento como índices para tabelas que descrevem as permissões e atributos

daquele segmento. Por questões de compatibilidade com o 8086, o 80286, bem como

seus sucessores, não iniciam no modo protegido, mas no modo real.

Em 1985 foi lançado o 80386, o primeiro microprocessador de 32 bits da família

x86. Para permitir a execução de programas de 16 bits em modo protegido foi

adicionado o modo virtual-8086.

A família x86 continuou evoluindo com novos lançamentos, como o 80486,

Pentium, Pentium Pro, Pentium II, Pentium III, Core 2 etc. A AMD também produz

microprocessadores compatíveis com a família x86. Uma de suas contribuições mais

importantes foi o desenvolvimento de uma extensão da arquitetura, chamada de

x86_64, para processadores de 64 bits. A extensão também foi adotada pela Intel.

21

BergOS é programado para o 80386, fazendo uso do modo protegido e de

instruções de 32 bits. Portanto, a arquitetura correspondente, chamada IA-32, será a

estudada neste trabalho.

2.2.2 Assembly

O uso de linguagens de programação de alto nível na programação de sistemas

operacionais é adequado. Por serem baseadas em máquinas abstratas, apresentam

uma gramática elegante que torna a programação agradável e menos propensa a

erros. Porém, na programação de sistemas operacionais é necessário a manipulação

da máquina real, que possui diferenças substanciais das máquinas abstratas de

linguagens de alto nível. Mesmo C, conhecida pelo controle que fornece ao

programador sobre a máquina subjacente, não é capaz de manipular recursos

específicos de uma arquitetura como a x86, visto que registradores, segmentação de

memória, tabela de descritores, modos de operação e ponteiros de pilha não fazem

parte de sua máquina abstrata. Portanto, mesmo que o uso de uma linguagem de alto

nível seja recomendado na maior parte do software que compõe o sistema

operacional, se torna indispensável o uso de uma linguagem de baixo nível, isto é,

uma linguagem de programação capaz de expressar instruções de uma máquina real.

As linguagens de máquina são as linguagens de baixo nível que são

diretamente interpretadas por alguma máquina real. Sua programação é trabalhosa e

propensa a erros. Para tornar a programação de baixo nível mais conveniente,

fornecendo um mínimo de abstração com notações em texto das instruções de

máquina, existem as linguagens de montagem ou linguagens assembly. Como

descreve Zhirkov (2018, n. p.).

A linguagem Assembly para um dado processador é uma linguagem de
programação constituída de mnemônicos para cada possível instrução
binária codicada (código de máquina). Ela deixa a programação em códigos
de máquina muito mais simples, pois o programador então não precisa
memorizar a codicação binária das instruções, apenas seus nomes e os
parâmetros (ZHIRKOV, 2018, n. p.).

Após o programa ter sido escrito, um software chamado assembler é usado

para transformar o programa assembly na linguagem de máquina correspondente. O

BergOS é programado usando o assembler NASM.

22

Nem toda instrução assembly tem uma instrução em código de máquina

equivalente. Frequentemente assemblers fornecem instruções que definem o

comportamento da montagem ou informações do binário final.

O assembly da arquitetura x86 tem duas sintaxes distintas. A sintaxe oficial,

usada nos manuais da Intel, é simplesmente chamada de Sintaxe Intel, enquanto a

outra é chamada de Sintaxe AT&T. O assembler NASM usa a Sintaxe Intel, portanto é

a sintaxe usada nos códigos do BergOS.

2.2.3 Registradores

A arquitetura x86 é baseada na arquitetura do computador IAS lançada em 1952,

chamada de arquitetura de Von Neumann. A arquitetura de Von Neumann, mesmo

que antiga, ainda é a base para a maioria dos computadores atuais, como reforça

Stallings “Com raras exceções, todos os computadores de hoje têm essa mesma

estrutura e função geral e são, por conseguinte, referidos como máquinas de von

Neumann.” (2017, p. 11).

Um elemento importante da arquitetura de Von Neumann e, portanto, dos

computadores atuais, são os registradores. Registradores “São células de memória

colocadas diretamente no chip da CPU.” (ZHIRKOV, 2018, n. p.). Eles são mais

rápidos que a memória principal e são extensivamente usados na programação em

baixo nível. A maior parte das instruções de um programa envolvem mover dados

entre registradores e entre registradores e a memória.

Como dito por Zhirkov “Na maior parte das vezes, um programador trabalhará

com registradores de propósito geral.” (2018, n. p.). Os registradores AX, BX, CX, DX,

SI, DI, BP e SP são os registradores de propósito geral da arquitetura do 8086,

portanto, todos são de 16 bits. Eles podem ser usados livremente pelo programador,

mas algumas instruções os usam como operandos ou para armazenar os resultados

de um cálculo. Nesse caso, os registradores assumem significados especiais,

conforme pode ser visto na Tabela 1.

Tabela 1 – Significados especiais dos registradores de propósito geral

Registrador Significado Uso

AX Accumulator Usado em cálculos

23

aritméticos, para operandos

e resultados.

BX Base Usado como ponteiro para

dados.

CX Counter Usado como contador em

operações de strings e

loops.

DX Data Armazena dados de

operações de E/S.

SI Source index Ponteiro para origem dos

dados em operações de

string.

DI Destination index Ponteiro para o destino dos

dados em operações de

string.

BP Base Pointer Ponteiro para a base da

pilha de hardwre.

SP Stack Pointer Ponteiro para o topo da

pilha de hardware.

Fonte: Elaborado pelo autor (2025).

Apesar dos registradores AX, BX, CX e DX terem 16 bits, seus 8 bits mais

significativos podem ser acessados individualmente pelos nomes AH, BH, CH e DH

respectivamente, bem como os menos significativos pelos nomes AL, BL, CL e DL

respectivamente.

Com a introdução da arquitetura IA-32 e a expansão do barramento interno,

os registradores de propósito geral foram expandidos para se adaptar à nova

capacidade de 32 bits, sendo acessíveis pelos nomes EAX, EBX, ECX, EDX, ESI, EDI,

EBP e ESP. Os 16 bits menos significativos dos novos registradores ainda são

acessíveis pelos nomes antigos.

Outros registradores importantes da arquitetura x86 são o IP (Instruction

Pointer), que armazena o endereço da próxima instrução a ser executada, o

24

equivalente ao PC (Program Counter) da arquitetura de Von Neumann; e o FLAGS

que contém um grupo de flags de status, flag de controle e um grupo de flags de

sistemas. Assim como os registradores de propósito geral, IP e FLAGS também têm

versões de 32 bits para arquitetura IA-32, sendo chamados de EIP e EFLAGS.

2.2.4 Segmentos de memória

Segundo a Intel Corporation, a “segmentação fornece um mecanismo de isolamento

de módulos individuais de código, dados e pilha, permitindo que múltiplos programas

(ou tarefas) sejam executados no mesmo processador sem interferir um no outro.”

(2025, Vol. 3A 3-1, tradução nossa). O mecanismo de segmentação funciona de forma

diferente no modo real e no modo protegido.

Os registradores de propósito especial CS, DS, ES, FS, GS e SS, chamados de

registradores de segmento, são usados no cálculo do endereço real que será

acessado pelo processador. A Tabela 2 descreve os registradores de segmento.

Tabela 2 – Registradores de Segmento

Registrador Significado Uso

CS Code Segment (Segmento de

Código).

Usado para obter endereços

relacionados a código

executável.

DS Data Segment (Segmento de

Dados).

Usada para obter endereços

relacionados a dados.

ES Extra Segment (Segmento

Extra).

Não tem um significado

especial e pode ser usado

livremente pelo programador.

FS Não tem um significado

especial e pode ser usado

livremente pelo programador.

GS Não tem um significado

especial e pode ser usado

livremente pelo programador.

SS Stack Segment (Segmento de

Pilha).

Usado para obter endereços

relacionados a pilha.

25

Fonte: Elaborado pelo autor (2025).

No modo protegido, a segmentação é feita definindo tabelas especiais na

memória que descrevem os segmentos. Os registradores de segmento passam a

armazenar um valor chamado seletor de segmento, que serve de índice para

selecionar um dos segmentos descritos nessas tabelas especiais (ZHIRKOV, 2018, n.

p.). A Global Descriptor Table (GDT), é a única tabela de descritores de segmentos

que precisa ser definida para ativar o modo protegido, portanto, será analisada no

capítulo 3.

Apesar da sua importância no contexto da arquitetura x86, a segmentação é

considerada um mecanismo legado. Como confirma Zhirkov “[…] a segmentação é

uma criatura selvagem um tanto quanto difícil de lidar. Há motivos pelos quais ela não

foi amplamente adotada pelos sistemas operacionais, nem igualmente pelos

programadores (hoje em dia, ela foi praticamente abandonada).” (2018, n. p.).

2.2.5 Interrupções

Em arquitetura de computadores, uma interrupção é um evento que faz o processador

parar o que está fazendo para executar um código de tratamento de interrupção, para

depois retomar a execução de onde parou. Conforme elabora Zhirkov (2018, n. p.).

As interrupções nos permitem alterar o controle de fluxo do programa em um
instante arbitrário no tempo. Enquanto o programa estiver executando,
eventos externos (dispositivos que exijam a atenção da CPU) ou internos
(divisão por zero, nível de privilégio insuficiente para executar uma instrução,
um endereço não canônico) poderão provocar uma interrupção, o que
resultará em outro código sendo executado. Esse código é chamado de
handler da interrupção (interrupt handler) e faz parte do software de um
sistema operacional ou de um driver (ZHIRKOV, 2018, n. p.).

Também é possível causar uma interrupção através de uma instrução. Esse

tipo de interrupção é chamada de interrupção por software. Como será elaborado na

seção 2.3, as interrupções por software podem ser usadas para acessar as funções

BIOS.

Na arquitetura x86, o handler de interrupção, bem como seus atributos, é

definido em uma tabela semelhante a GDT chamada Interrupt Descriptor Table (IDT).

BergOS define uma IDT, mas ela não será estudada neste trabalho.

26

2.3 BIOS

O BIOS é “[…] uma interface ou ‘camada’ de software que isola os sistemas

operacionais e programas aplicativos de dispositivos de hardware específicos” (IBM,

1987, 1-3, tradução nossa). Sua função é fornecer uma leve abstração para que o

programador assembly possa manipular dispositivos de bloco ou caractere sem se

preocupar com suas características específicas.

A abstração é alcançada através de um conjunto de rotinas, às vezes

chamadas de funções BIOS. As funções BIOS ficam armazenadas em uma Read-

Only Memory (ROM) e são carregadas para a memória principal na inicialização do

computador.

As interrupções de hardware são usadas para acessar rotinas do sistema. O

número da interrupção corresponde ao tipo de serviço solicitado; por exemplo, a

interrupção de número 0x10 refere-se a serviços de vídeo. O valor definido no

registrador AH determina a função específica do BIOS a ser executada. Algumas

rotinas exigem parâmetros adicionais, que são passados por meio de outros

registradores. As funções BIOS disponíveis no serviço de vídeo podem ser

consultadas na Figura 2.

Figura 2 – Funções BIOS disponíveis no serviço de vídeo

Fonte: IBM (1987)

27

É comum em programação de baixo nível o uso de números hexadecimais

para representar valores, principalmente endereços de memória. Neste trabalho, todo

valor precedido por “0x” deve ser entendido como um valor hexadecimal.

Para escrever um caractere na tela, por exemplo, a função BIOS Write Teletype

to Active Page pode ser usada. A Figura 3 mostra um código NASM que usa a função

BIOS citada para imprimir o caractere “!”:

Primeiro o registrador AH é definido com o valor 0xE para selecionar a função

BIOS que escreve na página ativa, depois o registrador AL é definido com o valor do

caractere “!” (o NASM converte caracteres em aspas simples para valores ASCII), e,

por fim, uma interrupção 0x10 é disparada por software, fazendo com que a função

BIOS execute.

Além da camada de abstração, o BIOS cumpre outras funções importantes no

sistema computacional. De acordo com Dodge, Irvine e Nguyen “As funcionalidades

do BIOS podem ser divididas em três áreas: POST, Setup e Boot.” (2005, p. 80,

tradução nossa).

A operação POST detecta e inicializa os componentes de hardware. Após a

conclusão de POST, o sistema BIOS fornece ao usuário a possibilidade de entrar em

modo Setup, onde é possível alterar algumas configurações do BIOS como a ordem

de boot. Por fim, o BIOS executa a interrupção de número 0x19 que procura, na

sequência definida pela ordem de boot, por um dispositivo bootável, carrega seu

Figura 3 – Imprimindo um caractere usando uma função BIOS

Fonte: Elaborado pelo autor (2025)

28

primeiro setor para a memória e transfere o controle para o programa contido nele,

geralmente um bootloader (DODGE, IRVINE, NGUYEN, 2005, p. 80).

2.4 E/S mapeada na memória

Qualquer arquitetura deve apresentar maneiras de se comunicar com dispositivos de

E/S. Esses dispositivos podem ter interfaces muito complexas, o que faz da

programação com instruções próprias de E/S inconveniente, verbosa e propensa a

erros. Contudo, há uma técnica chamada de E/S mapeada na memória que contorna

esse problema, tornando a programação de dispositivos de E/S mais fácil por fazer o

dispositivo acessível através da memória principal. Como elabora Stallings (2017, p.

200).

Com a E/S mapeada na memória, existe um único espaço de endereço para
locais de memória e dispositivos de E/S. O processador trata os registradores
de estado e dados dos módulos de E/S como locais de memória e usa as
mesmas instruções de máquina para acessar a memória e os dispositivos de
E/S. Assim, por exemplo, com dez linhas de endereço, um total combinado de
210 = 1.024 locais de memória e endereços de E/S podem ser aceitos, em
qualquer combinação (STALLINGS, 2017, p. 200).

O emulador de terminal do BergOS usa um driver de Video Graphics Array

(VGA), que utiliza a técnica de E/S mapeada na memória para permitir que o programa

escreva ou desenhe na tela através da manipulação de endereços de memória.

O próximo capítulo apresentará o bootloader do BergOS acompanhado de uma

análise que expõe o processo de carregar o kernel na memória e passar o controle da

máquina para ele.

29

3 BOOTLOADER

Um bootloader tem o objetivo de carregar o kernel na memória e colocar a máquina em

um estado esperado por ele. O bootloader do BergOS entrega o controle da máquina

para o kernel com o processador em modo protegido, com as interrupções desligadas

e o modo de vídeo definido para 3.

3.1 Pré-bootloader

Na etapa de setup, o BIOS fornece ao usuário a opção de alterar a ordem de boot, que

é uma lista contendo dispositivos de armazenamento em massa, como HDs e SSDs. O

BIOS lê o primeiro setor de cada dispositivo procurando por um dispositivo bootável.

Um dispositivo bootável é aquele no qual os últimos dois bytes do seu primeiro setor

contêm um número mágico chamado de assinatura de boot, o valor 0xAA55. Após um

dispositivo bootável ter sido localizado, o BIOS executa a interrupção 0x19, que

carrega o primeiro setor do dispositivo para o endereço 0x7C00 e salta para ele,

transferindo o controle para o programa carregado. O estado da máquina após o fim

da etapa de boot consiste no registrador CS com o valor zero, o registrador IP com o

valor 0x7C00 e o registrador DL com o número do dispositivo no qual o boot ocorreu

(IBM, 1987, 2-113).

Como apenas um setor do dispositivo é carregado, o bootloader não tem

espaço para ser muito complexo. Caso mais de 512 bytes, tamanho de um setor,

sejam necessários, um multi-stage bootloader pode ser usado, que “em vez de um

único programa que carrega o sistema operacional diretamente, os multi-stage

bootloaders dividem suas funcionalidades em programas menores que carregam uns

aos outros sucessivamente.” (DODGE; IRVINE; NGUYEN, 2005, p. 80, tradução

nossa). O bootloader do BergOS é simples e consegue ser contido em apenas um

setor.

O bootloader do BergOS é um código assembly localizado no arquivo

./arch/i386/boot/bootloader.asm, no qual as duas últimas linhas são responsáveis pela

assinatura de boot, como mostra a Figura 4:

30

A linha 81 é responsável por preencher o resto do setor com zeros. O NASM

possui “pseudo-instruções” que são instruções que não fazem parte da arquitetura

x86, mas instruem o montador a realizar alguma ação. A instrução times é uma

pseudo-instrução que diz para o NASM repetir uma instrução por determinado número

de vezes. A pseudo-instrução db significa que, naquela parte do binário final, o NASM

deve preencher com um byte de valor definido. O trecho “510 - ($- $$)” é uma forma de

obter quantos bytes ainda não foram preenchidos para completar 510 bytes. A

instrução toda diz para o NASM preencher o binário de zeros até o byte 510,

reservando os últimos dois bytes para a assinatura de boot. Por fim, na linha 82, a

pseudo-instrução dw, semelhante a db, com a exceção de que preenche com uma

word (2 bytes) em vez de um byte, coloca o valor 0xAA55 nos últimos dois bytes do

binário final, o que torna o dispositivo cujo primeiro setor contém o binário de

bootloader.asm em um dispositivo bootável.

3.2 Definindo os segmentos e a pilha

A Figura 5 mostra o início do bootloader do BergOS.

Figura 4 – Assinatura de boot

Fonte: Elaborado pelo autor (2025)

Figura 5 – Cabeçalho do bootloader

Fonte: Elaborado pelo autor (2025)

31

A primeira linha de bootloader.asm define a macro KERNEL_OFFSET com o

valor 0x7E00, que é o endereço de memória para o qual o kernel do BergOS será

carregado. A linha 3 informa ao NASM para pôr o código em uma seção

chamada .bootloader.

O processo de compilação de BergOS, primeiro compila todo o código para o

formato ELF32 e apenas no processo de linkagem é transformado em binário puro.

Como o bootloader tem que estar no primeiro setor do disco, definir uma seção própria

para ele torna possível definir um script de linkagem que garanta que ele seja posto

logo no começo do binário final. Uma explicação detalhada sobre esse script de

linkagem pode ser encontrada no Apêndice A. A linha 5 informa ao NASM que um

símbolo chamado main é externo e deve ser resolvido durante o processo de

linkagem. Esse símbolo refere-se à função principal main, escrita em linguagem C,

que serve como ponto de entrada do kernel do BergOS. A linha 7 é uma diretiva que

instrui o NASM a montar as instruções subsequentes no formato de 16 bits, o que é

necessário uma vez que o processador é inicializado no modo real.

O início do programa do bootloader se dá pelo rótulo set_segmentation. Esse

rótulo, assim como outros, não é necessário e não será usado em instruções de desvio

de fluxo como jmp ou call, ele serve apenas para tornar o código assembly mais

estruturado e fácil de compreender. A Figura 6 mostra o código de set_segmentation.

A instrução xor, que representa a operação “ou exclusivo”, recebe dois

operandos, um registrador e um valor que pode vir de outro registrador ou da memória,

aplica a operação e armazena o resultado no registrador do primeiro operando. A

operação de “ou exclusivo” quando aplicada a valores iguais resulta em zero, portanto

Figura 6 – Definição dos registradores de segmento no bootloader

Fonte: Elaborado pelo autor (2025)

32

a instrução serve para zerar o valor de AX. O mesmo resultado poderia ser obtido com

“mov ax, 0”, porém essa instrução, junto ao operando, ocupa 3 bytes, enquanto a

instrução equivalente com xor ocupa 2 bytes. É uma prática comum em programação

assembly poupar bytes com instruções mais econômicas. Prática inteligente de se

seguir, já que o programa do bootloader está limitado a 512 bytes. Com o valor de AX

zerado ele é usado para definir todos os registradores de segmento como zero.

Depois de definir os registradores de segmento, os registradores de pilha são

configurados no rótulo set_stack. O programa faz os registradores BP e SP apontar

para o endereço 0x7C00. A pilha “cresce para baixo”, o que significa que push

(instrução que coloca um valor na pilha) subtrai o valor de SP enquanto pop (instrução

que remove um valor da pilha) soma o valor de SP, o que garante que a pilha não

sobrescreverá o programa do bootloader durante a execução. A Figura 7 mostra

set_stack.

Após definir a pilha, no rótulo set_video_mode o bootloader executa uma

interrupção para acessar uma função de vídeo do BIOS chamada Set Mode, com a

finalidade de alterar o modo de vídeo para 3. Isso será útil para o driver de VGA do

BergOS, que depende que o modo de vídeo seja este. O código de set_video_mode

será explicado no capítulo 4.

3.3 Carregando o kernel para a memória

Os primeiros 512 bytes do binário de BergOS são reservados para o bootloader. Nos

bytes seguintes fica localizado o kernel. O kernel do BergOS está, portanto, a partir do

segundo setor do disco no qual o bootloader foi executado.

Figura 7 – Definindo a pilha

Fonte: Elaborado pelo autor (2025)

33

Há várias maneiras de ler um disco. Umas mais antigas e outras mais

modernas.

Historicamente, o endereçamento dos blocos usava um padrão denominado
CHS (Cylinder-Head-Sector): para acessar cada bloco, era necessário
informar a cabeça (ou seja, a face), o cilindro (trilha) e o setor do disco onde
se encontra o bloco. Esse sistema foi mais tarde substituído pelo padrão LBA
(Logical Block Addressing), no qual os blocos são endereçados linearmente
(0, 1, 2, 3, ...), o que é muito mais fácil de gerenciar pelo sistema operacional.
Como a estrutura física do disco rígido continua a ter faces, trilhas e setores,
uma conversão entre endereços LBA e CHS é feita pelo firmware do disco
rígido, de forma transparente para o restante do sistema (MAZIERO, p. 262).

As funções BIOS suportavam, originalmente, apenas o padrão Cylinder-Head-

Sector (CHS). Posteriormente algumas implementações começaram a fornecer

extensões para suportar Logical Block Addressing (LBA). A Phoenix Technologies

formalizou, em 1994, um padrão chamado de Enhanced Disk Drive, que expande as

capacidades do serviço de disco, acessadas pela interrupção 0x13, para lidar com

padrões de disco mais modernos, incluindo LBA. BergOS usa funções disponíveis

nessa extensão para ler o disco e carregar o kernel para a memória.

O rótulo read_kernel identifica o código responsável pela leitura do kernel:

Figura 8 – Carregando o kernel para a memória

Fonte: Elaborado pelo autor (2025)

34

Na linha 24, o valor 0x42 é posto em AH, o código que identifica a função BIOS

Extended Read. A função também exige que o número do dispositivo que ela deve ler

seja posto no registrador DL, porém, como o BIOS já inicializa esse registrador com o

valor que identifica o disco em que o boot ocorreu, não é necessário alterá-lo.

Na linha 25, o registrador SI recebe um endereço de memória onde está contida

uma estrutura chamada Disk Address Packet (DAP). Por fim, uma interrupção 0x13 é

disparada para invocar a função BIOS.

Caso um erro ocorra, a flag carry do registrador FLAGS será ligada (definida

para 1). A instrução jnc faz um salto para o endereço especificado se a flag carry não

estiver definida. Ou seja, se nenhum erro ocorreu e a leitura do kernel foi concluída, o

programa salta para o rótulo load_gdt, caso contrário, as linhas 30 a 39 são

responsáveis por imprimir uma mensagem de erro e parar a execução do

processador.

Embora a função pareça simples, os parâmetros mais complexos são

definidos no DAP, e não em registradores. É nele onde será especificado quantos

blocos serão lidos, a partir de qual bloco será lido e em qual endereço o conteúdo lido

será colocado. Segundo a Phoenix Technologies “A estrutura de dados fundamental

para as extensões Int 0x13 é o Disk Address Packet. Int 0x13 converte as informações

de endereçamento do Disk Address Packet para parâmetros físicos apropriados para

a mídia.” (1995, p. 7). A Tabela 3 descreve os campos do DAP.

Tabela 3 – Disk Address Packet

Offset Tipo Descrição

0 Byte Tamanho do DAP em bytes.

Deve ser maior ou igual a 16.

1 Byte Reservado, deve ser 0.

2 Byte Número de blocos para

transferir.

3 Byte Reservado, deve ser 0.

4 Double Word (4 bytes) O endereço, no padrão

segmento:offset, em que as

operações de escrita/leitura

35

serão realizadas.

8 Quad Word (8 bytes) Número do primeiro bloco, no

padrão LBA, em que as

operações de escrita/leitura

serão realizadas.

Fonte: Elaborado pelo autor (2025).

O DAP usado pelo bootloader do BergOS é definido no rótulo DAP. A Figura 9

mostra a definição do DAP para a leitura do kernel.

Juntando o segmento com o offset, o endereço para onde o kernel será lido é

0x0000:KERNEL_OFFSET, que, com a expansão da macro KERNEL_OFFSET,

resulta em 0x0000:0x7E00.

3.4 Colocando o processador em modo protegido

Colocar o processador em modo protegido é simples, bastando apenas mudar um bit

em um registrador. Porém, para que ele funcione apropriadamente, uma GDT deve

ser definida. Uma GDT é uma tabela de descritores de segmentos que, segundo a Intel

Corporation, “[…] é um array de descritores de segmento. Uma tabela de descritores é

variável em tamanho e pode conter até 8192 (213) descritores de 8 bytes.” (2025, Vol.

3A 3-14, tradução nossa). No modo protegido, diferentemente do modo real, os

registradores de segmento deixam de ser usados diretamente no cálculo de

endereços e passam a atuar como índices que selecionam um descritor em uma

Figura 9 – Definição do DAP

Fonte: Elaborado pelo autor (2025)

36

tabela de descritores de segmentos. Esses descritores descrevem atributos do

segmento como endereço base, nível de privilégio, tipo do segmento (código, data)

dentre outros.

Há outras tabelas de descritores na arquitetura x86 como a IDT, fundamental

para tornar a arquitetura multitarefa, já que é ela a responsável por lidar com as rotinas

de tratamento de interrupção; e a Local Descriptor Table (LDT) que é muito

semelhante a uma GDT e tinha o propósito de auxiliar os sistemas operacionais na

alternância de tarefas, mas os projetistas de sistemas operacionais não a adotaram.

Para o modo protegido, apenas a GDT é necessária. A Figura 10 mostra a estrutura de

uma GDT e uma LDT.

Cada entrada de uma GDT é um descritor de segmento e ocupa 8 bytes. O

primeiro descritor de uma GDT não é usado. Os registradores de segmento CS, DS,

Figura 10 – A estrutura de uma GDT e uma IDT

Fonte: Intel Corporation (2025)

37

ES, FS, GS e SS armazenam um valor que serve como um índice para obter o

descritor de segmento correspondente na GDT.

A Figura 11 mostra a estrutura de um descritor de segmento.

A estrutura de um descritor de segmento é composta por campos distribuídos

de maneira não contígua ao longo de 64 bits. Essa disposição caótica e confusa existe

para manter compatibilidade com versões antigas da arquitetura x86. Os campos da

GDT desempenham o seguinte papel:

• Base Address: O endereço base é definido por três campos fragmentados:

“Base 31:24”. “Base 23:16” e “Base Address 15:00”, que, em conjunto, formam

um valor de 32 bits que indica o início do segmento.

• Segment Limit: O limite de segmento é determinado por dois campos: “Seg.

Limit 19:16” e “Segment Limit 15:00”, que compõem um valor de 20 bits. Esse

valor define o tamanho do segmento. Se o bit de granularidade (G) estiver

definido como 0, o limite é calculado em incrementos de bytes, permitindo

Figura 11 – A estrutura de um descritor de segmento

Fonte: Intel Corporation (2025)

38

segmentos de até 1 MB (220). Se G for 1, o limite é calculado em incrementos de

4 KB, possibilitando segmentos de até 4 GB (220 * 4 KB).

• P (segment present): Indica se o segmento está presente na memória.

• DPL (descriptor privilege level): Define o nível de privilégio necessário para

acessar o segmento. Pode assumir valor de 0 a 3, sendo 0 o mais privilegiado e

3 o menos privilegiado.

• S (descriptor Type): Se for 0 indica que o segmento é um segmento de

sistema, se for 1 indica que é um segmento de código ou dados.

• TYPE: Se o valor de S for 1, este campo serve para selecionar entre um

segmento de código ou segmento de dados e definir suas características.

• D/B (default operation size): Se for 0, o segmento é tratado como um

segmento de 16 bits, se for 1, o segmento é tratado como um segmento de 32

bits.

• G (granularity): Determina a escala do campo Segment Limit.

• L (64-bit code segment): Disponível apenas em plataformas que suportam

IA-32e.

• AVL (available and reserved bits): Disponível para ser usado pelo sistema.

A GDT desempenha um papel fundamental na separação do espaço de usuário

e do espaço de kernel. O campo DPL é usado para definir os níveis de privilégio de um

segmento. Apesar desse campo poder assumir 4 valores diferentes, historicamente os

sistemas operacionais fazem uso de apenas dois deles, com o nível 0 sendo usado

para o espaço de kernel e o nível 3 sendo usado para o espaço de usuário.

Para que o processador passe a usar a GDT definida, seu endereço e tamanho

precisam ser carregados para um registrador especial chamado GDTR (INTEL

CORPORATION, 2025, Vol. 3A 3-1). Para isso, outra estrutura na memória será

necessária. A Figura 12 ilustra essa estrutura.

39

A estrutura é autoexplicativa, mas um detalhe importante é que o campo

“Tamanho” deve conter o tamanho real da GDT subtraído por 1. Isso decorre do fato

de que 16 bits podem representar números em um intervalo de 0 a 65535 (216 – 1).

Porém, como não há GDT com tamanho de zero bytes, o valor 0 representa uma GDT

de 1 byte, o valor 1 uma GDT de 2 bytes e assim sucessivamente.

A Figura 13 mostra a GDT usada pelo bootloader do BergOS, com a definição

da estrutura a ser carregada na GDTR e dos descritores de segmento.

O rótulo GDT demarca o início das estruturas referentes a GDT. Na linha 70, a

pseudo-instrução dw é usada para definir o valor de 16 bits que representa o tamanho

da GDT. Um cálculo com endereços é feito para obter o tamanho da GDT subtraído

por 1. Enquanto a linha 71 usa a pseudo-instrução dd para um valor de 32 bits que

representa o endereço da GDT.

O rótulo local .begin marca o início da GDT propriamente dita. Como BergOS

não faz uso de segmentação, por ser um mecanismo obsoleto, e nem faz separação

Figura 12 – Estrutura para GDTR

Fonte: Elaborado pelo autor (2025)

Figura 13 – Definição da GDT usada pelo bootloader do BergOS

Fonte: Elaborado pelo autor (2025)

40

do espaço de kernel e espaço de usuário, os segmentos definidos na GDT são bem

simples.

A GDT usada pelo bootloader do BergOS define apenas dois segmentos

válidos: um para código e outro para dados. A única diferença entre eles é um bit que

determina qual é o segmento de código e qual é o segmento de dados. De resto,

ambos têm as mesmas características: endereço base igual a 0, limite do segmento

igual a 0xFFFFF (tamanho máximo), nível de privilégio igual a 0 (mais privilegiado).

Como o primeiro descritor de uma GDT não é usado, o rótulo local .null

preenche essa entrada com zeros. Já os rótulos locais .code e .data definem os

descritores de segmento de código e de dados, respectivamente.

Após a definição dessa estrutura, o registrador GDTR pode finalmente ser

carregado com o endereço dela. Isso é feito no rótulo load_gdt que foi para onde o

programa do bootloader saltou após carregar o kernel. A Figura 14 mostra o rótulo

load_gdt.

Primeiramente, as interrupções são desligadas com a instrução cli, depois a

estrutura é carregada para o registrador GDTR através da instrução lgdt. Desligar as

interrupções serve tanto para evitar comportamentos indesejados quanto para cumprir

o contrato entre o bootloader e o kernel onde o primeiro deve entregar o controle da

máquina para o segundo com as interrupções desligadas.

Figura 14 – Definindo o registrador GDTR

Fonte: Elaborado pelo autor (2025)

41

A Figura 15 mostra o rótulo enable_protected_mode, onde o processador

finalmente é posto em modo protegido.

Nas linhas 46, 47 e 48, o valor do registrador de controle CR0 é copiado para

EAX (a versão estendida de 32 bits de AX), uma instrução or, que representa a

operação “ou inclusivo”, é usada para ativar o primeiro bit do registrador para, na

operação seguinte, colocar o valor de volta em CR0. O primeiro bit de CR0 determina

se o processador está em modo protegido ou não, portanto, ao ativá-lo, o processador

está definitivamente em modo protegido.

A linha 50 faz um cálculo para obter o índice do segmento de dados, definido na

GDT, para, nas linhas 51 a 55, fazer os registradores de segmento DS, ES, FS, GS e

SS usarem o mesmo segmento de dados.

Figura 15 – Colocando o processador em modo protegido e passando o controle para o

kernel

Fonte: Elaborado pelo autor (2025)

42

A linha 57 é importante por duas razões: a primeira é que ela altera o segmento

de código, a segunda é que ela é responsável por realizar o salto para o kernel do

BergOS. O valor de CS não pode ser alterado com uma instrução mov como os outros.

Portanto, para alterar o segmento de código é necessário alguma instrução de desvio

de fluxo. A instrução jmp permite alterar o valor de CS especificando o valor do

segmento antes do endereço em si.

O segmento pode ser um dos registradores de segmento ou um valor

imediato. A linha 57 faz um jmp para o símbolo main, que é a função principal do kernel

do BergOS, alterando o valor de CS para o índice do segmento de código, definido na

GDT.

A função de entrada do BergOS, main, é definida no arquivo ./kernel/main.c,

como mostra a Figura 16.

Figura 16 – Função main do kernel do BergOS

Fonte: Elaborado pelo autor (2025)

43

É uma boa prática em desenvolvimento de sistemas operacionais criar uma

camada de código que é mais baixo nível, com rotinas que dependem de recursos

específicos de uma arquitetura, e uma camada mais alto nível que tenta ser o mais

adequadamente independente. Assim, caso os desenvolvedores queiram portar o

sistema para uma outra arquitetura, apenas as rotinas de baixo nível precisariam ser

reescritas. Isso promove uma programação baseada em interfaces, onde o código de

alto nível invoca rotinas de baixo nível sem se importar com a implementação delas.

No repositório do BergOS, todo código da camada de alto nível está no diretório

./kernel/, e todo código da camada de baixo nível está no diretório ./arch/. Dentro

de ./arch, há outros diretórios, cada um se referindo à implementação de uma

arquitetura específica. Por exemplo, a implementação para arquitetura i386, a

estudada neste trabalho, está em ./arch/i386/.

A linha 5 chama a função de baixo nível kernel_initialize, que é definida no

cabeçalho ./kernel/include/kernel.h. Ela é responsável por fazer quaisquer

configurações e inicializações necessárias para o funcionamento do kernel. Sua

implementação está em ./arch/i386/kernel.c. No caso da implementação para i386, a

função configura uma GDT para ser usada pelo kernel, já que a definida pelo

bootloader foi apenas uma necessidade para colocar o processador em modo

protegido. Apesar da GDT configurada por kernel_initialize ser, atualmente, idêntica à

do bootloader, é uma boa prática torná-las independentes, já que caso futuramente o

BergOS venha a ter separação entre espaço de kernel e espaço de usuário, a

funcionalidade poderia ser implementada facilmente sem fazer com que o bootloader

perca sua simplicidade.

Na linha 7, a função de baixo nível tty_initialize é chamada. Ela é responsável

por inicializar o emulador de terminal, que será usado pelo kernel para realizar saída

de dados.

As linhas 9 e 10 usam a função tty_printf para escrever strings na tela que,

juntas, formam a mensagem “Hello, world! I am BergOS”. Por fim, na linha 12, como a

função main não deve retornar, é chamada a função de baixo nível kernel_halt que

para a execução do processador.

44

A função main apresenta todo o comportamento visível do kernel do BergOS

para o usuário que executa o sistema. A Figura 17 mostra a execução do BergOS no

emulador QEMU.

O próximo capítulo apresenta o padrão VGA, como ele pode ser usado para

se comunicar com o dispositivo de vídeo e termina com um exame detalhado do driver

de VGA usado pelo BergOS.

Figura 17 – Execução de BergOS

Fonte: Elaborado pelo autor (2025)

45

4 DRIVER DE VGA

Computação gráfica é um tópico complexo e extenso que se tornou fundamental na

computação. Ferramentas modernas, como Cuda, facilitam o trabalho dos

programadores fornecendo camadas de abstração. Porém, décadas atrás os

programadores não tinham esse luxo e eram obrigados a lidar com interfaces

espartanas e problemas de portabilidade.

Um avanço importante foi feito com a introdução do padrão VGA, que, segundo

Wilson “[…] é um padrão de exibição de vídeo e um tipo de conexão amplamente

utilizado na indústria de computadores há décadas. Introduzido pela IBM em 1987, o

VGA rapidamente se tornou o padrão gráfico para PCs e lançou as bases para os

monitores de computador modernos.” (2024, tradução nossa).

Apesar de ser um padrão antigo, ele ainda é suportado pela maioria dos

dispositivos de vídeo modernos. Portanto é uma boa ideia ter um driver simples de

VGA para ter suporte a vídeo logo no estágio inicial de desenvolvimento de um

sistema operacional, com a segurança de que provavelmente ele funcionará em

qualquer hardware.

Mesmo que o padrão VGA permita uma resolução de 640 x 480 e tenha suporte

a 256 cores (WILSON, 2024), nenhum desses recursos é usado no driver do BergOS.

Na verdade, o padrão VGA tem suporte a vários modos de vídeo, incluindo os antigos

modos que surgiram nos PCs da IBM anteriores ao PS/2, onde o padrão VGA foi

introduzido. A Figura 18 mostra os modos de vídeo disponíveis para um IBM PS/2.

Figura 18 – Modos de vídeo disponíveis

Fonte: IBM (1987)

46

Os modos de vídeo variam entre All Points Addressable (APA), que permitem

uma manipulação gráfica através de pixels, e Alphanumeric (A/N), onde a

manipulação gráfica ocorre através de caracteres. O driver de VGA do BergOS utiliza

o modo 3, que permite a escrita de caracteres em uma matriz 80 x 25 com suporte a 16

cores.

Ainda que a maioria das implementações do BIOS já inicialize com o modo de

vídeo 3, o bootloader do BergOS garante que a máquina esteja nesse modo utilizando

a função BIOS Set Mode. Isso é feito antes do kernel ser carregado, como mostra a

Figura 19.

O valor 0, que representa a função Set Mode nos serviços de vídeo, é posto em

AH. Logo em seguida o valor 3 é posto em AL, o modo de vídeo desejado, e então uma

interrupção de vídeo é invocada, garantindo que o modo de vídeo seja 3.

O interessante do padrão VGA é que ele usa E/S mapeada na memória, onde

para escrever um caractere na tela em algum modo alfanumérico, basta colocar o

código do caractere em um endereço de memória comum. O endereço de memória

mapeado depende do modo de vídeo utilizado. No modo 3, os endereços vão de

0xB8000 a 0xBFFFF (FERRARO, 1994, p. 181).

De acordo com Ferraro “Nos modos alfanuméricos, os códigos que

representam o caractere e o atributo do caractere são armazenados na memória. Um

único byte é dedicado a cada código de caractere, permitindo o acesso a 256

Figura 19 – Definindo o modo de vídeo para 3

Fonte: Elaborado pelo autor (2025)

47

caracteres. Um único byte também é dedicado ao atributo do caractere.” (FERRARO,

1994, 181).

O byte do caractere é um endereço par e o atributo desse caractere é o

endereço ímpar seguinte. A Figura 20 ilustra essa ideia.

Os modos alfanuméricos também possuem um sistema de páginas. No

entanto, o driver do BergOS não utiliza esse sistema, escrevendo apenas na página 0.

Sendo assim, há espaço para 80 x 25 (2000) caracteres no emulador de terminal.

O byte de atributo pode ser dividido em um par de 4 bits cada. Os 4 bits menos

significativos são usados para determinar a foreground color (cor do caractere), e os 4

bits mais significativos são usados para determinar a background color (cor de fundo).

A Figura 21 mostra a representação de um byte de atributo juntamente a um byte de

caractere.

Figura 20 – Organização dos caracteres na memória no padrão VGA

Fonte: Elaborado pelo autor (2025)

Figura 21 – Byte de caractere e byte de atributo

Fonte: Elaborado pelo autor (2025)

48

Como uma cor é definida por 4 bits, esse modo de vídeo tem 24 (16) cores

disponíveis. As cores são definidas através de um padrão RGB. A Figura 22 mostra

um byte de atributo demarcando esse padrão.

A Tabela 4 mostra todas as combinações possíveis de cores.

Tabela 4 – Combinações de cores RGB possíveis em 4 bits

Código RGB Cor

0000 Preto

0001 Azul

0010 Verde

0011 Ciano

0100 Vermelho

0101 Magenta

0110 Marrom

0111 Branco

1000 Cinza

1001 Azul claro

1010 Verde claro

1011 Ciano claro

1100 Vermelho claro

1101 Magenta claro

1110 Amarelo (Marrom claro)

1111 Branco brilhante

Figura 22 – Byte de atributo

Fonte: Elaborado pelo autor (2025)

49

Fonte: Elaborado pelo autor (2025).

Em alguns casos, os bits 3 e 7 do byte de atributo assumem significados

especiais. No entanto, essas funcionalidades não são consideradas na

implementação do BergOS.

4.1 Definição da interface do driver de VGA

A interface do driver de VGA é definida no arquivo de cabeçalho

./arch/i386/video/vga/vga.h. A Figura 23 mostra o conteúdo desse arquivo.

As linhas 4 e 5 definem macros que se referem às dimensões da tela.

Conforme mencionado, no modo de vídeo utilizado há uma matriz de 80 x 25.

Portanto, a constante VGA_MAXY é definida como 25 e a constante VGA_MAXX é

definida como 80.

Figura 23 – Definição da interface do driver de VGA

Fonte: Elaborado pelo autor (2025)

50

A interface também define o tipo enum VGAColor. Esse enum possui

constantes que representam todas as cores disponíveis, as quais podem ser utilizadas

como argumentos para as rotinas do driver sempre que uma cor precisar ser

especificada.

Na linguagem C, enums funcionam essencialmente como syntactic sugars para

um int. Isso significa que qualquer valor int válido é um VGAColor válido, mesmo que

não corresponda a nenhuma das constantes de cor definidas.

Portanto, a definição do tipo VGAColor não proporciona segurança de tipos, já

que um valor inválido (diferente das constantes de cor pré-definidas) pode ser

atribuído a uma variável desse tipo. Isso faz com que as rotinas do driver tenham que

validar os argumentos passados.

Ainda assim, a definição de VGAColor é vantajosa por tornar a interface mais

autoexplicativa. O programador, ao se deparar com uma rotina com um parâmetro do

tipo VGAColor, entende que deve usar uma das constantes de cor definidas,

melhorando a usabilidade da interface.

A linha 26 declara a rotina vga_write para escrita de caracteres. Ela retorna um

valor diferente de zero em caso de erro e tem os seguintes parâmetros:

• O índice (posição de memória) onde o caractere será escrito.

• O caractere que será escrito.

• A foreground color (cor do caractere).

• A background color (cor de fundo).

A linha 27 declara a rotina vga_read para recuperar informações de um

caractere. Ela retorna um valor diferente de zero em caso de erro e tem os seguintes

parâmetros:

• O índice (posição de memória) do caractere a ser lido.

• Um ponteiro para armazenar o caractere daquele índice.

51

• Um ponteiro para armazenar a foreground color (cor do caractere) do

caractere daquele índice.

• Um ponteiro para retornar a background color (cor de fundo) do caractere

daquele índice.

4.2 Implementação da interface do driver de VGA

A implementação da interface do driver de VGA está no arquivo

./arch/i386/video/vga/vga.c. A Figura 24 mostra o início do arquivo.

A linha 1 inclui o arquivo de cabeçalho que contém a definição da interface do

driver. As linhas 2 e 3 incluem cabeçalhos necessários para acessar recursos que

serão utilizados na implementação do driver, como a constante NULL e tipos inteiros

de tamanho especificado, como uint16_t.

A linha 5 define a macro VGA_MEMORY como um ponteiro do tipo uint16_t

(inteiro sem sinal de 16 bits) que aponta para o endereço de memória 0xB8000, local

onde se inicia o buffer de memória mapeada para vídeo no modo texto.

Esta definição permite utilizar a sintaxe de arrays da linguagem C para

manipular diretamente o buffer de vídeo. Cada posição do array acessa uma palavra

de 16 bits (2 bytes) que contém tanto o caractere quanto seus atributos de cor na

memória VGA. Dessa forma, operações de leitura e escrita no buffer tornam-se mais

intuitivas. A Figura 25 ilustra visualmente este conceito, mostrando como cada

elemento do array corresponde a uma posição específica na tela, armazenando em

Figura 24 – Início do arquivo de implementação do driver de VGA

Fonte: Elaborado pelo autor (2025)

52

uma única palavra de 16 bits o código do caractere (byte menos significativo) e seus

atributos (byte mais significativo).

4.2.1 Implementação da rotina vga_write

A Figura 26 mostra a implementação da rotina vga_write.

Na linha 8 é realizada uma verificação do índice passado como parâmetro.

Caso o valor seja menor que zero ou maior ou igual ao limite do buffer de vídeo

(calculado como 25 linhas por 80 colunas), a função retorna 1. Esse valor, diferente de

zero, indica a ocorrência de um erro.

Figura 25 – Acesso do byte de caractere e byte de atributo através de indexação de array

Fonte: Elaborado pelo autor (2025)

Byte de Caractere Byte de Atributo

0xB8000 0xB8001

VGA_MEMORY [0]

Byte de Caractere Byte de Atributo

0xB8002 0xB8003

VGA_MEMORY [1]

Figura 26 – Implementação da rotina vga_write

Fonte: Elaborado pelo autor (2025)

53

A instrução da linha 12 efetua a escrita do caractere na memória de vídeo,

composição que demanda a correta formatação do dado a ser armazenado. A

composição é feita através de uma série de operações bit a bit para construir um

uint16_t, que forma a unidade fundamental esperada pelo controlador VGA, com o

byte menos significativo sendo o caractere e o byte mais significativo sendo o atributo.

A estrutura deste dado é composta da seguinte forma:

• Composição do caractere: Os 8 bits menos significativos (posições de 0 a 7)

são preenchidos diretamente por character, após uma conversão explícita para

o tipo uint16_t. Esta etapa assegura a correta interpretação do caractere pelo

vídeo.

• Composição da foreground color: Os 4 bits subsequentes (posições de 8 a

11) armazenam o código da foreground color (cor do caractere). O operador de

deslocamento à esquerda (“<< 8”) posiciona este valor nos 4 bits menos

significativos do byte de atributo.

• Composição da background color: Os 4 bits mais significativos (posições de

12 a 15) são reservados para o código da background color (cor de fundo). O

deslocamento de 12 posições (“<< 12”) garante seu posicionamento nos 4 bits

mais significativos do byte de atributo.

A operação de OU bit a bit (|) é então utilizada para fundir esses três elementos

distintos (caractere, foreground color e background color) em um único valor de 16

bits. Por fim, este valor composto é atribuído à posição de memória solicitada

(“VGA_MEMORY[index]”), o que resulta na renderização visual do caractere no

monitor.

A abordagem de tratar o buffer de memória VGA como um array de uint16_t

demonstra-se vantajosa devido à característica little-endian da arquitetura x86. Neste

padrão, os bytes menos significativos são armazenados nas posições de memória

iniciais, o que resulta no posicionamento correto do byte de caractere seguido pelo

byte de atributo no formato exigido pelo controlador VGA. Esta disposição é ilustrada

na Figura 27.

54

Por fim, a função encerra com o retorno 0, indicando que não houve erros.

4.2.2 Implementação da rotina vga_read

A Figura 28 mostra a implementação da rotina vga_read.

Após a verificação inicial dos limites do índice, na linha 17, a função vga_read

procede com a extração e decodificação do dado armazenado na posição

especificada do buffer VGA. Esta operação é inversa à realizada por vga_write,

Figura 27 – Disposição de um uint16_t no buffer VGA

Fonte: Elaborado pelo autor (2025)

Figura 28 – Implementação da rotina vga_read

Fonte: Elaborado pelo autor (2025)

55

desmontando o valor uint16_t em seus componentes originais através de três

estruturas condicionais independentes.

Cada condicional verifica se o ponteiro recebido como parâmetro é diferente

de NULL antes de acessá-lo. Dessa forma, a implementação permite que o chamador

recupere seletivamente apenas os componentes de interesse, fornecendo NULL para

os parâmetros irrelevantes, o que confere flexibilidade à interface da função.

O processo de decodificação ocorre da seguinte forma:

• Extração do caractere: O primeiro condicional recupera diretamente o byte

menos significativo através de um cast para char, que corresponde ao código do

caractere armazenado nos 8 bits menos significativos do uint16_t.

• Extração da foreground color: O segundo condicional realiza o deslocamento

à direita de 8 posições (“>> 8”) para posicionar os 4 bits da cor do caractere nos

bits menos significativos, aplicando em seguida uma operação E bit a bit (“&

0xF”) para isolar exclusivamente estes 4 bits e descartar quaisquer outros

valores residuais.

• Extração da background color: O terceiro condicional executa um

deslocamento à direita de 12 posições (“>> 12”) para trazer os 4 bits da cor de

fundo para as posições menos significativas, igualmente aplicando a operação

E bit a bit para garantir que apenas os 4 bits relevantes sejam preservados.

Por fim, a função encerra com o retorno 0, indicando que não houve erros.

O próximo capítulo faz uma análise do programa do emulador de terminal do

BergOS, e como ele faz uso do driver de VGA, descrito neste capítulo, para fazer a

saída de dados.

56

5 EMULADOR DE TERMINAL

Um emulador de terminal é um programa que emula os antigos dispositivos terminais

usados para a entrada e saída de dados com o usuário. BergOS implementa um

emulador de terminal simples, fornecendo uma interface ao programador para que ele

possa escrever caracteres, escrever strings, formatar strings e escrever números

inteiros.

5.1 Definição da interface do emulador de terminal

A interface do emulador de terminal é definida na camada de alto nível, no arquivo

./kernel/include/tty.h. A Figura 29 mostra o conteúdo do arquivo.

A interface declara as seguintes rotinas para manipulação do emulador de

terminal:

Figura 29 – Definição da interface do emulador de terminal

Fonte: Elaborado pelo autor (2025)

57

• tty_initialize: Inicializa o programa do emulador de terminal. Deve ser chamada

antes de qualquer outra. Após uma execução bem-sucedida, todo o conteúdo

da tela será apagado, o cursor estará na posição inicial e o terminal estará em

modo LF. Retorna um valor diferente de zero em caso de erro.

• tty_clear: Apaga o conteúdo do terminal e volta o cursor para posição inicial.

Retorna um valor diferente de zero em caso de erro.

• tty_maxy: Retorna o valor máximo do eixo y.

• tty_maxx: Retorna o valor máximo do eixo x.

• tty_gety: Retorna a posição atual do cursor no eixo y.

• tty_getx: Retorna a posição atual do cursor no eixo x.

• tty_sety: Define a posição atual do cursor no eixo y. Retorna um valor diferente

de zero em caso de erro.

• tty_setx: Define a posição atual do cursor no eixo x. Retorna um valor diferente

de zero em caso de erro.

• tty_iscrlf: Retorna um valor diferente de zero caso o modo CRLF esteja ativado

ou um zero caso esteja desativado.

• tty_setcrlf: Ativa o modo CRLF se receber um valor diferente de zero ou

desativa caso o contrário.

• tty_putchar: Imprime o caractere recebido como argumento e avança o cursor.

Retorna um valor diferente de zero em caso de erro.

• tty_printf: Semelhante a printf da biblioteca padrão da linguagem C. Imprime

uma string, aplicando os argumentos adicionais aos códigos de formato

presentes na string e avança o cursor. Caso o código de formato seja inválido ou

não corresponda a um argumento válido o comportamento é indefinido. Os

códigos de formato são:

o “%c”: Imprime um caractere.

58

o “%s”: Imprime uma string.

o “%d”: Imprime um inteiro com sinal.

o “%u”: Imprime um inteiro sem sinal.

o “%x”: Imprime um inteiro sem sinal em formato hexadecimal.

o “%%”: Imprime o caractere “%”.

O cursor determina a posição onde será escrito o próximo caractere. Sua

posição é atualizada automaticamente por qualquer rotina de impressão de

caracteres, mas também pode ser definida manualmente por meio das rotinas tty_sety

e tty_setx ou através de caracteres de controle.

O emulador de terminal reconhece os caracteres de controle Carriage Return

(CR, representado por ‘\r’ na linguagem C), e Line Feed (LF, representado por ‘\n’ na

linguagem C). Conceitualmente, o CR move o cursor para o início da linha e o LF

avança o cursor para a linha seguinte. Contudo, o comportamento efetivo desses

caracteres é determinado pelo modo de operação do terminal.

Após a inicialização do terminal com a função tty_initialize, o terminal opera no

modo LF. Nesta configuração, cada ocorrência do caractere LF não apenas avança o

cursor para a próxima linha, mas também o reposiciona para o início dela.

Opcionalmente, o terminal pode operar no modo CRLF, onde é necessária a

sequência completa de ambos os caracteres (“\r\n”) para efetuar um avanço de linha

completo. Neste modo, o caractere LF ('\n') executa apenas o avanço vertical para a

próxima linha, enquanto o CR ('\r') é responsável pelo retorno do cursor ao início da

linha horizontal.

A Figura 30 mostra como seria a mensagem de saudações do BergOS caso o

modo CRLF fosse ativado.

59

Quando a escrita no terminal atinge o limite inferior da tela, o sistema executa

uma operação de rolagem vertical. Este mecanismo consiste em “puxar” todo o

conteúdo exibido para cima, onde cada linha é movida para a posição imediatamente

superior. Especificamente, o conteúdo original da primeira linha é descartado, o da

segunda linha passa a ocupar a primeira, o da terceira linha move-se para a segunda,

e este processo se repete sequencialmente até que a última linha do terminal seja

liberada para receber novos caracteres.

5.2 Implementação da interface do emulador de terminal

A implementação da interface do emulador de terminal está no arquivo

./arch/i386/tty.c. A Figura 31 mostra o início do arquivo de implementação.

Figura 30 – Mensagem de saudações do BergOS com o terminal operando em CRLF

Fonte: Elaborado pelo autor (2025)

60

Nas linhas 1 a 5, são incluídos arquivos de cabeçalho que fornecem os

recursos necessários para a implementação, entre os quais a interface do driver de

VGA.

Na linha 7, é declarada uma variável global do tipo int acessível em todo o

arquivo, que será utilizada para controlar a posição do cursor. Na linha 8, é definida

uma variável global do tipo bool que indica se o modo de operação CRLF está ativado.

Em C, a palavra-chave static assume significados distintos conforme o

contexto. Por padrão, identificadores de escopo de arquivo possuem vinculação

externa, podendo ser referenciados por outros arquivos durante o processo de

linkagem. É por conta desse mecanismo, por exemplo, que a função main do kernel é

visível para o bootloader.

No entanto, nem sempre é desejável expor um identificador. Para evitar que

tais identificadores sejam acessados externamente, utiliza-se a palavra-chave static.

Quando aplicada a variáveis ou funções em escopo de arquivo, static altera sua

vinculação para interna, limitando sua visibilidade exclusivamente ao arquivo onde

foram definidas. Dessa forma, as variáveis cursor e crlf, bem como quaisquer funções

Figura 31 – Início do arquivo de implementação do emulador de terminal

Fonte: Elaborado pelo autor (2025)

61

auxiliares do emulador de terminal, podem ser declaradas como static para restringir

seu acesso apenas à implementação local.

Esta abordagem oferece dois benefícios fundamentais: primeiro, promove o

encapsulamento ao ocultar os detalhes de implementação que não fazem parte da

interface pública; segundo, previne possíveis conflitos de nomes durante a linkagem,

já que identificadores com vinculação interna não são visíveis para outros arquivos

objeto.

No contexto do desenvolvimento de kernels, esse controle de visibilidade é

particularmente importante, pois permite organizar o código em módulos coesos com

interfaces bem definidas, reduzindo o acoplamento entre componentes e facilitando a

manutenção do sistema.

Nas linhas 16 a 22 está a implementação de tty_clear. Primeiramente, um for

loop é feito para iterar sobre todas as posições do buffer de vídeo, cuja dimensão total

é determinada pelo produto de VGA_MAXY e VGA_MAXX. Para cada posição, a

função invoca vga_write com o caractere de espaço e os atributos de cor que definem

o preto tanto para foreground color quanto para background color, removendo todo o

conteúdo da tela. Após isso, na linha 20 o cursor é posto na posição inicial. A função

retorna zero indicando que não houve erros.

Nas linhas 10 a 14, a implementação de tty_initialize começa invocando

tty_clear, que apaga o conteúdo da tela e põe o cursor na posição inicial, desabilita o

modo CRLF e encerra sua execução retornando zero para sinalizar a não ocorrência

de erros.

5.2.1 Implementação das rotinas relacionadas a posição do cursor

A Figura 32 mostra a implementação das rotinas relacionadas à posição do cursor.

62

Nas linhas 24 a 30 são implementadas as funções tty_maxy e tty_maxx, que

retornam os valores das macros VGA_MAXY e VGA_MAXX respectivamente. Estas

macros, definidas na interface do driver de VGA, representam os limites máximos do

terminal, indicando a última posição válida nos eixos y e x, respectivamente.

Nas linhas 32 a 34, a função tty_gety retorna a posição do cursor no eixo y com

a divisão da variável global cursor pela macro VGA_MAXX. A operação aproveita o

truncamento na divisão de inteiros, onde a parte fracionária do resultado é descartada,

para produzir o índice da posição vertical do cursor.

Complementarmente, nas linhas 36 a 38 a função tty_getx retorna a posição do

cursor no eixo x através da operação módulo entre cursor e VGA_MAXX. Esta

operação produz o resto da divisão entre os valores, que corresponde precisamente à

posição horizontal do cursor.

Figura 32 – Implementação das rotinas relacionadas a posição do cursor

Fonte: Elaborado pelo autor (2025)

63

Nas linhas 40 a 54 estão as implementações das funções tty_sety e tty_setx,

que definem as coordenadas vertical e horizontal do cursor, respectivamente. Ambas

as funções verificam se os valores recebidos como parâmetros estão dentro dos

limites do terminal. Caso a posição seja inválida, as funções encerram sua execução

retornando o valor 1 para indicar a ocorrência de um erro. Para atualizar a posição

vertical, tty_sety recalcula o valor de cursor combinando a nova coordenada y com a

posição horizontal corrente, enquanto tty_setx ajusta coordenada horizontal

preservando a linha atual. Ambas as funções retornam zero ao fim de sua execução

para indicar a não ocorrência de erros.

5.2.2 Implementação das rotinas relacionadas a escrita de caracteres

A Figura 33 mostra as implementações das funções tty_iscrlf e tty_setcrlf, onde a

primeira retorna o valor da variável crlf, e a segunda usa o valor recebido como

parâmetro para redefinir o valor de crlf, onde zero é falso e qualquer valor diferente de

zero é verdadeiro.

Para executar a operação de rolagem vertical, a função auxiliar scroll é definida

conforme mostra a Figura 34.

Figura 33 – Implementação das funções referentes ao modo de operação do terminal

Fonte: Elaborado pelo autor (2025)

64

Primeiramente, um for loop inicia uma iteração a partir da segunda linha e vai

até a última posição válida do terminal. A cada iteração, a função vga_read é usada

para obter e armazenar as informações do caractere na posição correspondente ao

contador i para que então essas variáveis sejam usadas como argumentos para a

função vga_write, que será responsável por escrever o caractere e seus atributos na

linha superior. O resultado é que ao fim do loop, o conteúdo de todas as linhas tenha

sido copiado para as linhas imediatamente superiores.

Nas linhas 77 e 79 um outro for loop é feito, dessa vez iterando somente da

posição horizontal inicial da última linha até a posição final. A cada iteração, a função

vga_write é usada para escrever um caractere de espaço com o fundo preto, com o

objetivo de apagar o conteúdo da última linha do terminal, que antes do loop estava

igual ao da penúltima linha.

Por fim, é subtraído VGA_MAXX da posição do cursor para reposicioná-lo na

linha superior à que ele estava.

A Figura 35 demonstra a implementação da função tty_putchar.

Figura 34 – Função auxiliar de rolagem vertical

Fonte: Elaborado pelo autor (2025)

65

Inicialmente, nas linhas 85 a 87, é verificado se o modo CRLF está desativado e

o caractere a ser renderizado é um LF (‘\n’). Caso a condição seja verdadeira,

tty_putchar chama a si mesma recursivamente para pôr um CR (‘\r’) antes de LF.

As linhas 89 a 98 usam a estrutura switch para processar diferencialmente

caracteres de controle e caracteres comuns. O bloco switch define três

comportamentos distintos baseados no caractere recebido como parâmetro:

• Para o caractere CR (‘\r’), a posição é atualizada com uma operação de

subtração que remove o deslocamento horizontal corrente para voltar o cursor

ao início da linha.

• Para o caractere de LF (‘\n’), o cursor avança para a linha seguinte através de

uma uma operação que adiciona VGA_MAXX (tamanho de uma linha) à

posição atual.

Figura 35 – Função auxiliar de rolagem vertical

Fonte: Elaborado pelo autor (2025)

66

• No caso padrão (caracteres comuns), a função vga_write é invocada para

renderizar o caractere na posição atual do cursor, com uma cor branca para ele

e uma cor preta para o fundo, seguido do incremento da posição do cursor.

Após o processamento do caractere, nas linhas 101 a 103, a função invoca

scroll para realizar a rolagem vertical caso a operação de escrita tenha feito o cursor

ultrapassar os limites do terminal, e termina sua execução retornando zero para

indicar a não ocorrência de erros.

5.2.3 Implementação das rotinas relacionadas a formatação de strings

A Figura 36 mostra a definição das funções auxiliares puts e putint.

A função puts tem a finalidade de imprimir uma string de caracteres. Sua

implementação é bem simples, ela “varre” a string que recebeu como parâmetro

usando a função tty_putchar para imprimir todos os seus caracteres.

Já a função putint tem o objetivo de imprimir um número inteiro. Sua

implementação é mais elaborada e exige uma análise mais atenta. A função recebe

três parâmetros:

Figura 36 – Definiçaão das funções auxiliares puts e putint

Fonte: Elaborado pelo autor (2025)

67

• num: Um inteiro do tipo uint32_t que será impresso.

• is_negative: Um valor booleano que determina se a função deve imprimir o

número acompanhado de um sinal de negatividade.

• base: A base na qual o número será impresso, podendo ir de 2 até 16.

No topo da definição da função, está a declaração de uma string constante

identificada por DIGITS, que contém todos os dígitos que podem ser demandados nas

bases suportadas.

Apesar de apenas bases de 2 a 16 serem suportadas, nenhuma validação é

feita para verificar se o valor de base atende a essa condição. Isso não é o ideal,

porém como a função é usada como um auxiliar e não é acessível fora do arquivo,

optou-se por confiar cegamente no valor passado.

Na linha 117, é declarado um array de caracteres denominado stack, que

funciona como uma pilha para armazenar os dígitos resultantes da conversão

numérica. Seu tamanho é calculado pela expressão “sizeof(num) * 8 + 1”, onde

“sizeof(num) * 8” representa a quantidade de bits da variável num. Como a base

binária é a que tem a representação numérica mais longa possível, isso garante que

qualquer valor esteja dentro dos limites do array, enquanto o acréscimo de uma

posição adicional serve para um possível sinal de negatividade. A linha 118 declara

uma variável inteira para servir de ponteiro para o topo da pilha.

Nas linhas 120 a 123, um loop do-while utiliza uma técnica clássica de

conversão numérica com divisões sucessivas. A cada iteração, o resto da divisão de

num por base é utilizado como índice para acessar o caractere correspondente no

array DIGITS, sendo armazenado na pilha com posterior incremento do ponteiro

stack_top. Em seguida, o valor de num é atualizado pelo quociente inteiro da divisão.

Este processo repete-se enquanto o valor de num permanecer maior que zero,

garantindo que ao fim do loop, a pilha contenha todos os caracteres que representam

o número na base especificada.

Por fim, nas linhas 129 a 131, após a inserção do caractere de negatividade

no topo da pilha se necessário, a estrutura de repetição while é usada para recuperar

os caracteres da pilha na ordem inversa à sua inserção. Com o decremento sucessivo

68

de stack_top, cada elemento é removido do topo da pilha e enviado para saída via

tty_putchar, garantindo que a representação numérica final seja exibida na orientação

correta.

As funções puts e putint serão, primariamente, usadas como auxiliares de

tty_printf, que, como demonstra a Figura 37, possui uma implementação complexa.

Figura 37 – Implementação de tty_printf

Fonte: Elaborado pelo autor (2025)

69

A função utiliza os recursos da biblioteca stdarg.h para implementar o

mecanismo de argumentos variáveis. Na linha 139, é declarado uma variável do tipo

va_list, que será responsável por armazenar o estado de iteração sobre os parâmetros

adicionais.

Posteriormente, na linha 140, esta variável é inicializada com o uso da macro

va_start, que requer dois parâmetros: a variável va_list previamente declarada e o

último parâmetro nomeado da função. Esta inicialização estabelece o ponto de partida

para a leitura dos argumentos variáveis, que agora podem ser obtidos com o uso da

macro va_arg.

Nas linhas 142 a 177, há um longo bloco while que itera sobre todos os

caracteres da string de formato e os processa apropriadamente. Primeiramente, as

linhas 143 a 146 verificam se o caractere da iteração é diferente de “%”. Em caso

afirmativo, a função tty_putchar é invocada para realizar a escrita, o ponteiro da string

de formato é incrementado e a instrução continue é usada para avançar para a

próxima iteração.

Quando o caractere for igual a “%”, a função incrementa o ponteiro da string de

formato e entra em um bloco switch, que determinará a formatação apropriada através

da análise do próximo caractere, que, junto a “%”, forma um código de formato. Na

maioria dos casos, a macro va_arg será usada para obter o dado a ser formatado na

lista de argumentos variáveis.

A análise e processamento do código de formato é feita da seguinte forma:

• “%c”: Manda o caractere obtido na lista de argumentos variáveis para ser

processado pela função tty_putchar.

• “%s”: Manda a string obtida na lista de argumento variáveis para ser

processada pela função auxiliar puts.

• “%d”: Obtém um inteiro com sinal na lista de argumentos variáveis, cria a

variável is_negative e atribui o resultado de um teste booleano que indica se o

valor é negativo ou não, obtém o valor absoluto do número e invoca a função

auxiliar putint para processá-lo em base decimal, fazendo a devida conversão

70

para uin32_t e passando a variável is_negative como argumento para a função

saber se deve imprimi-lo acompanhado de um sinal de negatividade ou não.

• “%u”: Obtém um inteiro sem sinal na lista de argumentos variáveis e o passa

para a função putint processá-lo como um número em base decimal.

• “%x”: Obtém um inteiro sem sinal na lista de argumentos variáveis e o passa

para a função putint processá-lo como um número em base hexadecimal.

• “%%”: Invoca tty_putchar para imprimir o caractere “%”.

Após o fim do bloco switch, o ponteiro da string de formato é incrementado e

segue-se para a próxima iteração. Quando finalmente a string chegar ao fim e o bloco

while encerrar sua execução, a função termina retornando o valor zero para indicar a

não ocorrência de erros.

71

6 CONSIDERAÇÕES FINAIS

O presente trabalho teve como objetivo principal aplicar conceitos teóricos referentes

a sistemas operacionais na construção de kernels para a arquitetura x86 usando

linguagem C e assembly, através da análise minuciosa de um kernel chamado

BergOS.

Todas as partes principais do BergOS foram apresentadas. O bootloader, que

foi um importante laboratório para a análise de mecanismos importantes da arquitetura

x86 como a GDT. O kernel em si, que usa rotinas definidas em interfaces abstratas

para escrever uma mensagem de saudação na tela e parar sua execução.

Também foi abordado o driver de VGA, que serviu como o exemplo prático do

conceito de E/S mapeada na memória, e seu uso na implementação da interface do

emulador de terminal. Com a implementação do emulador de terminal, tanto o kernel

quanto os futuros programas aplicativos do BergOS têm uma interface simples e

agradável para escrever caracteres no monitor do usuário. Estando assim, livre das

complexidades de um driver de vídeo e das especificidades de um hardware. Com

isso, foi possível observar um exemplo real da abstração fornecida pelos sistemas

operacionais.

Portanto, este trabalho faz sua contribuição ao se aprofundar na conexão

inerente entre sistema operacional e hardware. Ilustrando essa conexão através de

uma longa análise das características de uma arquitetura específica e demonstrando,

através do BergOS, como elas são usadas para construir abstrações.

Apesar deste trabalho fornecer uma base sólida para a compreensão de

como sistemas operacionais são programados e funcionam na prática, ainda há

limitações que servem de gancho para trabalhos futuros:

• Separação de espaço de kernel e espaço de usuário: Um conceito

extremamente importante em qualquer sistema operacional moderno.

Trabalhos futuros devem explorar como paginação e os anéis de proteção são

usados na arquitetura x86 para implementar essa separação.

• Interrupções: Mesmo que interrupções tenham sido apresentadas neste

trabalho, não houve nenhum exame profundo que fizesse justiça à importância

72

desse tópico. Estudos posteriores devem se aprofundar nos mecanismos de

interrupção da arquitetura x86, como a IDT e os controladores de interrupção

programáveis: PIC e APIC.

• Entrada de dados com teclado: Permitir que o usuário entre dados a partir de

um dispositivo de entrada como um teclado é o primeiro passo para um sistema

operacional interativo. Seria proveitosa uma pesquisa que se aprofunde na

implementação de drivers de teclado que lide diretamente com scan codes,

typematic e interrupções.

• Processos: Provavelmente a abstração mais importante fornecida pelos

sistemas operacionais. Trabalhos futuros devem explorar formas de se

implementar processos, bem como protegê-los de adulteração por parte de

outros processos. O uso de interrupções na programação de escalonadores é

fundamental.

Conclui-se, portanto, que o estudo de sistemas operacionais não deve ser

dissociado do estudo de arquitetura de computadores, e seu funcionamento só pode

ser plenamente entendido quando se leva em conta o hardware para o qual ele está

sendo programado, e, nesse sentido, BergOS se mostrou um laboratório frutífero para

a compreensão dos conceitos teóricos, devido à sua natureza simples e didática.

73

REFERÊNCIAS

BERGANTON, Lucas. BergOS. 2025. Disponível em:
https://github.com/lberganton/bergos/tree/tcc. Acesso em: 23 nov. 2025.

DODGE, Catherine; IRVINE, Cynthia; NGUYEN, Thuy. A Study of Initialization in
Linux and OpenBSD. ACM SIGOPS Operating Systems Review, v. 39, n. 2, p. 79–
93, abr. 2005.

FERRARO, Richard F. Programmer’s Guide to the EGA, VGA, and Super VGA
Cards. [S.l.]: Addison Wesley, 1994.

FREE SOFTWARE FOUNDATION. GNU Make. 2023. Disponível em:
https://www.gnu.org/software/make/. Acesso em: 23 nov. 2025.

INTEL CORPORATION. Intel® 64 and IA-32 Architectures Software Developer’s
Manual Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4. [S. l.: s. n.],
2025. Disponível em:
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html.
Acesso em: 10 set. 2025.

INTERNATIONAL BUSINESS MACHINES CORPORATION (IBM). Personal
System/2 and Personal Computer BIOS Interface Technical Reference. 1. ed.
1987. Disponível em:
https://bitsavers.trailing-edge.com/pdf/ibm/pc/ps2/PS2_and_PC_BIOS_Interface_Tec
hnical_Reference_Apr87.pdf. Acesso em: 20 nov. 2025.

MAZIERO, Carlos Alberto. Sistemas Operacionais: Conceitos e Mecanismos.
Curitiba: DINF - UFPR, 2019. E-book. Disponível em:
https://wiki.inf.ufpr.br/maziero/lib/exe/fetch.php?media=socm:socm-livro.pdf. Acesso
em: 20 nov. 2025.

PHOENIX TECHNOLOGIES. BIOS Enhanced Disk Especification. Version 1.1,
1995. Disponível em: https://wiki.sensi.org/download/doc/ata_edd_11.pdf. Acesso
em: 20 nov. 2025.

SILBERSCHATZ, Abraham; GALVIN, Peter Baer; GAGNE, Greg. Fundamentos de
sistemas operacionais. Tradução de: Aldir José Coelho Correa da Silva. 9. ed. Rio
de Janeiro: LTC, 2015. E-book.

STALLINGS, William. Arquitetura e organização de computadores. Tradução de:
Sérgio Nascimento. 10. ed. São Paulo: Pearson Education do Brasil, 2017.

TANENBAUM, Andrew S.; BOS, Herbert. Sistemas operacionais modernos.
Tradução de: Daniel Vieira; Jorge Ritter. 4. ed. São Paulo: Pearson Education do
Brasi, 2016.

https://wiki.sensi.org/download/doc/ata_edd_11.pdf
https://wiki.inf.ufpr.br/maziero/lib/exe/fetch.php?media=socm:socm-livro.pdf
https://bitsavers.trailing-edge.com/pdf/ibm/pc/ps2/PS2_and_PC_BIOS_Interface_Technical_Reference_Apr87.pdf
https://bitsavers.trailing-edge.com/pdf/ibm/pc/ps2/PS2_and_PC_BIOS_Interface_Technical_Reference_Apr87.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.gnu.org/software/make/
https://github.com/lberganton/bergos/tree/tcc

74

WILSON, Michelle. What is VGA? A comprehensive guide to Video Graphics
Array. HP, 2024. Disponível em: https://www.hp.com/us-en/shop/tech-takes/what-is-
vga-comprehensive-guide-video-graphics-array. Acesso em: 16 nov. 2025.

ZHIRKOV, Igor. Programação em Baixo Nível: C, Assembly e execução de
programas na arquitetura Intel 64. Tradução de: Lúcia A. Kinoshita. 1. ed. São
Paulo: Novatec Editora Ltda, 2018. E-book.

https://www.hp.com/us-en/shop/tech-takes/what-is-vga-comprehensive-guide-video-graphics-array
https://www.hp.com/us-en/shop/tech-takes/what-is-vga-comprehensive-guide-video-graphics-array

75

APÊNDICE A – PROCESSO DE COMPILAÇÃO DO BERGOS

O processo de compilação de um kernel difere do de em um projeto convencional. No

geral, os desenvolvedores estão acostumados com uma compilação que envolve

apenas buscar pelos arquivos de código-fonte escritos em uma linguagem de

programação, enviá-los ao compilador e esperar que o binário gerado seja

imediatamente executável, sem passos extras. Porém, um kernel, bem como qualquer

programa destinado a execução direta por um processador, é um projeto sensível com

relação à fase de compilação, pois, diferentemente de um projeto de software comum,

o binário final deve ser construído cuidadosamente.

Os binários pré-compilados de um compilador disponíveis em uma plataforma

são feitos para gerar binários compatíveis com ela. O GCC, disponível para download

no repositório público de uma distribuição Linux, por exemplo, foi compilado para que

o binário gerado esteja no formato ELF, enquanto o MinGW (porte do GCC para

sistemas Windows), para que o binário gerado esteja no formato PE. Esses formatos

são feitos para serem processados por um sistema operacional. Eles não apenas

possuem código de máquina, mas outros dados e informações que serão utilizados

pelo sistema para carregá-lo na memória e pô-lo em execução. Isso se torna um

problema para o processo de compilação de um kernel, pois o usuário provavelmente

tem um compilador que espera gerar código que dependa de um sistema operacional

e de uma arquitetura específica, enquanto um kernel não pode depender de um

sistema operacional e pode ter como alvo uma arquitetura diferente daquela

executada pelo usuário.

O BergOS tem que contornar essa dificuldade, pois ele é feito para ser

executado sobre um processador de 32 bits, enquanto a maioria dos sistemas, hoje

em dia, são feitos para executar em processadores de 64 bits. Portanto, o compilador

que um usuário de Linux terá disponível, por exemplo, irá, a princípio, gerar código no

formato ELF para 64 bits, diferente do binário “cru” de 32 bits esperado pelo BergOS.

Para contornar esse problema há duas soluções principais: compilar o próprio

compilador, para que ele gere um binário compatível com a arquitetura desejada sem

depender de um sistema operacional; ou usar o compilador disponível na plataforma,

76

mas usar muitas flags de compilação para forçar a geração de um binário no formato

desejado.

A primeira solução é mais elegante, recomendada para projetos grandes e

tende a dar menos problemas, pois se especifica exatamente o que deve ser gerado,

permitindo, inclusive, que usuários que não estejam executando um sistema x86

gerem códigos para ele. Porém, a segunda solução é tentadora devido à sua

simplicidade, afinal, nenhuma etapa extra é necessária além de instalar o compilador

já disponível na plataforma do usuário. O BergOS segue com a segunda opção,

justamente para facilitar que o usuário teste o sistema, sem exigir o trabalho extra de

compilar um compilador apenas para este fim.

Outro problema comum no processo de compilação de kernels é que eles

geralmente são escritos em mais de uma linguagem de programação. O kernel Linux,

por exemplo, é programado em assembly, C e Rust. Isso não apenas aumenta as

dependências do projeto, como aumenta a complexidade de sua compilação, pois

agora terá de se pensar em um jeito delas se comunicarem de alguma forma.

Para atingir esse fim, um conceito importante precisa ser analisado: os

símbolos, uma das informações mais úteis armazenadas em um arquivo objeto. Um

símbolo nada mais é do que um endereço nomeado. Esses símbolos são

armazenados no arquivo objeto em um local chamado tabela de símbolos. Um

símbolo pode ser exportado para ser usado por outros arquivos objetos. Também pode

ser marcado para ser resolvido no processo de linkagem, permitindo assim que o

arquivo-fonte interaja com símbolos declarados em outros arquivos-fonte. No fim, o

trabalho do linker é fazer justamente o que seu nome diz, ligar todos os arquivos objeto

em um único arquivo final, fazendo cada símbolo presente nos arquivos de entrada se

referir a um único endereço.

A forma como os símbolos são tratados depende do compilador e da

linguagem de programação. Em assembly, as coisas são mais intuitivas, já que todo

rótulo, a princípio, se torna um símbolo. Em linguagem C, uma função pode facilmente

ser convertida em um símbolo de mesmo nome. Por padrão, toda função é um símbolo

que será exportado, ou seja, será visível para outros arquivos objeto, onde o linker, ao

encontrar referências a esse símbolo em outros arquivos objeto, resolverá para que no

77

arquivo gerado eles se refiram ao endereço da função correspondente. Quando a

função é declarada como static, isso diz ao compilador que o símbolo (identificador

daquela função) não deve ser exportado, ou seja, outros arquivos objeto não devem

ser capazes de acessá-lo.

Para ser capaz de usar as capacidades do linker e poder compartilhar símbolos

entre o código-fonte, cada arquivo é compilado, unitariamente, para o formato ELF32

(a versão de 32 bits do formato ELF), para, na fase de linkagem, esses arquivos objeto

isolados serem unidos para formarem um único binário “cru”.

A.1 Linker script

Como já estabelecido, no desenvolvimento de kernels o formato do binário final é

extremamente importante. Isso inclui a forma em que o código e os dados são

dispostos nele. O maior exemplo disso é o caso do bootloader, que, como abordado no

capítulo 3, deve estar no primeiro setor de um dispositivo para que ele possa ser

reconhecido. Isso traz a necessidade de posicioná-lo bem no início do binário.

Para especificar a forma do binário final, juntamente com a posição exata dos

códigos e dos dados, é possível fornecer um linker script para o linker do GCC. O

linker script é uma ferramenta poderosa, mas relativamente pouco usada já que não

há tanta necessidade de especificar o formato do binário executável em alto nível.

Porém, em baixo nível ela se torna indispensável.

O linker script de BergOS está no arquivo ./linker.ld. A Figura 38 mostra o

conteúdo desse arquivo.

78

A primeira linha define que o arquivo a ser gerado é um binário “cru”, ou seja,

deve conter apenas código executável. Isso impede o linker de produzir formatos que

não são imediatamente executáveis pelo processador, como ELF. Nas linhas 3 a 24,

há um longo bloco chamado SECTIONS; é nesse bloco onde a disposição do código e

dos dados pode ser manualmente definida.

Primeiramente, na linha 4, é especificado que o código deve tratar seu

primeiro endereço como sendo 0x7C00. Isso é necessário, pois é nesse endereço de

memória que o bootloader será carregado. Isso faz com que o linker resolva as

referências a endereços para corresponder a essa base. Por exemplo, se o código

Figura 38 – Linker sciprt do BergOS

Fonte: Elaborado pelo autor (2025)

79

objeto fizer um salto para o endereço 0x0010, com essa declaração, o linker fará com

que, no binário final, o salto ocorra para 0x7C10.

Depois disso, as declarações seguintes especificam a posição exata na qual

as seções dos arquivos objeto devem estar no binário final. Os arquivos ELF possuem

algumas seções padrão, dentre elas está .text, .data e .bss. A primeira é usada para

código executável; a segunda para dados inicializados e a última para dados não

inicializados. A ordem destas no binário final do BergOS não é tão importante. Porém,

há a necessidade de o código do bootloader estar imediatamente no início do arquivo.

Como foi analisado na seção 3.2 do capítulo 3, o código do bootloader foi posto

em uma seção personalizada chamada .bootloader. Com esse truque, se torna fácil

colocar o código do bootloader no início do binário, bastando apenas pôr a seção

.bootloader antes das outras.

A.2 GNU Make

O BergOS utiliza o GNU Make para automatizar o processo de compilação. O GNU

Make é uma ferramenta popular no mundo Linux, principalmente em projetos

envolvendo C e assembly. Segundo a Free Software Foundation “O GNU Make é uma

ferramenta que controla a geração de executáveis e outros arquivos não-fonte de um

programa a partir dos arquivos-fonte do programa.” (FREE SOFTWARE

FOUNDATION, 2023, tradução nossa).

A popularidade da ferramente se deve muito ao fato dela ter a simplicidade de

um shell, mas possuir funcionalidades que auxiliam o processo de build. Um exemplo

disso é a capacidade do Make de reconhecer quais arquivos preciso ser recompilados.

O Make determina automaticamente quais arquivos precisam ser atualizados,
com base nos arquivos de origem que foram alterados. Ele também
determina automaticamente a ordem correta para atualizar os arquivos, caso
um arquivo não-fonte dependa de outro arquivo não-fonte. Como resultado,
se você alterar alguns arquivos de origem e executar o Make, ele não
precisará recompilar todo o seu programa. Ele atualizará apenas os arquivos
não-fonte que dependem direta ou indiretamente dos arquivos de origem que
você alterou (FREE SOFTWARE FOUNDATION, 2023, tradução nossa).

Os scripts de build são feitos a partir de um arquivo chamado Makefile, que “[…]

lista cada um dos arquivos não-fonte e como computá-los a partir de outros arquivos.

Ao escrever um programa, você deve escrever um Makefile para ele, para que seja

80

possível usar o Make para compilar e instalar o programa.” (FREE SOFTWARE

FOUNDATION, 2023, tradução nossa).

A parte mais importante de um Makefile são as rules. São elas que determinam

como gerar os arquivos desejados.

Uma rule no arquivo Makefile informa ao Make como executar uma série de
comandos para gerar um arquivo de destino a partir de arquivos de origem.
Ela também especifica uma lista de dependências do arquivo de destino.
Essa lista deve incluir todos os arquivos (sejam arquivos de origem ou outros
arquivos de destino) que são usados como entradas para os comandos na
rule (FREE SOFTWARE FOUNDATION, 2023, tradução nossa).

O Makefile do BergOS está localizado em ./Makefile. Ele contém rules que vão

desde compilar o kernel a executá-lo no emulador QEMU.

A Figura 39 mostra o início do Makefile.

Nesse trecho, algumas variáveis importantes são declaradas. Na linha 2, a

variável ARCH é definida apenas se ela já não tiver valor. Essa variável se refere a

arquitetura alvo para a qual o BergOS será compilado. Como BergOS pode vir a

suportar outras arquiteturas, é importante fornecer um meio para o usuário escolher

para qual arquitetura ele quer compilar. Caso o usuário queira compilar o BergOS para

x86_64, por exemplo, ele pode definir a variável ARCH no momento de invocar o

Figura 39 – Início do Makefile do BergOS

Fonte: Elaborado pelo autor (2025)

81

Make, com “make ARCH=x86_64”. O operador de atribuição condicional (“?=”) é útil

nesse contexto, pois seleciona a arquitetura I386 como padrão caso o usuário não

defina explicitamente outra.

Nas linhas 5 a 7, são declaradas variáveis referentes aos diretórios do projeto.

ARCH_DIR se refere ao diretório que contém os códigos da camada de baixo nível

(dependente de arquitetura), KERNEL_DIR se refere ao diretório com os códigos da

camada de alto nível (independente de arquitetura) e BUILD_DIR se trata do diretório

onde os arquivos objeto e o kernel compilado serão colocados.

Na linha 10, a variável OUTPUT é usada para identificar o caminho onde o

binário do BergOS compilado será posto. Na linha 11, a variável OUTPUT_SIZE se

refere ao tamanho do binário do BergOS. O processo de compilação forçará esse

tamanho, mesmo que a compilação resulte em um arquivo muito menor que esse.

A Figura 40 mostra as variáveis referentes ao assembler.

A váriavel AS demarca o NASM como assembler e a variável AS_FLAGS será

usada para conter as flags de montagem que serão passadas para o NASM. Apenas a

flag “-felf32” é usada, que significa que o NASM deve gerar um arquivo objeto no

formato ELF32 (a versão 32 bits do formato ELF).

A Figura 41 mostra as variáveis referentes compilador C.

Figura 40 – Variáveis referentes ao assembler no Makefile

Fonte: Elaborado pelo autor (2025)

82

A variável CC é inicializada com gcc, o compilador que será usado. A variável

CC_INCLUDES será usada como flag de compilação para que um código fonte C

possa incluir arquivos de cabeçalho presentes no projeto. A atribuição é feita através

de um script que busca por todos os diretórios que contém arquivos que terminam com

“.h”.

Já a parte mais importante está em CC_FLAGS. Como o BergOS pode ser

compilado por um compilador comum, há a necessidade de se usar muitas flags de

compilação para forçar a geração do binário no formato desejado.

As flags de compilação usadas são:

• “-std=gnu99”: Faz o compilador usar o padrão gnu99, baseado no padrão c99

mas com expansões de gramática estabelecidas pelo projeto GNU. Essas

expansões são úteis em desenvolvimento de kernels, principalmente por

fornecerem mecanismos de inline assembly, uma forma de escrever código

assembly diretamente em linguagem C.

• “-m32”: Força o GCC a gerar código de 32 bits.

• “-Wall”: Não é estritamente necessário, mas gera avisos úteis em tempo de

compilação.

• “-Wextra”: Também não é necessário, mas fornece outros alertas em tempo de

compilação.

• “-nostdlib”: Extremamente importante. O GCC, por padrão, faz a linkagem do

código com a biblioteca padrão C. Isso é útil em alto nível, porém em baixo nível

Figura 41 – Variáveis referentes ao compilador C

Fonte: Elaborado pelo autor (2025)

83

a maioria dos recursos da biblioteca padrão C não estão disponíveis. Para evitar

esse problema, esta flag diz para o GCC não fazer essa linkagem.

• “-ffreestanding”: Diz para o GCC que o código rodará em ambiente

freestanding. Este é um termo do padrão da linguagem C para se referir a

ambientes onde a biblioteca padrão da linguagem C não está totalmente

disponível.

• “-fno-pic”: Faz o GCC gerar código que use endereços absolutos.

• “-fno-stack-protector”: Desativa o mecanismo de proteção de pilha, já que

este depende de recursos do sistema operacional.

• “-mno-sse”: Diz para o GCC não gerar código que use instruções SSE. Essa é

uma extensão da arquitetura x86 que não está disponível no 80386.

• “-mno-sse2”: Diz para o GCC não gerar código que use instruções SSE2. Essa

é uma extensão da arquitetura x86 que não está disponível no 80386.

• “-mno-mmx”: Diz para o GCC não gerar código que use instruções MMX. Essa

é uma extensão da arquitetura x86 que não está disponível no 80386.

A Figura 42 mostra as variáveis referentes ao linker.

A variável LINKER_SCRIPT referencia o arquivo de linker script, e a variável

LINKER_FLAGS define as flags de linkagem a serem utilizadas pelo linker.

Figura 42 – Variáveis referentes ao linker

Fonte: Elaborado pelo autor (2025)

84

Especificamente, essa flag tem a função de instruir o linker a utilizar o script de

linkagem especificado na variável LINKER_SCRIPT.

A Figura 43 mostra as variáveis relacionadas aos arquivos de código-fonte e

aos arquivos de código-objeto.

A variável CC_SRCS utiliza o comando find do shell para localizar

recursivamente todos os arquivos com extensão “.c” nos diretórios ARCH_DIR

(dependente de arquitetura) e KERNEL_DIR (independente de arquitetura).

Similarmente, AS_SRCS coleta arquivos assembly que terminam com “.asm”

exclusivamente do diretório ARCH_DIR.

As variáveis CC_OBJS e AS_OBJS mapeiam os arquivos fonte para seus

respectivos arquivos objetos no diretório de build. Arquivos “.c” são transformados em

“.c.o” e arquivos “.asm” são transformados em “.asm.o”. A Figura 44 ilustra esse

mapeamento.

Figura 43 – Variáveis referentes a código-fonte e código-objeto

Fonte: Elaborado pelo autor (2025)

Figura 44 – Mapeamento de arquivos fonte em arquivos objeto

Fonte: Elaborado pelo autor (2025)

85

A Figura 45 mostra as rules responsáveis por compilar os arquivos de código.

A rule definida na linha 45 especifica como construir objetos assembly. O

curinga “%” captura o nome base do arquivo. A linha 46 cria silenciosamente o

diretório de destino necessário para o arquivo objeto, onde “$@” expande para o nome

do alvo. Em seguida, a linha 47 invoca o assembler com as flags apropriadas, onde

“$<” representa o primeiro pré-requisito (arquivo terminado com “.asm”), gerando o

objeto especificado.

Analogamente, a rule definida na linha 49 gerencia a compilação de arquivos C.

Após criar o diretório, na linha 51, o código é compilado com as flags e diretórios de

inclusão apropriados. A flag “-c” é importante, pois ela indica para o compilador gerar

apenas o arquivo objeto, sem passar pelo linker.

Por fim, ao compilar todo o código fonte, a imagem do BergOS será gerada. A

Figura 46 mostra as rules necessárias para isso.

Figura 45 – Compilando os arquivos de código fonte

Fonte: Elaborado pelo autor (2025)

86

A rule all constitui o target padrão, sendo executada automaticamente quando o

Make é invocado sem argumentos. Ela tem como dependência OUTPUT, o que faz

sua execução produzir a imagem do BergOS. A rule definida na linha 40 é a

responsável por fazer a geração do binário final. Após a criação do diretório, o GCC é

invocado, mas desta vez para agir como linker. Tanto as flags usadas para compilar

código C quanto as flags do linker são fornecidas. Desta vez, os arquivos de entrada

são especificados através de “$^”, que expande para todas as dependências (arquivos

objeto).

Na linha 43, o comando de shell truncate é usado para ajustar o tamanho da

imagem gerada para a especificada na variável OUTPUT_SIZE.

A.3 Compilando e executando o BergOS

O projeto BergOS possui três dependências: GCC, NASM e GNU Make. O GCC é

usado para compilar códigos C e para fazer a linkagem; o NASM é usado para montar

códigos assembly e o GNU Make é usado para os scripts de build. Será necessário um

sistema Unix-like para realizar a compilação. Em sistemas Windows, é possível

conseguir um ambiente Unix com WSL ou Cygwin.

Figura 46 – Rules para a compilação do BergOS

Fonte: Elaborado pelo autor (2025)

87

Para compilar o BergOS, basta invocar o Make em um shell. Se nenhum erro

ocorrer, a imagem do BergOS compilada estará em ./build/bergos.img. A Figura 47

mostra a execução do Makefile para compilar o BergOS.

Para executar o BergOS, o usuário pode optar por um emulador de IA-32. O

QEMU é uma boa opção, pois é simples, multiplataforma e foi o principal ambiente

usado no desenvolvimento do BergOS. O Makefile do projeto fornece um target

chamado run para executar a imagem do BergOS compilada no QEMU.

A Figura 48 mostra a execução do BergOS no QEMU através do target run do

Makefile.

Figura 47 – Compilando o BergOS

Fonte: Elaborado pelo autor (2025)

88

Por outro lado, é possível executar o BergOS em uma máquina real, desde

que o processador seja compatível com a arquitetura IA-32. A Figura 49 mostra o

BergOS executando sobre uma máquina real, com um processador Intel Core i7-7700

e uma placa-mãe MS-7A15.

Figura 48 – Executando o BergOS no QEMU

Fonte: Elaborado pelo autor (2025)

Figura 49 – Executando o BergOS em uma máquina real

Fonte: Elaborado pelo autor (2025)

	1 INTRODUÇÃO
	2 REVISÃO BIBLIOGRÁFICA
	2.1 Sistema Operacional
	2.1.1 Sistema Operacional Como Uma Máquina Estendida
	2.1.2 Sistema Operacional Como Um Gerenciador de Recursos
	2.1.3 Inconsistências na Definição
	2.2 Arquitetura x86
	2.2.1 História da arquitetura x86
	2.2.2 Assembly
	2.2.3 Registradores
	2.2.4 Segmentos de memória
	2.2.5 Interrupções
	2.3 BIOS
	2.4 E/S mapeada na memória

	3 BOOTLOADER
	3.1 Pré-bootloader
	3.2 Definindo os segmentos e a pilha
	3.3 Carregando o kernel para a memória
	3.4 Colocando o processador em modo protegido

	4 DRIVER DE VGA
	4.1 Definição da interface do driver de VGA
	4.2 Implementação da interface do driver de VGA
	4.2.1 Implementação da rotina vga_write
	4.2.2 Implementação da rotina vga_read

	5 EMULADOR DE TERMINAL
	5.1 Definição da interface do emulador de terminal
	5.2 Implementação da interface do emulador de terminal
	5.2.1 Implementação das rotinas relacionadas a posição do cursor
	5.2.2 Implementação das rotinas relacionadas a escrita de caracteres
	5.2.3 Implementação das rotinas relacionadas a formatação de strings

	6 CONSIDERAÇÕES FINAIS
	REFERÊNCIAS
	APÊNDICE A – PROCESSO DE COMPILAÇÃO DO BERGOS
	A.1 Linker script
	A.2 GNU Make
	A.3 Compilando e executando o BergOS

