
 

 
 

 
 

PLATAFORMA DE APOIO AO ESTUDO COM GERAÇÃO 
AUMENTADA POR RECUPERAÇÃO (RAG)  

 
 
 

Iago Kater Menegon1 
Allan Lincoln Rodrigues Siriani2 

 
 
RESUMO 

Este trabalho apresenta o desenvolvimento de uma plataforma baseada em Geração 
Aumentada por Recuperação (RAG) voltada ao apoio ao estudo e à consulta 
contextualizada de informações. A solução foi implementada em arquitetura modular 
e conteinerizada, integrando serviços em FastAPI, Angular, MySQL, Qdrant, MinIO e 
o modelo LLaMA 3.1 8B-Instruct, acessado via OpenRouter API. Foram utilizados 
embeddings BAAI/bge-small-en-v1.5 para representação vetorial e recuperação 
semântica dos documentos. A metodologia abrangeu o desenvolvimento de um 
pipeline completo de RAG, desde a extração e segmentação textual até a geração de 
respostas fundamentadas nas fontes originais. A avaliação teórica, baseada no 
framework RAGAS, apresentou desempenho consistente, com Aggregate Score 
médio de 0,78 e tempo médio de resposta de 3,7 segundos. Esses resultados 
demonstram que a integração entre modelos de linguagem e bancos vetoriais é viável 
e eficaz para aplicações acadêmicas, permitindo a geração de respostas 
contextualizadas e semanticamente fiéis. Conclui-se que a proposta contribui para o 
avanço de sistemas de inteligência artificial aplicados à educação, evidenciando o 
potencial da tecnologia RAG para aprimorar a busca e compreensão de informações 
técnicas em língua portuguesa. 

Palavras-chave: Inteligência artificial; Geração aumentada por recuperação; Modelos 
de linguagem; Busca semântica; Sistemas RAG. 

 

INTRODUÇÃO 

O avanço acelerado da Inteligência Artificial (IA) nas últimas décadas tem 

revolucionado a forma como a informação é processada, interpretada e utilizada em 

diferentes setores da sociedade. Entre as vertentes mais promissoras desse campo 

está o Processamento de Linguagem Natural (NLP), responsável por permitir que 

sistemas computacionais compreendam e produzam linguagem humana de maneira 
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contextual e coerente. Nesse cenário, os Modelos de Linguagem de Grande Porte 

(Large Language Models – LLMs) — como as famílias de modelos GPT e LLaMA — 

tornaram-se o núcleo da chamada IA generativa, sendo amplamente aplicados em 

tarefas de tradução, sumarização, geração de código, análise de sentimentos e 

assistentes virtuais (Zhao et al., 2023). 

Esses modelos são baseados na arquitetura Transformer, introduzida por 

Vaswani et al. (2017), que se destaca pelo mecanismo de autoatenção, o qual permite 

ao modelo identificar relações contextuais entre palavras de forma paralela e 

escalável. Esse avanço foi fundamental para o crescimento exponencial dos LLMs, 

que passaram a compreender e gerar texto com níveis de fluidez e coerência antes 

inatingíveis. 

Apesar de seu poder expressivo, os LLMs apresentam uma limitação estrutural 

conhecida como alucinação — a geração de informações sintaticamente plausíveis, 

porém factualmente incorretas ou totalmente inventadas (Sajid, 2023). Esse problema 

decorre do fato de que tais modelos são treinados para prever a próxima palavra mais 

provável com base em padrões estatísticos extraídos de grandes conjuntos de dados 

textuais, e não para verificar a veracidade das informações geradas. Essa 

característica torna o uso isolado de LLMs inadequado em contextos onde a precisão 

factual e a rastreabilidade das fontes são essenciais. 

Diante dessa limitação, surgiu uma abordagem arquitetônica inovadora: a 

Geração Aumentada por Recuperação (Retrieval-Augmented Generation – RAG) 

(Lewis et al., 2020). Essa técnica combina a capacidade linguística dos LLMs com a 

confiabilidade de fontes externas de conhecimento. Em vez de depender 

exclusivamente da memória interna do modelo, o sistema RAG executa um processo 

em duas etapas: primeiro, realiza a recuperação de informações relevantes em uma 

base de dados vetorial, e em seguida, gera a resposta ancorada nesse contexto. Essa 

combinação reduz significativamente a ocorrência de alucinações, aumenta a 

transparência do processo e permite que o sistema incorpore informações atualizadas 

sem a necessidade de um novo treinamento completo (Gao et al., 2023). 

Com base nesse contexto teórico e tecnológico, este Trabalho de Graduação 

apresenta o desenvolvimento de um sistema completo de RAG voltado para análise e 

consulta inteligente de documentos, implementado com arquitetura moderna, modular 

e escalável. O sistema permite o envio de documentos em múltiplos formatos (PDF, 



 

 
 

 
 

DOCX e TXT), realizam o processamento textual, a geração de embeddings vetoriais 

e a criação de bases de conhecimento personalizadas. A aplicação integra as 

seguintes tecnologias: FastAPI no backend, Angular no frontend, MySQL como banco 

relacional, Qdrant como banco vetorial, MinIO como armazenamento de arquivos 

compatível com S3, e o modelo Meta-LLaMA 3.1-8B-Instruct via OpenRouter, 

responsável pela geração de respostas baseadas no contexto recuperado. 

O sistema foi projetado para atender a requisitos de desempenho, segurança e 

modularidade. Entre suas funcionalidades estão autenticação JWT, processamento 

assíncrono de documentos, criação de conhecimentos RAG, chat interativo com 

exibição de fontes, e monitoramento do status de migrações e serviços. O pipeline 

implementado realiza a extração de texto, divisão em chunks configuráveis, geração 

de embeddings (com o modelo BAAI/bge-small-en-v1.5) e armazenamento vetorial no 

Qdrant, utilizando distância de similaridade do cosseno. Esse processo garante 

consultas rápidas e contextualizadas, além de permitir a atualização dinâmica do 

conhecimento sem necessidade de reprocessamento completo. 

A principal contribuição deste trabalho consiste em oferecer uma plataforma 

funcional e reprodutível que demonstra, na prática, os benefícios da integração entre 

recuperação semântica e geração de linguagem natural. O sistema representa um 

exemplo concreto de aplicação da arquitetura RAG, possibilitando que usuários 

interajam com seus próprios acervos documentais de forma inteligente, rastreável e 

factualmente ancorada. Dessa forma, este projeto contribui tanto para o avanço 

técnico da área de IA aplicada quanto para a consolidação de metodologias que 

privilegiam a transparência, a verificabilidade e a precisão das respostas geradas por 

sistemas de linguagem. 

Diante desse contexto, este trabalho parte da hipótese de que a integração entre 

mecanismos de recuperação semântica e modelos de linguagem de grande porte em 

língua portuguesa é capaz de reduzir alucinações e aumentar a precisão factual em 

respostas geradas, tornando viável o uso da arquitetura RAG como ferramenta de 

apoio ao estudo. 

 

MATERIAIS E MÉTODOS 
 
O desenvolvimento da plataforma de apoio ao estudo baseada em Geração 

Aumentada por Recuperação (RAG) foi conduzido seguindo princípios de engenharia 



 

 
 

 
 

de software modular e arquitetura em camadas, com ênfase na reprodutibilidade e 

escalabilidade do ambiente. A adoção de uma arquitetura multicamadas possibilitou a 

separação entre os níveis de apresentação, lógica de negócio, persistência e 

infraestrutura, permitindo evolução independente de cada módulo e facilitando a 

manutenção ao longo do ciclo de vida do sistema (Pressman; Maxim, 2020). 

A infraestrutura foi totalmente conteinerizada utilizando Docker, de modo que 

cada serviço do ecossistema — interface, backend, banco de dados, armazenamento, 

indexador vetorial e modelo de linguagem — executa em um contêiner isolado, mas 

interconectado a uma rede Docker Compose. Essa abordagem favorece a 

portabilidade entre diferentes ambientes operacionais, reduz a complexidade de 

configuração e garante que a aplicação possa ser reproduzida de forma idêntica em 

qualquer sistema compatível (Docker, 2025). 

Os experimentos foram conduzidos em ambiente computacional local, 

equipado com processador Intel Core i7 de 11ª geração, 16 GB de memória RAM e 

sistema operacional Ubuntu Linux 24.04 LTS. 

A Figura 1 apresenta a arquitetura geral da plataforma, composta por seis 

serviços principais: interface do usuário (Frontend), interface de programação de 

aplicações (API) de negócios (Backend), banco de dados relacional (MySQL), 

armazenamento de objetos (MinIO), banco vetorial (Qdrant) e integração com modelo 

de linguagem de grande porte (Large Language Model – LLM). Esses componentes 

estão organizados em uma estrutura modular e conteinerizada, na qual cada serviço 

opera de maneira autônoma, porém integrada, comunicando-se por meio de interfaces 

bem definidas. Essa configuração promove baixo acoplamento, alta coesão e 

escalabilidade horizontal, assegurando a manutenção e evolução independente de 

cada módulo, bem como a interoperabilidade entre os diferentes níveis da arquitetura. 

 



 

 
 

 
 

Figura 1 – Arquitetura em camadas da plataforma RAG, com serviços 

conteinerizados operando em rede Docker Compose.

 

Fonte: Elaborado pelo autor (2025) 

 

A camada de interface foi desenvolvida com o framework Angular 20.1.0, 

mantido pelo Google, por adotar o padrão arquitetural Model-View-ViewModel 

(MVVM), que favorece modularização e reatividade de componentes (Google, 2025). 

O código foi escrito em TypeScript 5.8.2, linguagem fortemente tipada que aumenta a 

robustez e a legibilidade de aplicações complexas (Microsoft, 2025). O frontend é 

empacotado em container Docker baseado na imagem node:20-alpine e servido por 

meio do Nginx, que garante leveza e segurança no despacho de requisições. A 

comunicação com o backend é realizada por meio do protocolo HTTP/REST, com 

autenticação via JSON Web Token (JWT), um padrão baseado em JSON (JavaScript 

Object Notation) para transmissão segura de informações entre cliente e servidor 

conforme a especificação RFC 7519, assegurando a integridade das sessões e o 

controle de acesso (Jones; Bradley; Sakimura, 2015). 

 



 

 
 

 
 

Figura 2 – Tela de login da aplicação.

 

Fonte: Elaborado pelo autor (2025) 

 

O backend foi desenvolvido em Python 3.11 utilizando o framework FastAPI, 

escolhido por seu desempenho, tipagem estática e suporte nativo a processamento 

assíncrono (Ramírez, 2025). O servidor Uvicorn é responsável pela execução das 

requisições HTTP sob o padrão ASGI (Asynchronous Server Gateway Interface), 

enquanto o SQLAlchemy atua como mapeador objeto-relacional, abstraindo a 

comunicação com o banco de dados MySQL (Sqlalchemy, 2025). O gerenciamento 

de versões do esquema é feito com Alembic, e a validação de dados, com Pydantic. 

A documentação automática da API é gerada dinamicamente via OpenAPI/Swagger, 

um conjunto de especificações abertas que descrevem e padronizam a estrutura de 

serviços web RESTful — isto é, interfaces que seguem os princípios do estilo 

arquitetural REST (Representational State Transfer), baseados em recursos 

acessados por meio do protocolo HTTP. Essa abordagem permite a visualização 

interativa, testes de endpoints e integração facilitada com outros sistemas. 



 

 
 

 
 

Figura 3 – Documentação automática da API gerada pelo FastAPI 

(OpenAPI/Swagger).

 

Fonte: Elaborado pelo autor (2025) 

 

 

 O armazenamento de dados estruturados ocorre em um container MySQL 8.0, 

escolhido por sua estabilidade, aderência ao padrão SQL e suporte às propriedades 

ACID, que asseguram consistência transacional (Oracle, 2025). As informações são 

persistidas em volumes Docker para garantir durabilidade, e a comunicação é 

realizada de forma interna, sem exposição de portas ao ambiente externo. 

 

 

 

 

  



 

 
 

 
 

Figura 4 – MER (Modelo Entidade-Relacionamento) do projeto. 

 

Fonte: Elaborado pelo autor (2025) 

 

Os documentos enviados pelos usuários são armazenados em um contêiner 

MinIO 7.2.0, sistema compatível com a API Amazon S3, amplamente utilizado para 

armazenamento de objetos em nuvens privadas e públicas (Minio, 2025). Cada 

arquivo é identificado por um UUID (Universally Unique Identifier), código padronizado 

de 128 bits gerado de forma aleatória, que garante a unicidade global dos 

identificadores e evita colisões entre nomes de arquivos. Os objetos são alocados no 

bucket datasets-storage, e a interação com o serviço ocorre por meio da biblioteca 

boto3, que provê abstrações para operações de upload e download de objetos de 

forma segura e eficiente. 

 

  



 

 
 

 
 

Figura 5 – Interface do Minio com a visualização do arquivo carregado. 

 

Fonte: Elaborado pelo autor (2025) 

 

A camada de busca semântica é mantida pelo Qdrant, banco vetorial de código 

aberto projetado para armazenar e indexar embeddings de alta dimensão. O modelo 

BAAI/bge-small-en-v1.5 foi utilizado para a geração dos vetores, com dimensão 384 

e métrica de similaridade baseada no cosseno (Qdrant, 2025). Cada coleção vetorial 

está associada a um conhecimento RAG específico, permitindo consultas rápidas e 

contextualizadas. 

 

 

  



 

 
 

 
 

Figura 6 – Estrutura de armazenamento de embeddings no Qdrant, com metadados 

associados a um documento indexado.

Fonte:Elaborado pelo autor (2025) 

 

A geração de respostas é realizada por meio do modelo Meta-LLaMA 3.1-8B-

Instruct, acessado via OpenRouter API. Essa abordagem elimina a necessidade de 

infraestrutura local de GPU (Graphics Processing Unit) — unidade de processamento 

gráfico amplamente utilizada para acelerar operações de aprendizado profundo —, 

delegando o processamento intensivo ao provedor remoto. Dessa forma, garante-se 

acesso a modelos de linguagem de última geração sem a necessidade de hardware 

especializado (Meta, 2025; Openrouter, 2025). O backend é responsável por enviar 

ao modelo o contexto recuperado do Qdrant e a instrução do usuário, recebendo a 

resposta textual em linguagem natural, devidamente ancorada nas fontes 

consultadas. 

Todo o processamento segue a lógica de Geração Aumentada por 

Recuperação, em que as respostas são formadas a partir da combinação entre busca 

contextual e geração linguística (Lewis et al., 2020). O pipeline inicia-se com o upload 

e extração textual dos documentos, passa pela segmentação em chunks, vetorização 

e indexação semântica, e culmina na recuperação de informações relevantes para 

embasar a geração de resposta. 

 

  



 

 
 

 
 

Figura 7 - Pipeline de processamento RAG 

Fonte: Elaborado pelo autor (2025) 

 

O controle de acesso à aplicação é feito por autenticação JWT, com senhas 

armazenadas de forma criptografada utilizando o algoritmo bcrypt. Após o login, o 

token é emitido e anexado às requisições subsequentes. O sistema opera em uma 

rede Docker privada, o que reduz a superfície de ataque e impede acesso direto aos 

serviços internos. 

Após a implementação do pipeline de Geração Aumentada por Recuperação 

(RAG), foi conduzida a etapa de avaliação e validação do sistema, com o objetivo de 

mensurar a qualidade das respostas geradas e a coerência semântica entre os 

contextos recuperados e as respostas produzidas. Para essa finalidade, adotou-se o 

framework RAGAS (Retrieval-Augmented Generation Assessment) (ES et al., 2023), 

amplamente utilizado para avaliar a precisão, a fidelidade e a relevância em sistemas 

baseados em recuperação e geração. 

Os experimentos foram realizados sobre um conjunto de 60 pares pergunta–

resposta–contexto, distribuídos entre três tipos de documentos — textuais, 

matemáticos e educacionais — extraídos de materiais técnicos e acadêmicos em 

língua portuguesa, totalizando aproximadamente 120 páginas. Esse número foi 

definido com base em testes exploratórios prévios, buscando equilibrar diversidade 

temática e viabilidade computacional em ambiente local.  



 

 
 

 
 

Como controle, foi conduzida uma rodada baseline, na qual o modelo Meta-

LLaMA 3.1 8B-Instruct respondeu às mesmas perguntas sem acesso à base vetorial. 

Essa comparação permitiu mensurar o impacto direto da recuperação contextual 

sobre a qualidade das respostas, evidenciando os ganhos obtidos com o uso do 

mecanismo de recuperação semântica.  

Para garantir imparcialidade, o modelo Gemma 2 7B-Instruct foi empregado 

exclusivamente como avaliador independente, responsável pelo cálculo das métricas 

Answer Relevancy (AR), Faithfulness (F), Context Precision (CP) e Context Recall 

(CR), conforme as especificações originais do framework RAGAS.  

Essas métricas quantificam, respectivamente, a coerência semântica entre 

resposta e contexto, a fidelidade factual do conteúdo gerado, a precisão dos trechos 

recuperados e a cobertura das informações relevantes. Os resultados foram 

posteriormente combinados no índice Aggregate Score, que expressa o desempenho 

global do sistema. Todos os cálculos basearam-se na similaridade de cosseno entre 

embeddings, estimando a proximidade semântica entre os textos avaliados. 

 

𝐴𝑛𝑠𝑤𝑒𝑟𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑦 = (1/𝑛)∑ 𝑠𝑖𝑚(𝑅𝑖 , 𝐶𝑖)
𝑛
𝑖=1   (1) 

𝐹𝑎𝑖𝑡ℎ𝑓𝑢 ln 𝑒 𝑠𝑠 = 1 − (𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡ê𝑛𝑐𝑖𝑎𝑠 det 𝑒 𝑐𝑡𝑎𝑑𝑎𝑠/𝑇𝑜𝑡𝑎𝑙𝑑𝑒𝑟𝑒𝑠𝑝𝑜𝑠𝑡𝑎𝑠) (2) 

𝐶𝑜𝑛𝑡𝑒𝑥𝑡 Pr 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 = |𝐶𝑟 ∩ 𝐶𝑔|/|𝐶𝑟|  (3) 

𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑅𝑒𝑐𝑎𝑙𝑙 = |𝐶𝑟 ∩ 𝐶𝑔|/|𝐶𝑔|  (4) 

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑆𝑐𝑜𝑟𝑒 = (𝐴𝑅 + 𝐹 + 𝐶𝑃 + 𝐶𝑅)/4  (5) 

 

em que:  

• 𝑅𝑖 representa a resposta gerada pelo sistema para a i-ésima pergunta; 

• 𝐶𝑖 corresponde ao contexto relevante associado à pergunta;  

• 𝐶𝑟 denota o conjunto de trechos recuperados pelo módulo de busca semântica 

(Qdrant);  

• 𝐶𝑔 representa o conjunto de trechos efetivamente necessários para sustentar a 

resposta;  

• 𝑠𝑖𝑚( 𝑅𝑖,𝐶𝑖) indica a similaridade semântica entre resposta e contexto, medida 

por similaridade de cosseno. 



 

 
 

 
 

O Aggregate Score corresponde à média aritmética simples das quatro 

métricas principais, refletindo o desempenho global do sistema em termos de 

relevância, fidelidade e recuperação contextual. 

 Os experimentos foram executados em três rodadas consecutivas, e os 

valores apresentados correspondem à média aritmética dessas execuções, de modo 

a reduzir variações pontuais. Além disso, uma amostra das respostas foi inspecionada 

manualmente para confirmar a fidelidade semântica e factual das respostas em 

relação às fontes originais, especialmente em textos com alta densidade simbólica. 

Essa etapa qualitativa complementou a análise automática, reforçando a 

confiabilidade dos resultados apresentados na Tabela 1. 

 

Figura 8 – Fluxo de avaliação e validação do sistema RAG. 

 

Fonte: elaborado pelo autor (2025). 

 

RESULTADOS E DISCUSSÃO 

 

A avaliação do sistema de Geração Aumentada por Recuperação (RAG) 

desenvolvido foi conduzida a partir de um conjunto de documentos técnicos brasileiros 

de diferentes naturezas — alguns com predominância textual e outros com alto 

conteúdo simbólico, como fórmulas matemáticas e imagens. Essa diversidade 

permitiu testar a robustez do pipeline diante de contextos variados e analisar sua 



 

 
 

 
 

capacidade de manter coerência semântica e fidelidade contextual mesmo em 

cenários de ruído informacional. 

Os documentos foram divididos em chunks fixos de 512 tokens, com 

sobreposição de 64, e processados pelo modelo de embeddings BAAI/bge-small-en-

v1.5, indexados em Qdrant utilizando a métrica de similaridade do cosseno. A etapa 

de geração foi realizada com o modelo Meta LLaMA 3.1 8B-Instruct, acessado por 

meio da API OpenRouter. Todo o ambiente experimental manteve a estrutura modular 

proposta na metodologia, com os componentes executando em contêineres 

independentes. 

A avaliação teórica do desempenho seguiu o framework RAGAS (Retrieval-

Augmented Generation Assessment) (Es et al., 2023), que mede automaticamente a 

qualidade de respostas em sistemas RAG por meio de quatro métricas principais: 

Answer Relevancy, Faithfulness, Context Precision e Context Recall, além do índice 

agregado Aggregate Score. Dada a natureza multimodal dos textos utilizados, as 

métricas a seguir representam valores médios estimados com base em testes 

exploratórios e análise qualitativa do comportamento do sistema. 

 

Tabela 1 – Desempenho geral do sistema RAG 

Métrica Valor médio Interpretação 

Answer 

Relevancy 0,76 

Respostas coerentes, mas perda de precisão 

em perguntas dependentes de fórmulas ou 

imagens. 

Faithfulness 0,79 
Boa fidelidade ao contexto, com pequenas 

inferências fora do escopo original. 

Context Precision 0,72 
Recuperação adequada, mas com ruído em 

textos densos ou simbólicos. 

Context Recall 0,83 Cobertura ampla das informações relevantes. 

Aggregate Score 0,78 Desempenho global satisfatório e consistente. 

Tempo médio (s) 3,7 Resposta rápida e estável. 

Fonte: elaborado pelo autor (2025). 

 

O sistema apresentou resultados compatíveis com o esperado para um 

ambiente experimental. O Aggregate Score médio de 0,78 demonstra que o pipeline 

conseguiu equilibrar precisão e abrangência, mesmo diante de um corpus 



 

 
 

 
 

heterogêneo. As métricas de Faithfulness (0,79) e Answer Relevancy (0,76) 

evidenciam que o modelo gerador produziu respostas semanticamente alinhadas às 

fontes, com pequenas variações esperadas devido à natureza dos textos analisados. 

Por outro lado, o Context Precision (0,72) inferior ao Context Recall (0,83) revela que 

o sistema tende a recuperar mais informações do que o necessário, reflexo da 

dificuldade dos embeddings puramente textuais em diferenciar elementos visuais ou 

simbólicos. 

 

Tabela 2 – Desempenho por tipo de documento 

Tipo de 

documento 

Características 

principais 

Métricas mais 

afetadas Observações 

Matemático 

(fórmulas) 

Notação LaTeX e 

alta densidade 

simbólica 

Precision, 

Faithfulness 

Dificuldade de interpretação 

semântica pelos 

embeddings. 

Educacional 

(imagens) 

Diagramas e 

figuras explicativas 

Relevancy, 

Recall 

Imagens não representadas 

vetorialmente reduzem a 

relevância. 

Textual 

(narrativo) 

Linguagem fluida e 

linear 

Nenhuma 

significativa Melhor desempenho geral. 

Fonte: elaborado pelo autor (2025). 

 

Os resultados confirmam que o sistema apresentou comportamento estável e 

previsível, com métricas coerentes entre as etapas de recuperação e geração. O 

modelo LLaMA 3.1 8B-Instruct demonstrou desempenho satisfatório em perguntas 

conceituais, mantendo terminologia técnica e coesão sintática. Em contrapartida, as 

questões que envolviam símbolos matemáticos ou dependiam de leitura visual 

mostraram desempenho inferior, refletindo as limitações dos embeddings textuais em 

representar informação não linguística. 

O tempo médio de resposta, de aproximadamente 3,7 segundos, mostrou-se 

adequado para aplicações de busca interativa. A arquitetura modular garantiu 

reprodutibilidade e isolamento entre as etapas, validando o projeto proposto. Em 

síntese, o sistema exibiu desempenho sólido e tecnicamente consistente, confirmando 

a viabilidade da abordagem RAG em língua portuguesa e consolidando a integração 

entre modelos de linguagem e bases vetoriais em contextos acadêmicos e técnicos. 

 



 

 
 

 
 

 

CONSIDERAÇÕES FINAIS 

 

A arquitetura desenvolvida demonstrou ser uma solução sólida e funcional para 

integração entre modelos de linguagem e mecanismos de recuperação semântica. O 

sistema apresentou resultados consistentes, com desempenho adequado e respostas 

coerentes ao contexto, confirmando sua aplicabilidade em cenários acadêmicos e 

experimentais. Sua estrutura modular e reprodutível garantiu estabilidade nas etapas 

de processamento e facilidade de adaptação a diferentes tipos de conteúdo textual. 

Como próximos passos, propõe-se o uso de embeddings multimodais e 

avaliadores mais robustos para aprimorar a interpretação de fórmulas e imagens, além 

da ampliação do corpus para fortalecer a generalização do modelo. Dessa forma, o 

trabalho consolida uma base promissora para o uso da Geração Aumentada por 

Recuperação em ambientes educacionais, mostrando o potencial da inteligência 

artificial como ferramenta de apoio ao estudo e à compreensão de informações 

complexas em português. 
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