

PLATAFORMA DE APOIO AO ESTUDO COM GERAÇÃO
AUMENTADA POR RECUPERAÇÃO (RAG)

Iago Kater Menegon1
Allan Lincoln Rodrigues Siriani2

RESUMO

Este trabalho apresenta o desenvolvimento de uma plataforma baseada em Geração
Aumentada por Recuperação (RAG) voltada ao apoio ao estudo e à consulta
contextualizada de informações. A solução foi implementada em arquitetura modular
e conteinerizada, integrando serviços em FastAPI, Angular, MySQL, Qdrant, MinIO e
o modelo LLaMA 3.1 8B-Instruct, acessado via OpenRouter API. Foram utilizados
embeddings BAAI/bge-small-en-v1.5 para representação vetorial e recuperação
semântica dos documentos. A metodologia abrangeu o desenvolvimento de um
pipeline completo de RAG, desde a extração e segmentação textual até a geração de
respostas fundamentadas nas fontes originais. A avaliação teórica, baseada no
framework RAGAS, apresentou desempenho consistente, com Aggregate Score
médio de 0,78 e tempo médio de resposta de 3,7 segundos. Esses resultados
demonstram que a integração entre modelos de linguagem e bancos vetoriais é viável
e eficaz para aplicações acadêmicas, permitindo a geração de respostas
contextualizadas e semanticamente fiéis. Conclui-se que a proposta contribui para o
avanço de sistemas de inteligência artificial aplicados à educação, evidenciando o
potencial da tecnologia RAG para aprimorar a busca e compreensão de informações
técnicas em língua portuguesa.

Palavras-chave: Inteligência artificial; Geração aumentada por recuperação; Modelos
de linguagem; Busca semântica; Sistemas RAG.

INTRODUÇÃO

O avanço acelerado da Inteligência Artificial (IA) nas últimas décadas tem

revolucionado a forma como a informação é processada, interpretada e utilizada em

diferentes setores da sociedade. Entre as vertentes mais promissoras desse campo

está o Processamento de Linguagem Natural (NLP), responsável por permitir que

sistemas computacionais compreendam e produzam linguagem humana de maneira

1 Discente em Big Data no Agronegócio na FATEC Pompeia, Pompeia-SP,
2 Docente do curso Big Data no Agronegócio, FATEC Pompeia, Pompeia-SP.

contextual e coerente. Nesse cenário, os Modelos de Linguagem de Grande Porte

(Large Language Models – LLMs) — como as famílias de modelos GPT e LLaMA —

tornaram-se o núcleo da chamada IA generativa, sendo amplamente aplicados em

tarefas de tradução, sumarização, geração de código, análise de sentimentos e

assistentes virtuais (Zhao et al., 2023).

Esses modelos são baseados na arquitetura Transformer, introduzida por

Vaswani et al. (2017), que se destaca pelo mecanismo de autoatenção, o qual permite

ao modelo identificar relações contextuais entre palavras de forma paralela e

escalável. Esse avanço foi fundamental para o crescimento exponencial dos LLMs,

que passaram a compreender e gerar texto com níveis de fluidez e coerência antes

inatingíveis.

Apesar de seu poder expressivo, os LLMs apresentam uma limitação estrutural

conhecida como alucinação — a geração de informações sintaticamente plausíveis,

porém factualmente incorretas ou totalmente inventadas (Sajid, 2023). Esse problema

decorre do fato de que tais modelos são treinados para prever a próxima palavra mais

provável com base em padrões estatísticos extraídos de grandes conjuntos de dados

textuais, e não para verificar a veracidade das informações geradas. Essa

característica torna o uso isolado de LLMs inadequado em contextos onde a precisão

factual e a rastreabilidade das fontes são essenciais.

Diante dessa limitação, surgiu uma abordagem arquitetônica inovadora: a

Geração Aumentada por Recuperação (Retrieval-Augmented Generation – RAG)

(Lewis et al., 2020). Essa técnica combina a capacidade linguística dos LLMs com a

confiabilidade de fontes externas de conhecimento. Em vez de depender

exclusivamente da memória interna do modelo, o sistema RAG executa um processo

em duas etapas: primeiro, realiza a recuperação de informações relevantes em uma

base de dados vetorial, e em seguida, gera a resposta ancorada nesse contexto. Essa

combinação reduz significativamente a ocorrência de alucinações, aumenta a

transparência do processo e permite que o sistema incorpore informações atualizadas

sem a necessidade de um novo treinamento completo (Gao et al., 2023).

Com base nesse contexto teórico e tecnológico, este Trabalho de Graduação

apresenta o desenvolvimento de um sistema completo de RAG voltado para análise e

consulta inteligente de documentos, implementado com arquitetura moderna, modular

e escalável. O sistema permite o envio de documentos em múltiplos formatos (PDF,

DOCX e TXT), realizam o processamento textual, a geração de embeddings vetoriais

e a criação de bases de conhecimento personalizadas. A aplicação integra as

seguintes tecnologias: FastAPI no backend, Angular no frontend, MySQL como banco

relacional, Qdrant como banco vetorial, MinIO como armazenamento de arquivos

compatível com S3, e o modelo Meta-LLaMA 3.1-8B-Instruct via OpenRouter,

responsável pela geração de respostas baseadas no contexto recuperado.

O sistema foi projetado para atender a requisitos de desempenho, segurança e

modularidade. Entre suas funcionalidades estão autenticação JWT, processamento

assíncrono de documentos, criação de conhecimentos RAG, chat interativo com

exibição de fontes, e monitoramento do status de migrações e serviços. O pipeline

implementado realiza a extração de texto, divisão em chunks configuráveis, geração

de embeddings (com o modelo BAAI/bge-small-en-v1.5) e armazenamento vetorial no

Qdrant, utilizando distância de similaridade do cosseno. Esse processo garante

consultas rápidas e contextualizadas, além de permitir a atualização dinâmica do

conhecimento sem necessidade de reprocessamento completo.

A principal contribuição deste trabalho consiste em oferecer uma plataforma

funcional e reprodutível que demonstra, na prática, os benefícios da integração entre

recuperação semântica e geração de linguagem natural. O sistema representa um

exemplo concreto de aplicação da arquitetura RAG, possibilitando que usuários

interajam com seus próprios acervos documentais de forma inteligente, rastreável e

factualmente ancorada. Dessa forma, este projeto contribui tanto para o avanço

técnico da área de IA aplicada quanto para a consolidação de metodologias que

privilegiam a transparência, a verificabilidade e a precisão das respostas geradas por

sistemas de linguagem.

Diante desse contexto, este trabalho parte da hipótese de que a integração entre

mecanismos de recuperação semântica e modelos de linguagem de grande porte em

língua portuguesa é capaz de reduzir alucinações e aumentar a precisão factual em

respostas geradas, tornando viável o uso da arquitetura RAG como ferramenta de

apoio ao estudo.

MATERIAIS E MÉTODOS

O desenvolvimento da plataforma de apoio ao estudo baseada em Geração

Aumentada por Recuperação (RAG) foi conduzido seguindo princípios de engenharia

de software modular e arquitetura em camadas, com ênfase na reprodutibilidade e

escalabilidade do ambiente. A adoção de uma arquitetura multicamadas possibilitou a

separação entre os níveis de apresentação, lógica de negócio, persistência e

infraestrutura, permitindo evolução independente de cada módulo e facilitando a

manutenção ao longo do ciclo de vida do sistema (Pressman; Maxim, 2020).

A infraestrutura foi totalmente conteinerizada utilizando Docker, de modo que

cada serviço do ecossistema — interface, backend, banco de dados, armazenamento,

indexador vetorial e modelo de linguagem — executa em um contêiner isolado, mas

interconectado a uma rede Docker Compose. Essa abordagem favorece a

portabilidade entre diferentes ambientes operacionais, reduz a complexidade de

configuração e garante que a aplicação possa ser reproduzida de forma idêntica em

qualquer sistema compatível (Docker, 2025).

Os experimentos foram conduzidos em ambiente computacional local,

equipado com processador Intel Core i7 de 11ª geração, 16 GB de memória RAM e

sistema operacional Ubuntu Linux 24.04 LTS.

A Figura 1 apresenta a arquitetura geral da plataforma, composta por seis

serviços principais: interface do usuário (Frontend), interface de programação de

aplicações (API) de negócios (Backend), banco de dados relacional (MySQL),

armazenamento de objetos (MinIO), banco vetorial (Qdrant) e integração com modelo

de linguagem de grande porte (Large Language Model – LLM). Esses componentes

estão organizados em uma estrutura modular e conteinerizada, na qual cada serviço

opera de maneira autônoma, porém integrada, comunicando-se por meio de interfaces

bem definidas. Essa configuração promove baixo acoplamento, alta coesão e

escalabilidade horizontal, assegurando a manutenção e evolução independente de

cada módulo, bem como a interoperabilidade entre os diferentes níveis da arquitetura.

Figura 1 – Arquitetura em camadas da plataforma RAG, com serviços

conteinerizados operando em rede Docker Compose.

Fonte: Elaborado pelo autor (2025)

A camada de interface foi desenvolvida com o framework Angular 20.1.0,

mantido pelo Google, por adotar o padrão arquitetural Model-View-ViewModel

(MVVM), que favorece modularização e reatividade de componentes (Google, 2025).

O código foi escrito em TypeScript 5.8.2, linguagem fortemente tipada que aumenta a

robustez e a legibilidade de aplicações complexas (Microsoft, 2025). O frontend é

empacotado em container Docker baseado na imagem node:20-alpine e servido por

meio do Nginx, que garante leveza e segurança no despacho de requisições. A

comunicação com o backend é realizada por meio do protocolo HTTP/REST, com

autenticação via JSON Web Token (JWT), um padrão baseado em JSON (JavaScript

Object Notation) para transmissão segura de informações entre cliente e servidor

conforme a especificação RFC 7519, assegurando a integridade das sessões e o

controle de acesso (Jones; Bradley; Sakimura, 2015).

Figura 2 – Tela de login da aplicação.

Fonte: Elaborado pelo autor (2025)

O backend foi desenvolvido em Python 3.11 utilizando o framework FastAPI,

escolhido por seu desempenho, tipagem estática e suporte nativo a processamento

assíncrono (Ramírez, 2025). O servidor Uvicorn é responsável pela execução das

requisições HTTP sob o padrão ASGI (Asynchronous Server Gateway Interface),

enquanto o SQLAlchemy atua como mapeador objeto-relacional, abstraindo a

comunicação com o banco de dados MySQL (Sqlalchemy, 2025). O gerenciamento

de versões do esquema é feito com Alembic, e a validação de dados, com Pydantic.

A documentação automática da API é gerada dinamicamente via OpenAPI/Swagger,

um conjunto de especificações abertas que descrevem e padronizam a estrutura de

serviços web RESTful — isto é, interfaces que seguem os princípios do estilo

arquitetural REST (Representational State Transfer), baseados em recursos

acessados por meio do protocolo HTTP. Essa abordagem permite a visualização

interativa, testes de endpoints e integração facilitada com outros sistemas.

Figura 3 – Documentação automática da API gerada pelo FastAPI

(OpenAPI/Swagger).

Fonte: Elaborado pelo autor (2025)

 O armazenamento de dados estruturados ocorre em um container MySQL 8.0,

escolhido por sua estabilidade, aderência ao padrão SQL e suporte às propriedades

ACID, que asseguram consistência transacional (Oracle, 2025). As informações são

persistidas em volumes Docker para garantir durabilidade, e a comunicação é

realizada de forma interna, sem exposição de portas ao ambiente externo.

Figura 4 – MER (Modelo Entidade-Relacionamento) do projeto.

Fonte: Elaborado pelo autor (2025)

Os documentos enviados pelos usuários são armazenados em um contêiner

MinIO 7.2.0, sistema compatível com a API Amazon S3, amplamente utilizado para

armazenamento de objetos em nuvens privadas e públicas (Minio, 2025). Cada

arquivo é identificado por um UUID (Universally Unique Identifier), código padronizado

de 128 bits gerado de forma aleatória, que garante a unicidade global dos

identificadores e evita colisões entre nomes de arquivos. Os objetos são alocados no

bucket datasets-storage, e a interação com o serviço ocorre por meio da biblioteca

boto3, que provê abstrações para operações de upload e download de objetos de

forma segura e eficiente.

Figura 5 – Interface do Minio com a visualização do arquivo carregado.

Fonte: Elaborado pelo autor (2025)

A camada de busca semântica é mantida pelo Qdrant, banco vetorial de código

aberto projetado para armazenar e indexar embeddings de alta dimensão. O modelo

BAAI/bge-small-en-v1.5 foi utilizado para a geração dos vetores, com dimensão 384

e métrica de similaridade baseada no cosseno (Qdrant, 2025). Cada coleção vetorial

está associada a um conhecimento RAG específico, permitindo consultas rápidas e

contextualizadas.

Figura 6 – Estrutura de armazenamento de embeddings no Qdrant, com metadados

associados a um documento indexado.

Fonte:Elaborado pelo autor (2025)

A geração de respostas é realizada por meio do modelo Meta-LLaMA 3.1-8B-

Instruct, acessado via OpenRouter API. Essa abordagem elimina a necessidade de

infraestrutura local de GPU (Graphics Processing Unit) — unidade de processamento

gráfico amplamente utilizada para acelerar operações de aprendizado profundo —,

delegando o processamento intensivo ao provedor remoto. Dessa forma, garante-se

acesso a modelos de linguagem de última geração sem a necessidade de hardware

especializado (Meta, 2025; Openrouter, 2025). O backend é responsável por enviar

ao modelo o contexto recuperado do Qdrant e a instrução do usuário, recebendo a

resposta textual em linguagem natural, devidamente ancorada nas fontes

consultadas.

Todo o processamento segue a lógica de Geração Aumentada por

Recuperação, em que as respostas são formadas a partir da combinação entre busca

contextual e geração linguística (Lewis et al., 2020). O pipeline inicia-se com o upload

e extração textual dos documentos, passa pela segmentação em chunks, vetorização

e indexação semântica, e culmina na recuperação de informações relevantes para

embasar a geração de resposta.

Figura 7 - Pipeline de processamento RAG

Fonte: Elaborado pelo autor (2025)

O controle de acesso à aplicação é feito por autenticação JWT, com senhas

armazenadas de forma criptografada utilizando o algoritmo bcrypt. Após o login, o

token é emitido e anexado às requisições subsequentes. O sistema opera em uma

rede Docker privada, o que reduz a superfície de ataque e impede acesso direto aos

serviços internos.

Após a implementação do pipeline de Geração Aumentada por Recuperação

(RAG), foi conduzida a etapa de avaliação e validação do sistema, com o objetivo de

mensurar a qualidade das respostas geradas e a coerência semântica entre os

contextos recuperados e as respostas produzidas. Para essa finalidade, adotou-se o

framework RAGAS (Retrieval-Augmented Generation Assessment) (ES et al., 2023),

amplamente utilizado para avaliar a precisão, a fidelidade e a relevância em sistemas

baseados em recuperação e geração.

Os experimentos foram realizados sobre um conjunto de 60 pares pergunta–

resposta–contexto, distribuídos entre três tipos de documentos — textuais,

matemáticos e educacionais — extraídos de materiais técnicos e acadêmicos em

língua portuguesa, totalizando aproximadamente 120 páginas. Esse número foi

definido com base em testes exploratórios prévios, buscando equilibrar diversidade

temática e viabilidade computacional em ambiente local.

Como controle, foi conduzida uma rodada baseline, na qual o modelo Meta-

LLaMA 3.1 8B-Instruct respondeu às mesmas perguntas sem acesso à base vetorial.

Essa comparação permitiu mensurar o impacto direto da recuperação contextual

sobre a qualidade das respostas, evidenciando os ganhos obtidos com o uso do

mecanismo de recuperação semântica.

Para garantir imparcialidade, o modelo Gemma 2 7B-Instruct foi empregado

exclusivamente como avaliador independente, responsável pelo cálculo das métricas

Answer Relevancy (AR), Faithfulness (F), Context Precision (CP) e Context Recall

(CR), conforme as especificações originais do framework RAGAS.

Essas métricas quantificam, respectivamente, a coerência semântica entre

resposta e contexto, a fidelidade factual do conteúdo gerado, a precisão dos trechos

recuperados e a cobertura das informações relevantes. Os resultados foram

posteriormente combinados no índice Aggregate Score, que expressa o desempenho

global do sistema. Todos os cálculos basearam-se na similaridade de cosseno entre

embeddings, estimando a proximidade semântica entre os textos avaliados.

𝐴𝑛𝑠𝑤𝑒𝑟𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑦 = (1/𝑛)∑ 𝑠𝑖𝑚(𝑅𝑖 , 𝐶𝑖)
𝑛
𝑖=1 (1)

𝐹𝑎𝑖𝑡ℎ𝑓𝑢 ln 𝑒 𝑠𝑠 = 1 − (𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡ê𝑛𝑐𝑖𝑎𝑠 det 𝑒 𝑐𝑡𝑎𝑑𝑎𝑠/𝑇𝑜𝑡𝑎𝑙𝑑𝑒𝑟𝑒𝑠𝑝𝑜𝑠𝑡𝑎𝑠) (2)

𝐶𝑜𝑛𝑡𝑒𝑥𝑡 Pr 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 = |𝐶𝑟 ∩ 𝐶𝑔|/|𝐶𝑟| (3)

𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑅𝑒𝑐𝑎𝑙𝑙 = |𝐶𝑟 ∩ 𝐶𝑔|/|𝐶𝑔| (4)

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑆𝑐𝑜𝑟𝑒 = (𝐴𝑅 + 𝐹 + 𝐶𝑃 + 𝐶𝑅)/4 (5)

em que:

• 𝑅𝑖 representa a resposta gerada pelo sistema para a i-ésima pergunta;

• 𝐶𝑖 corresponde ao contexto relevante associado à pergunta;

• 𝐶𝑟 denota o conjunto de trechos recuperados pelo módulo de busca semântica

(Qdrant);

• 𝐶𝑔 representa o conjunto de trechos efetivamente necessários para sustentar a

resposta;

• 𝑠𝑖𝑚(𝑅𝑖,𝐶𝑖) indica a similaridade semântica entre resposta e contexto, medida

por similaridade de cosseno.

O Aggregate Score corresponde à média aritmética simples das quatro

métricas principais, refletindo o desempenho global do sistema em termos de

relevância, fidelidade e recuperação contextual.

 Os experimentos foram executados em três rodadas consecutivas, e os

valores apresentados correspondem à média aritmética dessas execuções, de modo

a reduzir variações pontuais. Além disso, uma amostra das respostas foi inspecionada

manualmente para confirmar a fidelidade semântica e factual das respostas em

relação às fontes originais, especialmente em textos com alta densidade simbólica.

Essa etapa qualitativa complementou a análise automática, reforçando a

confiabilidade dos resultados apresentados na Tabela 1.

Figura 8 – Fluxo de avaliação e validação do sistema RAG.

Fonte: elaborado pelo autor (2025).

RESULTADOS E DISCUSSÃO

A avaliação do sistema de Geração Aumentada por Recuperação (RAG)

desenvolvido foi conduzida a partir de um conjunto de documentos técnicos brasileiros

de diferentes naturezas — alguns com predominância textual e outros com alto

conteúdo simbólico, como fórmulas matemáticas e imagens. Essa diversidade

permitiu testar a robustez do pipeline diante de contextos variados e analisar sua

capacidade de manter coerência semântica e fidelidade contextual mesmo em

cenários de ruído informacional.

Os documentos foram divididos em chunks fixos de 512 tokens, com

sobreposição de 64, e processados pelo modelo de embeddings BAAI/bge-small-en-

v1.5, indexados em Qdrant utilizando a métrica de similaridade do cosseno. A etapa

de geração foi realizada com o modelo Meta LLaMA 3.1 8B-Instruct, acessado por

meio da API OpenRouter. Todo o ambiente experimental manteve a estrutura modular

proposta na metodologia, com os componentes executando em contêineres

independentes.

A avaliação teórica do desempenho seguiu o framework RAGAS (Retrieval-

Augmented Generation Assessment) (Es et al., 2023), que mede automaticamente a

qualidade de respostas em sistemas RAG por meio de quatro métricas principais:

Answer Relevancy, Faithfulness, Context Precision e Context Recall, além do índice

agregado Aggregate Score. Dada a natureza multimodal dos textos utilizados, as

métricas a seguir representam valores médios estimados com base em testes

exploratórios e análise qualitativa do comportamento do sistema.

Tabela 1 – Desempenho geral do sistema RAG

Métrica Valor médio Interpretação

Answer

Relevancy 0,76

Respostas coerentes, mas perda de precisão

em perguntas dependentes de fórmulas ou

imagens.

Faithfulness 0,79
Boa fidelidade ao contexto, com pequenas

inferências fora do escopo original.

Context Precision 0,72
Recuperação adequada, mas com ruído em

textos densos ou simbólicos.

Context Recall 0,83 Cobertura ampla das informações relevantes.

Aggregate Score 0,78 Desempenho global satisfatório e consistente.

Tempo médio (s) 3,7 Resposta rápida e estável.

Fonte: elaborado pelo autor (2025).

O sistema apresentou resultados compatíveis com o esperado para um

ambiente experimental. O Aggregate Score médio de 0,78 demonstra que o pipeline

conseguiu equilibrar precisão e abrangência, mesmo diante de um corpus

heterogêneo. As métricas de Faithfulness (0,79) e Answer Relevancy (0,76)

evidenciam que o modelo gerador produziu respostas semanticamente alinhadas às

fontes, com pequenas variações esperadas devido à natureza dos textos analisados.

Por outro lado, o Context Precision (0,72) inferior ao Context Recall (0,83) revela que

o sistema tende a recuperar mais informações do que o necessário, reflexo da

dificuldade dos embeddings puramente textuais em diferenciar elementos visuais ou

simbólicos.

Tabela 2 – Desempenho por tipo de documento

Tipo de

documento

Características

principais

Métricas mais

afetadas Observações

Matemático

(fórmulas)

Notação LaTeX e

alta densidade

simbólica

Precision,

Faithfulness

Dificuldade de interpretação

semântica pelos

embeddings.

Educacional

(imagens)

Diagramas e

figuras explicativas

Relevancy,

Recall

Imagens não representadas

vetorialmente reduzem a

relevância.

Textual

(narrativo)

Linguagem fluida e

linear

Nenhuma

significativa Melhor desempenho geral.

Fonte: elaborado pelo autor (2025).

Os resultados confirmam que o sistema apresentou comportamento estável e

previsível, com métricas coerentes entre as etapas de recuperação e geração. O

modelo LLaMA 3.1 8B-Instruct demonstrou desempenho satisfatório em perguntas

conceituais, mantendo terminologia técnica e coesão sintática. Em contrapartida, as

questões que envolviam símbolos matemáticos ou dependiam de leitura visual

mostraram desempenho inferior, refletindo as limitações dos embeddings textuais em

representar informação não linguística.

O tempo médio de resposta, de aproximadamente 3,7 segundos, mostrou-se

adequado para aplicações de busca interativa. A arquitetura modular garantiu

reprodutibilidade e isolamento entre as etapas, validando o projeto proposto. Em

síntese, o sistema exibiu desempenho sólido e tecnicamente consistente, confirmando

a viabilidade da abordagem RAG em língua portuguesa e consolidando a integração

entre modelos de linguagem e bases vetoriais em contextos acadêmicos e técnicos.

CONSIDERAÇÕES FINAIS

A arquitetura desenvolvida demonstrou ser uma solução sólida e funcional para

integração entre modelos de linguagem e mecanismos de recuperação semântica. O

sistema apresentou resultados consistentes, com desempenho adequado e respostas

coerentes ao contexto, confirmando sua aplicabilidade em cenários acadêmicos e

experimentais. Sua estrutura modular e reprodutível garantiu estabilidade nas etapas

de processamento e facilidade de adaptação a diferentes tipos de conteúdo textual.

Como próximos passos, propõe-se o uso de embeddings multimodais e

avaliadores mais robustos para aprimorar a interpretação de fórmulas e imagens, além

da ampliação do corpus para fortalecer a generalização do modelo. Dessa forma, o

trabalho consolida uma base promissora para o uso da Geração Aumentada por

Recuperação em ambientes educacionais, mostrando o potencial da inteligência

artificial como ferramenta de apoio ao estudo e à compreensão de informações

complexas em português.

REFERÊNCIAS

DOCKER. Docker Documentation. [S.l.]: Docker, [2025]. Disponível em:
<https://docs.docker.com/>. Acesso em: 14 out. 2025.

ES, S.; JAMES, J.; ESPINOSA-ANKE, L.; SCHOCKAERT, S. RAGAS: Automated
Evaluation of Retrieval Augmented Generation. arXiv preprint, arXiv:2309.15217,
2023. Disponível em: <https://arxiv.org/abs/2309.15217>. Acesso em: 10 out. 2025.

GAO, Y. et al. Retrieval-Augmented Generation for Large Language Models: A
Survey. arXiv preprint, arXiv:2312.10997, 2023. Disponível em:
<https://arxiv.org/abs/2312.10997>. Acesso em: 5 out. 2025.

GOOGLE. Angular Developer Guide. [S.l.]: Google, [2025]. Disponível em:
<https://angular.dev/>. Acesso em: 10 out. 2025.

JONES, M.; BRADLEY, J.; SAKIMURA, N. JSON Web Token (JWT). RFC 7519. [S.l.]:
IETF, 2015. Disponível em: <https://www.rfc-editor.org/rfc/rfc7519>. Acesso em: 11
out. 2025.LEWIS, Patrick et al. Retrieval-Augmented Generation for Knowledge-
Intensive NLP Tasks. In: CONFERENCE ON NEURAL INFORMATION
PROCESSING SYSTEMS (NeurIPS), 34., 2020, Vancouver. Proceedings...
Vancouver: NeurIPS, 2020. Disponível em:
<https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e

5-Paper.pdf>. Acesso em: 10 out. 2025.

META. Introducing Meta LLaMA 3 Models. Meta AI, 2025. Disponível em:
<https://ai.meta.com/llama/>. Acesso em: 14 out. 2025.

MICROSOFT. TypeScript Handbook. [S.l.]: Microsoft, 2025. Disponível em:
<https://www.typescriptlang.org/docs/>. Acesso em: 9 out. 2025.

MINIO. MinIO Documentation. [S.l.]: MinIO, 2025. Disponível em:
<https://docs.min.io/>. Acesso em: 14 out. 2025.

OPENROUTER. OpenRouter API Documentation. [S.l.]: OpenRouter, 2025.
Disponível em: <https://openrouter.ai/docs>. Acesso em: 2 out. 2025.

PRESSMAN, Roger S.; MAXIM, Bruce R. Software Engineering: A Practitioner’s
Approach. 9th ed. New York: McGraw-Hill Education, 2020. Disponível em:
<https://highered.mheducation.com/sites/0078022126/index.html>. Acesso em: 24
out. 2025.

ORACLE. MySQL 8.0 Reference Manual. [S.l.]: Oracle Corporation, 2025. Disponível
em: <https://dev.mysql.com/doc/>. Acesso em: 7 out. 2025.

QDRANT. Qdrant Documentation. [S.l.]: Qdrant Tech, 2025. Disponível em:
<https://qdrant.tech/documentation/>. Acesso em: 14 out. 2025.

RAMÍREZ, S. FastAPI: Modern, Fast Web Framework for Building APIs. [S.l.]: GitHub,
2025. Disponível em: <https://github.com/tiangolo/fastapi>. Acesso em: 6 out. 2025.

SAJID, Haziqa. O que são alucinações LLM? Causas, preocupação ética e prevenção.
Unite.AI, 2023. Disponível em: <https://www.unite.ai/pt/what-are-llm-hallucinations-
causes-ethical-concern-prevention/>. Acesso em: 8 out. 2025.

SQLALCHEMY. SQLAlchemy ORM Documentation. [S.l.]: SQLAlchemy, 2025.
Disponível em: <https://docs.sqlalchemy.org/>. Acesso em: 12 out. 2025.

VASWANI, A. et al. Attention Is All You Need. Advances in Neural Information
Processing Systems, 2017. Disponível em: <https://papers.nips.cc/paper/7181-
attention-is-all-you-need.pdf>. Acesso em: 10 out. 2025.

ZHAO, Wayne Xin et al. A Survey of Large Language Models. arXiv preprint,
arXiv:2303.18223, 2023. Disponível em: <https://arxiv.org/abs/2303.18223>. Acesso
em: 13 out. 2025.

https://min.io/docs/
https://min.io/docs/

