CENTRO ESTADUAL DE EDUCAÇÃO TECNOLÓGICA PAULA SOUZA FACULDADE DE TECNOLOGIA DE INDAIATUBA DR. ARCHIMEDES LAMMOGLIA TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

ALINE VITÓRIA DE SOUZA KAUÃ NOGUEIRA WATANABE

Aplicação de algoritmos na identificação de déficits de aprendizado em simulados de ITIL v2

Indaiatuba Junho/2025

CENTRO ESTADUAL DE EDUCAÇÃO TECNOLÓGICA PAULA SOUZA FACULDADE DE TECNOLOGIA DE INDAIATUBA DR. ARCHIMEDES LAMMOGLIA TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

ALINE VITÓRIA DE SOUZA KAUÃ NOGUEIRA WATANABE

Aplicação de algoritmos na identificação de déficits de aprendizado em simulados de ITIL v2

Trabalho de Graduação apresentado por Aline Vitória de Souza e Kauã Nogueira Watanabe como prérequisito para a conclusão do Curso Superior de Tecnologia em Análise e Desenvolvimento de Sistemas, da Faculdade de Tecnologia de Indaiatuba, elaborado sob a orientação da Prof. Me. Michel Moron Munhoz.

Indaiatuba Junho/2025

CENTRO ESTADUAL DE EDUCAÇÃO TECNOLÓGICA PAULA SOUZA FACULDADE DE TECNOLOGIA DE INDAIATUBA DR. ARCHIMEDES LAMMOGLIA TECNOLOGIA EM ANÁLISE E DESENVOLVIMENTO DE SISTEMAS

ALINE VITÓRIA DE SOUZA KAUÃ NOGUEIRA WATANABE

Aplicação de algoritmos na identificação de déficits de aprendizado em simulados de ITIL v2

Banca avaliadora:

Prof. Me. Michel Moron Munhoz	Orientador
Data da defesa: / /	

Indaiatuba Junho/2025

Dedicamos este trabalho, a Deus, cuja força, inspiração e saúde nos guiaram até a conclusão deste caminho. Sem Sua presença constante, nossos esforços seriam em vão.

AGRADECIMENTOS

Agradecemos aos nossos pais, que enfrentaram os desafios da vida para nos conduzir em segurança até aqui. Sua coragem e apoio inabaláveis foram os pilares que sustentaram cada um de nossos passos.

Aos nossos irmãos e amigos, que estiveram ao nosso lado, suportando nossos momentos difíceis e trazendo luz e cor aos nossos dias mais sombrios com sua presença e carinho.

Agradecemos também um ao outro, pela paciência, compreensão e parceria que nos uniram e nos fortaleceram ao longo desta jornada.

Com profunda importância, aos nossos avós, cuja memória e legado continuam a nos inspirar. Mesmo na saudade, celebramos com gratidão a herança de amor e sabedoria que nos deixaram.

Ao nosso orientador, que acreditou em nosso potencial e nos guiou pelos melhores caminhos durante o desenvolvimento deste trabalho. Sua orientação foi fundamental para que pudéssemos avançar com confiança.

RESUMO

O presente trabalho propõe o desenvolvimento de um sistema de simulado inteligente que utiliza algoritmos para correção automatizada e geração de feedback quantitativo ao usuário, com o objetivo de apoiar o processo de aprendizagem por repetição voltado ao conteúdo de Gestão e Governança de Tecnologia da Informação, especialmente no contexto da certificação ITIL v2 em seu nível introdutório. O sistema busca auxiliar os estudantes na identificação de pontos de dificuldade, promovendo uma aprendizagem mais direcionada e eficaz. Conforme estudos de Schraw e Dennison (1994), que destacam a importância da metacognição no desempenho acadêmico, especialmente por meio de duas dimensões: o conhecimento da cognição (saber o que, como e quando aprender) e a regulação da cognição (planejamento, monitoramento e avaliação das estratégias de aprendizagem). Ao fornecer ao estudante informações detalhadas sobre seu desempenho e indicar áreas específicas para estudo, o sistema incentiva o monitoramento contínuo da própria aprendizagem e a reflexão sobre os erros cometidos, aspectos centrais da autorregulação metacognitiva. Dessa forma, o simulado inteligente atua não apenas como uma ferramenta avaliativa, mas como um instrumento de apoio pedagógico que estimula o desenvolvimento da consciência metacognitiva, essencial para a autonomia e o sucesso do estudante. Em seu desenvolvimento, foram utilizados a linguagem de programação Python e o banco de dados SQLite, sendo disponibilizado como uma plataforma web de fácil acesso, permitindo que os usuários possam realizar os simulados e acompanhar sua evolução de forma interativa e contínua.

Palavras-chave: Simulado; Algoritmos; Feedback; Gestão e Governança.

ABSTRACT

This paper proposes the development of an intelligent simulation system that uses algorithms for automated correction and the generation of quantitative feedback to the user, with the aim of supporting the process of learning by repetition in relation to the content of Information Technology Management and Governance, especially in the context of ITIL v2 certification at its introductory level. The system aims to help students identify points of difficulty, promoting more targeted and effective learning. According to studies by Schraw and Dennison (1994), who highlight the importance of metacognition in academic performance, especially through two dimensions: cognition knowledge (knowing what, how and when to learn) and cognition regulation (planning, monitoring and evaluating learning strategies). By providing students with detailed information on their performance and indicating specific areas for study, the system encourages continuous monitoring of their own learning and reflection on mistakes made, which are central aspects of metacognitive self-regulation. In this way, the intelligent quiz acts not just as an assessment tool, but as a pedagogical support instrument that encourages the development of metacognitive awareness, which is essential for student autonomy and success. The Python programming language and the SQLite database were used in its development. It is available as an easily accessible web platform, allowing users to carry out simulations and monitor their progress in an interactive and continuous way.

Keywords: Simulated; Algorithms; Feedback; Governance and Management.

LISTA DE QUADROS

Quadro 1: Comparativo entre Métodos de Aprendizagem	16
Quadro 2: Comparativo de Artigos Acadêmicos	22
Quadro 3: Comparativo de Ferramentas Comerciais	23
Quadro 4: Questões Utilizadas no Simulado	48
Quadro 5: USC001	91
Quadro 6: USC002	91
Quadro 7: USC003	91
Quadro 8: USC004	92
Quadro 9: USC005	92
Quadro 10: USC006	92
Quadro 11: USC007	93
Quadro 12: USC008	93
Quadro 13: USC009	93
Quadro 14: USC010	93

LISTA DE FIGURAS

Figura 1: Modelo de Entidade-Relacionamento	28
Figura 2: Diagrama de Entidade-Relacionamento	30
Figura 3: Diagrama de Caso de Uso	31
Figura 4: Diagrama de Classes	32
Figura 5: Diagrama de Sequência	34
Figura 6: Representação da Arquitetura do Sistema	35
Figura 7: Nível de satisfação com revisões, antes da aplicação da ferramenta	38
Figura 8: Percentual de aprovação da ferramenta	38
Figura 9: Nível de satisfação com atributos da plataforma	39
Figura 10: Percentual de usuários sem acesso a plataformas similares	39
Figura 11: Tela do login	84
Figura 12: Tela de cadastro	85
Figura 13: Tela de inicial	86
Figura 14: Tela do simulado	87
Figura 15: Tela de finalização do simulado	87
Figura 16: Tela de feedback	88
Figura 17: Tela com o menu suspenso	89
Figura 18: Tela de histórico	90

LISTA DE ABREVIAÇÕES

ALEKS - Assessment and Learning in Knowledge Spaces

API - Application Programming Interface

AVA - Ambiente Virtual de Aprendizagem

AWS - Amazon Web Services

CSS - Cascading Style Sheets

DER - Diagrama Entidade-Relacionamento

EAD - Educação à Distância

ENEM - Exame Nacional do Ensino Médio

FATEC - Faculdade de Tecnologia

HTML - HyperText Markup Language

HTTP - HyperText Transfer Protocol

IBGE - Instituto Brasileiro de Geografia e Estatística

IP - Internet Protocol

ITIL - Information Technology Infrastructure Library

MER - Modelo Entidade-Relacionamento

REST - Representational State Transfer

SPSS - Statistical Package for Social Sciences

SQL - Structured Query Language

TI - Tecnologia da Informação

TRI - Teoria de Resposta ao Item

URI - Uniform Resource Identifier

VM - Virtual Machine

SUMÁRIO

INTRODUÇÃO)	13
CAPÍTULO I		15
1. Fundame	entação Teórica	15
1.1. Cor	nceitos chave	15
1.1.1.	Simulação em certificações	15
1.1.2.	Análise de desempenho	16
1.1.3.	Módulo de recomendações	17
1.2. Tra	balhos relacionados	18
CAPÍTULO II		24
2. Metodole	ogia	24
2.1. Nat	tureza da Pesquisa	24
2.2. Pad	lrões para Pesquisa Experimental	24
2.3. Exp	perimento de Pesquisa	25
2.4. Mat	teriais e Ferramentas	25
2.4.1.	Linguagens de Programação	25
2.4.2.	Bibliotecas Utilizadas	25
2.4.3.	Integrações	26
2.4.4.	Custos de Desenvolvimento	26
2.5. Mét	todos Aplicados	26
2.5.1.	Filtragem do Banco de Questões	27
2.5.2.	Seleção Aleatória de Questões	27
2.5.3.	Coleta de Dados	27
2.5.4.	Avaliação das Respostas	27
2.5.5.	Geração de <i>Feedback</i>	28
2.6. Dia	gramas	28
2.6.1.	MER e DER	28

	2.6.2.	Caso de Uso
	2.6.3.	Classe
	2.6.4.	Sequência
	2.6.5.	Arquitetura do Sistema
CAPÍT	TULO III	
3.	Resultad	os e Discussão
3	.1. Apr	esentação
3	.2. Imp	lementação
3	.3. Aná	lise de Dados
	3.3.1.	Análise das Avaliações dos Usuários
3	.4. Tral	palhos Futuros
3	.5. Con	siderações Finais
REFE	RÊNCIAS	
ANEX	XO A – Ba	nco de Questões Utilizadas no Simulado
APÊN	DICE A -	Formulário de Pesquisa de Satisfação
APÊN	DICE B -	Interface da Ferramenta
APÊN	DICE C -	Narrativas de Caso de Uso

INTRODUÇÃO

Em consonância com o IBGE (Instituto Brasileiro de Geografia e Estatística), em pesquisa realizada em 2021, 90% dos estudantes brasileiros tinham acesso à internet, refletindo o avanço da digitalização no ensino.

Esse cenário evidenciou a inserção tecnológica no cotidiano educacional, especialmente diante da crescente demanda por certificações na área de TI (Tecnologia da Informação), como afirma Schuster (2008), a preparação para exames complexos passou a exigir estratégias de estudo mais eficazes e direcionadas.

Nesse contexto, a personalização do ensino destacou-se como estratégia eficaz para melhorar a retenção de conhecimento e o desempenho acadêmico. Slavin (2010) aponta que abordagens educacionais individualizadas aumentam significativamente as chances de sucesso ao alinhar o conteúdo às necessidades específicas de cada aluno.

De forma complementar, Hattie e Timperley (2007) enfatizam a importância do *feedback* eficaz na promoção do aprendizado, permitindo que o estudante reconheça suas dificuldades e redirecione seus esforços.

No cenário de Gestão e Governança de Tecnologia da Informação, o aumento na procura por certificações torna-se ainda mais relevante por se tratar de uma das bases essenciais para o desenvolvimento eficiente dos processos de TI, como aponta Silva e Martins (2016).

Contudo, muitos alunos enfrentam dificuldades na preparação para tais provas, situação essa motivada por matrizes curriculares que apresentam conteúdos extensos relacionados a conjuntos de práticas e padrões voltados a serviços e aplicações de TI.

Tal realidade que impactava negativamente não apenas a autoconfiança do estudante, mas também suas oportunidades de carreira em um mercado que valorizava certificações reconhecidas.

Diante desse cenário, surgiu a seguinte questão: de que forma a aplicação de algoritmos na identificação de déficits de aprendizado e na oferta de *feedback* direcionados impactaria na preparação e no desempenho dos estudantes em certificações voltadas para a gestão e governança de TI?

Este trabalho teve como objetivo apoiar o processo de identificar gargalos e aprender, por repetição, com *feedbacks* automatizados, a gestão e a governança em tecnologia da informação em níveis introdutórios para alunos de graduação na área.

Para atingir esse objetivo, adotou-se uma metodologia centrada na implementação de uma ferramenta de testes práticos, fundamentada em algoritmos capazes de avaliar as respostas dos estudantes e fornecer recomendações personalizadas, com o objetivo de aumentar a eficiência dos estudos. A proposta visava direcionar o foco do aluno para os tópicos com maior dificuldade, otimizando o tempo e aprimorando a qualidade da preparação.

Inspirando-nos no estudo de Shute (2008), que demonstrou os efeitos positivos do *feedback* imediato na motivação e no engajamento, esperava-se que o progresso em áreas revisadas estimulasse os estudantes a continuar aprendendo.

Assim, a ferramenta foi concebida para fomentar um ciclo de aprendizagem contínuo, em que a identificação e superação de dificuldades contribuíssem para o aprimoramento do desempenho em exames e, por consequência, para o aumento das taxas de aprovação — promovendo a formação de profissionais mais preparados e confiantes.

A pesquisa adotou uma abordagem quantitativa de natureza experimental, definida pela aplicação de uma intervenção controlada para testar uma hipótese. No presente trabalho, a intervenção ocorreu por meio da implementação de uma ferramenta de simulação baseada em algoritmos, visando a análise de desempenho e a geração de *insights* sobre dificuldades de aprendizagem.

Segundo Gil (2002), a pesquisa experimental envolve a definição de um objeto de estudo, a seleção de variáveis capazes de influenciá-lo e a determinação de formas de controle e observação dos efeitos produzidos por essas variáveis — princípios que nortearam o desenvolvimento desta pesquisa.

Com relação à estrutura do documento desenvolvido, está foi apresentada na seguinte sequência:

No capítulo I, apresentou-se a fundamentação teórica, evidenciando as ideias de outros autores e aplicações que foram usados como referenciais para este trabalho.

No capítulo II, revelou-se a metodologia adotada e explicou-se detalhadamente os fluxos e a arquitetura utilizados no desenvolvimento da ferramenta.

No capítulo III, expôs-se a análise dos dados derivados da implementação dos testes de validação da eficácia da ferramenta, com intuito de evidenciar a precisão do modelo desenvolvido.

CAPÍTULO I

1. Fundamentação Teórica

No embasamento deste trabalho, optou-se por organizar o capítulo em duas partes. Primeiramente, foram apresentados os conceitos-chave que fundamentam o trabalho, os quais são: simulação em certificações, análise de desempenho e módulo de recomendações. Na segunda parte, foram expostos um conjunto de referências usadas no embasamento deste, provenientes de estudos e aplicações realizados nas últimas décadas.

1.1. Conceitos chave

1.1.1. Simulação em certificações

A tecnologia avançou rapidamente nos últimos anos. Esse progresso também foi observado no campo da educação, tornando necessária a reconstrução dos ambientes de ensino.

Dessa forma, no âmbito da aprendizagem, houve uma exigência pelo uso de métodos e técnicas que utilizassem ferramentas tecnológicas para facilitar e dar sentido ao ensino, além de despertar o desejo e a curiosidade dos alunos. Essa distinção foi articulada por Li (2020, p. 238): "A aprendizagem baseada em simulação aumentou o envolvimento e a retenção de conhecimento dos alunos, permitindo que eles identificassem pontos fracos e se concentrassem em áreas críticas para melhoria."

A técnica de simulação foi um desses métodos, que se tornou indispensável para as tecnologias atuais e pôde ser usada junto a outros métodos, por exemplo, como parte da educação assistida por computador.

As simulações foram amplamente utilizadas, não apenas para preparação de certificações. Em muitos países, várias oportunidades importantes foram oferecidas para transmitir ao aluno conteúdos difíceis de explicar e observar por diversas razões (Şengel, Özden e Geben, 2002 apud Li, 2020).

Tratou-se de um tipo de tecnologia pela qual o conhecimento teórico foi transformado em prática, simplificando as atividades mais complexas de compreender, materializando-as de forma realista e, assim, tornando a resolução mais simples e rápida. Dessa forma, proporcionouse um ambiente de aprendizado mais concreto e permanente, além de economizar tempo e recursos (Atam e Tekdal, 2010 apud Li, 2020).

A eficácia de simulados práticos foi reconhecida pela eficiência na retenção de informações e no desenvolvimento de habilidades de recuperação, conforme evidenciado pelos estudos de Karpicke e Blunt (2011) e Dunlosky et al. (2013).

Quadro 1: Comparativo entre Métodos de Aprendizagem

Critério	Simulados	Leitura Passiva	Mapas Conceituais
Eficácia na Retenção	Alta, devido a repetição e prática constante	Baixa, geralmente resulta em negligência e memorização superficial	Moderada, depende da qualidade e da organização do mapeamento
Desenvolvimento de Habilidades	Habilidades de recuperação de informações são aperfeiçoadas	Pouco desenvolvimento de habilidades práticas	Facilita a compreensão de conexões e relações entre conceitos
Engajamento de Estudante	Alto, devido a interatividade e <i>feedback</i> imediato	Baixo, atividade monótona e passiva	Moderado, requer esforço ativo e prática
Tempo de Preparação	Pode ser mais longo para elaboração das questões	Rápido, apenas leitura	Variável, depende da complexidade do tema
Facilidade de Uso	Requer mais planejamento e recursos de tempo	Implementação fácil	Requer conhecimento prévio do tema
Aplicação Prática	Excelente para testar conhecimento em aplicação real.	Limitada, apenas teórica	Boa, mas pode ser complexa para tópicos extensos.

Fonte: Autoria própria

Sob outra perspectiva, o método de leitura passiva tendia a gerar uma memorização superficial, enquanto o mapeamento conceitual proporciona uma compreensão regular, dependendo da capacidade do estudante em organizar as informações. Segundo Butler (2010), essa análise ressalta a importância de métodos ativos de aprendizagem, como a simulação, para a melhoria do desempenho acadêmico.

1.1.2. Análise de desempenho

A análise de desempenho é um processo crucial para medir e interpretar os resultados dos alunos em atividades educacionais, como avaliações. Permite identificar padrões de erros e acertos, oferecendo uma visão precisa das áreas que requerem maior atenção.

Segundo Luckesi (2011), a avaliação diagnóstica – ponto de partida para a análise – deve ser compreendida como um meio de conhecer a realidade do aluno, permitindo intervenções pedagógicas mais adequadas às suas necessidades. O principal benefício desse método é possibilitar o ajuste das estratégias de estudo com base em dados concretos,

otimizando o aprendizado. Ao mapear as dificuldades dos estudantes, a análise de desempenho contribui para o desenvolvimento de abordagens mais eficientes e direcionadas, resultando em melhorias no rendimento acadêmico.

Considerando que a análise de desempenho foi uma grande ferramenta em processos educacionais, principalmente em ambientes que envolviam avaliações contínuas, o objetivo era fornecer *insights* detalhados sobre o desempenho dos estudantes, permitindo assim um direcionamento mais eficiente. De acordo com Black e Wiliam (1998), a recomendação contínua — um dos pilares da análise de desempenho — desempenha papel essencial na melhoria do aprendizado, pois ajudou os estudantes a identificar lacunas no conhecimento e possibilitar ajustes nos planos de estudo e ensino.

Ademais, Karpicke e Roediger (2008) demonstraram em seus estudos que a prática de recuperação de informações foi facilitada quando acompanhada da análise de desempenho, visto que melhorou significativamente a retenção de conteúdo a longo prazo. Estudantes submetidos a esse processo de análise geralmente apresentaram uma compreensão mais clara dos gargalos de aprendizagem, o que tornou o processo mais eficiente.

Nesse contexto, a análise de desempenho foi além da simples correção de erros. Ela permitiu que educadores identificassem padrões de desempenho, personalizando recomendações de estudo e facilitando uma abordagem mais estratégica para a preparação, como destaca Dunlosky et al. (2013).

1.1.3. Módulo de recomendações

Conforme destaca Slavin (2010), métodos de ensino adaptativos que consideram as necessidades específicas dos alunos, aumentam significativamente as chances de sucesso, ao substituir abordagens genéricas por estratégias personalizadas e eficazes.

Diversas pesquisas demonstram que intervenções personalizadas exercem um impacto significativo no desempenho dos estudantes. O módulo de recomendações constitui uma ferramenta para aprimorar a personalização do ensino em projetos educacionais, ao possibilitar que os alunos recebam *feedback* imediato e sugestões específicas de estudo com base em seu desempenho individual. Essa abordagem favorece um aprendizado mais direcionado, resultando em melhorias expressivas nos resultados acadêmicos.

Estudos indicam que a personalização do aprendizado pode elevar o desempenho dos estudantes em até 30% em comparação a métodos de ensino padronizados (LOTT, 2019). A

customização possibilita a identificação dos pontos fracos dos alunos, propondo atividades que abordem diretamente suas dificuldades.

John Hattie (2009), por meio de uma meta-análise abrangente sobre os fatores que influenciam o aprendizado, revelou que o *feedback* apresenta um dos maiores impactos na melhoria do desempenho educacional, com um efeito médio de 0,79. Os módulos de recomendação fornecem exatamente isso, analisando o desempenho individual dos estudantes e adaptando o conteúdo educacional para atender às suas necessidades específicas (HATTIE, 2009). Portanto, o uso de algoritmos para gerar recomendações personalizadas emerge como um dos principais facilitadores da melhoria contínua na aprendizagem.

Na prática, a eficácia dos módulos de recomendação foi validada por uma pesquisa da Universidade de Stanford (2022), que demonstrou que estudantes que utilizaram um sistema de aprendizagem adaptativo, com recomendações, melhoraram suas notas finais em 20% quando comparados a alunos submetidos a um currículo padronizado. Este estudo enfatiza a importância da personalização na retenção do conhecimento, evidenciando que os alunos se sentem mais motivados e engajados ao receberem *feedbacks* específicos e direcionados (Stanford University, 2022).

Outro estudo relevante, conduzido por Cohen, Kulik e Kulik (1982), indicou que o feedback contínuo e a avaliação personalizada podem aumentar o desempenho dos alunos em aproximadamente 0,84 desvios padrão em testes, reforçando a necessidade de sistemas educacionais que proporcionem avaliações frequentes e detalhadas do progresso estudantil. Tal abordagem permite a adaptação constante dos métodos de ensino, garantindo que os alunos recebam suporte nas áreas onde apresentam maiores dificuldades.

Por fim, Meyer e Schutz (2020) constataram que o uso de sistemas baseados em algoritmos para personalizar o aprendizado elevou a retenção do conhecimento em até 40% em cursos que adotaram essa tecnologia. Esse resultado ressalta o potencial transformador dos módulos de recomendação na educação, tornando o processo de aprendizagem mais eficaz e acessível a uma ampla diversidade de estudantes, independentemente de seu ponto de partida.

1.2. Trabalhos relacionados

Nesta seção, apresentam-se estudos e pesquisas relacionadas ao tema deste trabalho. O levantamento realizado foi orientado pela busca de pesquisas científicas e tecnológicas cujo objetivo foi o desenvolvimento, implementação e análise de ferramentas e tecnologias aplicadas à educação, com ênfase na simulação como método de aprendizado. Para essa busca, utilizou-

se o Google Acadêmico, visando mapear pesquisas dessa natureza publicadas nas últimas décadas.

MORELATTO et al (2006), meio da análise de *softwares* educacionais disponíveis no mercado e da adaptação de tecnologias assistivas ao contexto educacional, o estudo explorou a inclusão de alunos com deficiências físicas e cognitivas, ressaltando a importância dessas tecnologias para a construção de um sistema educacional mais inclusivo. Foram examinadas ferramentas como leitores de tela e sistemas de comunicação alternativa, evidenciando seu papel na promoção do acesso igualitário ao aprendizado e na plena participação dos estudantes no ambiente escolar. A referência apresenta uma contribuição relevante para a educação inclusiva, ao demonstrar que, quando integradas de forma eficaz, as tecnologias assistivas têm potencial para reduzir barreiras, personalizar a experiência de aprendizagem e torná-la mais acessível a todos.

ALVES e JAQUES (2014), o artigo aborda o desenvolvimento de uma ferramenta web voltada ao fornecimento de feedback imediato e personalizado para alunos da disciplina de linguagem de programação. A proposta visa suprir a alta demanda enfrentada por professores, que frequentemente resulta em atendimentos genéricos e lentos, comprometendo a qualidade da interação pedagógica. Utilizando tecnologias como o Feeper e os Juízes Online, a ferramenta permite a análise automatizada de códigos e respostas, identificando rapidamente erros de lógica e sintaxe, além de sugerir melhorias. Essa automatização contribui para uma interação mais eficiente entre alunos e professores e se mostra especialmente relevante em disciplinas de programação, nas quais equívocos são recorrentes. O estudo evidencia o impacto positivo que feedbacks específicos e em tempo real exercem sobre a curva de aprendizado, favorecendo a construção de uma base conceitual mais sólida e o aprimoramento contínuo das habilidades dos estudantes.

COSTA et al (2016), o estudo apresenta um modelo conceitual de retorno educacional voltado à personalização do aprendizado *online*, contemplando dimensões cognitivas, motivacionais e metacognitivas das recomendações. A pesquisa compara plataformas como Moodle, Duolingo e URI Online Judge, analisando como cada uma promove o engajamento do aluno e lida com a oferta de respostas e orientações. O modelo proposto busca suprir a lacuna de retornos específicos nas plataformas de educação a distância, ao identificar e direcionar áreas de melhoria individualizadas. Os resultados indicam que abordagens estruturadas e

personalizadas podem aumentar significativamente tanto a retenção de informações quanto a motivação dos estudantes.

MONTEIRO (2021), apontou o uso do *feedback* formativo com auxílio da TRI (Teoria de Resposta ao Item) como uma alternativa para reduzir a sobrecarga docente e aumentar a eficiência da avaliação. A tecnologia TRI utiliza ferramentas de AVA (Ambiente Virtual de Aprendizagem) que permitem aos alunos avaliar habilidades individuais com base nas respostas dos testes e relacionar o desempenho à dificuldade das perguntas. Esse processo automatizado permite que os professores identifiquem rapidamente as áreas de necessidade de cada aluno, permitindo um ensino mais direcionado e preciso. A investigação mostra que o retorno formativo baseado em dados objetivos pode melhorar a eficácia do ensino e promover uma aprendizagem mais equilibrada com base em estatísticas educacionais, concentrando esforços em áreas específicas de dificuldade.

DE MIRANDA (2023), propõe uma solução para reduzir as taxas de reprovação em cursos introdutórios de informática por meio do plug-in AsPin, que oferece retorno detalhado e personalizado aos alunos. A ferramenta permite que os professores configurem orientações específicas, adaptadas às necessidades e dificuldades individuais. O sistema é flexível e pode ser ajustado para diversas situações, facilitando a assimilação dos conceitos básicos de programação. O estudo ressalta a importância de fornecer respostas claras e compreensíveis, que aprimoram a compreensão e retenção do conteúdo, além de promover um ambiente de aprendizado mais inclusivo e motivador para iniciantes na área.

QUIZLET (2005), se trata de uma plataforma digital que começou como uma ferramenta para a criação de *flashcards*, pequenos cartões usados para memorizar informações de forma ativa, mas cresceu para oferecer vários modos de aprendizagem, como questionários, jogos interativos e testes. A plataforma utiliza uma abordagem baseada em repetição e interação para ajudar os alunos a aprender e revisar informações de forma personalizada, promovendo maior engajamento e retenção de conteúdo. Este formato adaptativo permite que os alunos se concentrem em conceitos mais complexos ou áreas de maior dificuldade, enquanto o sistema proporciona uma experiência de aprendizagem mais dinâmica e intuitiva. A ferramenta se destaca pela capacidade de abordar o aprendizado de forma prática e flexível, tornando-se uma ferramenta amplamente utilizada por alunos e professores.

BRAINSCAPE (2010), baseado em um sistema de confiança, técnicas de repetição espaçada são aplicadas para otimizar a retenção de informações. Esta abordagem analisa

conceitos em intervalos progressivos para aprimorar o aprendizado do aluno de maneira personalizada. Além disso, a plataforma permite aos usuários criar seus próprios *flashcards* ou acessar coleções existentes, facilitando experiências de aprendizagem práticas adaptadas a diferentes temas. Particularmente eficaz para o aprendizado de longo prazo porque modifica o conteúdo à medida que o usuário o domina, fornecendo uma alternativa moderna para o aprendizado de uma variedade de tópicos que exigem memorização e prática contínua.

SURVEYMONKEY API (2007), utilizada como uma ferramenta poderosa para criar e gerenciar pesquisas e formulários online, fornecendo uma gama de recursos avançados para análise de dados. A plataforma tem capacidade de filtrar e comparar respostas, exportar dados para softwares de análise como SPSS (Statistical Package for Social Science), software estatístico que permite a utilização de dados em diversos formatos, e gerar relatórios customizados para facilitar a interpretação dos resultados de forma fácil de entender e visualizar. Amplamente utilizado em pesquisas acadêmicas, pesquisas de mercado e avaliações internas de empresas, permite uma coleta de dados eficiente e estruturada, tornando-se uma ferramenta essencial para qualquer estudo que exija feedback ou análise de opinião.

CRAIG e GRAESSER (2011), abordam o uso do ALEKS (Assessment and Learning in Knowledge Spaces), que se trata de um sistema de aprendizagem adaptativo que personaliza o ensino com base nas necessidades e habilidades dos alunos. A plataforma utiliza testes e algoritmos para identificar áreas de domínio e lacunas de conhecimento, orientando os alunos a progredirem em seu aprendizado. O sistema promove uma abordagem de aprendizagem mais eficiente e direta, ajudando os alunos a focar nos pontos que precisam de mais reforço. A plataforma é particularmente útil em áreas técnicas complexas, proporcionando percursos de aprendizagem adaptativos que respondem de forma dinâmica às necessidades individuais de cada aluno.

TOPHAT (2010), plataforma de engajamento educacional que oferece uma ampla gama de ferramentas para enriquecer o aprendizado. Possui recursos para criar questionários interativos, simulações, enquetes e até livros didáticos digitais para um aprendizado mais dinâmico e interativo. A plataforma se destaca pelo *feedback* instantâneo, que ajuda a identificar rapidamente áreas de dificuldade e adaptar o ensino às necessidades dos alunos. Amplamente adotado em ambientes educacionais para promover o envolvimento, melhorar a experiência de aprendizagem e criar um ambiente mais colaborativo entre alunos e professores.

Conforme o quadro 2, é notório que a maior parte dos artigos utilizam para a resolução das problemáticas aplicativos *web* ou *softwares* que possuem como principal funcionalidade o *feedback* personalizado, estimulando os pontos de melhoria do usuário, construídos com diferentes linguagens, frameworks ou *softwares* de integração as áreas de melhoria do usuário.

Quadro 2: Comparativo de Artigos Acadêmicos

Autores	Área de Aplicação	Problemática	Web	Solução Proposta	Ferramentas Utilizadas
ALVES e JAQUES (2014)	Estudantes de T.I.	Atendimento genérico e demorado	X	Ferramenta para fornecer feedback imediato, melhorando a interação entre alunos e professores	Feeper e Juízes Online
DE MIRANDA (2023)	Estudantes de T.I.	Alta taxa de reprovação		Feedbacks personalizados para iniciantes em programação, com plugin customizável	Plugin AsPIn
MONTEIRO (2021)	Estudantes em preparação para o ENEM	Falta de feedback e professores sobrecarregados	X	Feedback formativo com TRI, estimando habilidades e relacionando desempenho à dificuldade	AVA's
MORELLATO et al (2006)	Estudantes PNE	Falta de recursos para inclusão		Análise de <i>softwares</i> educacionais e adaptação de tecnologias assistivas na educação	Tecnologias assistivas (leitores de tela e comunicação alternativa)
COSTA et al (2016)	Estudantes de EAD	Falta de feedback no EAD	X	Modelo de feedback educacional com dimensões cognitivas, motivacionais e metacognitivas	Moodle, Duolingo e URI Online Judge
SOUZA e WATANABE (2024)	Estudantes em preparação para certificação em ITIL v2	Erros no direcionamento dos estudos	X	Questionário com feedbacks personalizados	Frameworks, Banco de Dados e Python

Fonte: Autoria própria

De acordo com o quadro 3, é apresentada uma comparação entre as ferramentas comerciais utilizadas como referenciais para esse trabalho. Ferramentas essas com finalidade de criação de *quizzes*, *flashcards* e atividades adaptadas ao aprendizado, com foco em *feedback* personalizado e adaptação do conteúdo ao usuário final, com base em sua necessidade. A comparação visa destacar as principais características, semelhanças e diferenças entre os produtos mais utilizados no âmbito da educação, auxiliando na escolha das principais funcionalidades necessárias.

Plataformas Funcionalidades Quitles Personalitados Intellegação Artificial Tourney against individual Englishenda o vivo Military topicos Personalitiação de Epiro polificação Mobile Android Mobile IOS Flashcards Relatrios Produtos X X X X X Quizlet X X Brainscape X X X X X X SurveyMonkey API X X X X X Aleks X X X X X X Top Hat X X X SOUZA e X X X X WATANABE (2024)

Quadro 3: Comparativo de Ferramentas Comerciais

Fonte: Autoria própria

Para concluir, observa-se que tanto a literatura acadêmica quanto as ferramentas comerciais convergem na valorização do *feedback* personalizado como estratégia central para otimizar o aprendizado. Essa abordagem, aplicada por meio de diferentes tecnologias e plataformas, tem se mostrado eficaz para identificar as necessidades específicas dos usuários, promovendo maior engajamento e melhores resultados educacionais.

CAPÍTULO II

2. Metodologia

2.1. Natureza da Pesquisa

Gil (2002) definiu o método experimental como aquele que submete os objetos de estudo à influência de certas variáveis, em condições controladas e conhecidas pelo pesquisador, com o objetivo de observar os resultados produzidos. Trata-se de um procedimento diretamente ligado ao teste de intervenções e à avaliação de eficácia em diferentes cenários.

Segundo estudo de Miles e Huberman (1994), a análise quantitativa permitia a identificação de correlações entre variáveis e a interpretação de tendências nos dados. Isso reforçava que, ao quantificar fenômenos observáveis, como o desempenho em simulados, era possível fornecer insights pontuais sobre o impacto das intervenções, como o *feedback* personalizado.

2.2. Padrões para Pesquisa Experimental

Durante a pesquisa experimental, comparou-se algumas plataformas de aprendizagem personalizada e ideologias sobre os conceitos mais importantes referentes à adaptação do conteúdo e à identificação de déficits de aprendizado. As ferramentas trouxeram características específicas e fundamentais, enriquecendo a aplicação com foco no feedback ao usuário.

Dentre as plataformas analisadas, o ALEKS, estudado CRAIG e GRAESSER (2011), fundamentou a implementação do *feedback* quantitativo, por sua capacidade de identificar áreas de domínio e lacunas no conhecimento, orientando os alunos conforme seu progresso. Essa abordagem possibilitou que a aplicação desenvolvida oferecesse uma experiência de aprendizado mais eficiente e personalizada.

Além disso, o QUIZLET (2005) foi utilizado como referência por sua funcionalidade de correção em tempo real durante o estudo. Por meio de *quizzes* e *flashcards*, a ferramenta permite a rápida identificação de erros e acertos, facilitando a compreensão dos conteúdos e promovendo maior engajamento durante os simulados.

Por fim, as investigações de COSTA et al. (2016) sobre o *feedback* educacional personalizado e o artigo de ALVES e JAQUES (2015) sobre o conteúdo de programação com *feedback* imediato forneceram uma base extensa e inovadora.

Ao integrar ideias desses artigos e aplicativos, a ferramenta não apenas ofereceu ao usuário uma plataforma *web* para prática de conhecimento, mas também proporcionou uma experiência de aprendizado altamente personalizada, destacando suas principais funcionalidades. Isso possibilitou que os alunos se sentissem mais motivados a corrigir seus erros, superar seus déficits e progredir no conteúdo, tornando o ambiente mais envolvente, interativo e eficaz.

2.3. Experimento de Pesquisa

A arquitetura adotada para o trabalho foi composta por diversos componentes e camadas que trabalharam de forma integrada para fornecer um ambiente funcional aos usuários. O sistema desenvolvido ficou responsável por criar simulados a partir de um banco de questões, avaliar o desempenho dos alunos e fornecer um *feedback* para a melhoria do aprendizado de gestão e governança de TI, com foco específico na certificação ITIL v2.

2.4. Materiais e Ferramentas

Esta seção apresentou os materiais e as ferramentas tecnológicas que foram essenciais para o desenvolvimento do trabalho.

2.4.1. Linguagens de Programação

No desenvolvimento do sistema, foi utilizada principalmente a linguagem Python, devido à sua versatilidade e legibilidade, além de dispor de diversos *frameworks* acessíveis e intuitivos, como o Django, que simplificou e auxiliou a criação de sites e aplicações.

Além disso, foram utilizadas as linguagens HTML e CSS para a estruturação da página *web* em que foram exibidos as questões e os resultados, personalizando e aperfeiçoando o estilo, a fim de obter uma melhor aparência da página. Isso tornou ideal a interação entre as linguagens e a finalidade do sistema.

2.4.2. Bibliotecas Utilizadas

O trabalho fez uso de diversas bibliotecas Python, cada uma com sua respectiva função dentro da aplicação:

- SQLite3: Para a integração do sistema com o banco de dados SQLite, permitindo o gerenciamento das questões selecionadas e armazenadas.
- Random: Para a seleção aleatória das questões disponíveis no banco de dados e criação do simulado no momento da aplicação do usuário.
- Matplotlib: Para ter a possibilidade de criar gráficos visuais sobre os conteúdos e pontos de melhoria.

- Django: Para a construção da aplicação na *web*, gerenciamento de rotas e requisições HTTP, para garantir as interfaces e interações com o usuário.
- Django REST Framework: Para a construção de APIs personalizadas dentro da aplicação.

2.4.3. Integrações

O sistema teve integração com o banco de dados SQLite, o qual permitiu a criação e o armazenamento de todas as questões selecionadas dentro do conteúdo de ITIL v2, tornando a tabela de questões visual e eficiente. Ademais, o sistema foi integrado com bibliotecas de interface ao usuário, como o Django, que possibilitou a criação, personalização e adaptação da página *web*.

Com isso, o sistema foi hospedado em uma plataforma de *host* que permitiu o uso e a adaptação de APIs, proporcionando uma interação eficiente e interativa entre o *front-end* e o *back-end*, melhorando a experiência do usuário.

2.4.4. Custos de Desenvolvimento

O desenvolvimento da ferramenta exigiu alguns custos operacionais relacionados ao uso de tecnologias externas essenciais para sua implementação e testes.

Para a hospedagem do sistema, foi utilizada uma VM (Virtual Machine) na AWS (Amazon Web Services), ativa entre os dias 01/04/2025 e 20/04/2025. Nesse período, a VM operou por cerca de 480 horas, totalizando aproximadamente US\$30 (cerca de R\$170). Esse valor foi integralmente coberto pelo programa AWS *Educate* - uma parceria entre a FATEC (Faculdade de Tecnologia) e a AWS - que garantiu acesso gratuito à plataforma. O custo médio estimado da hospedagem foi de R\$8,51 por dia.

Adicionalmente, houve um gasto extra de R\$8, custeado com recursos próprios, para configurar uma camada adicional de segurança por meio da definição de um endereço IP (Internet Protocol) fixo e protegido, assegurando maior confiabilidade no acesso ao sistema.

Também foi adquirido o domínio www.itilgen.com.br por meio da plataforma Hostinger, com validade de um ano, ao custo de R\$39,99. A compra teve como objetivo facilitar o acesso ao sistema e conferir maior profissionalismo à apresentação do trabalho.

2.5. Métodos Aplicados

Esta seção mostra os métodos aplicados durante o desenvolvimento e operação do sistema, enfatizando as etapas de coleta de dados, processamento e geração do *feedback* personalizado focado em identificar os déficits na matéria.

2.5.1. Filtragem do Banco de Questões

As questões foram filtradas e selecionadas a partir de diferentes métodos de estudo, incluindo simulados sem módulo de *feedback*, materiais de revisão e conteúdos utilizados nas aulas da disciplina de gestão e governança de TI, ministradas na FATEC Indaiatuba. A seleção teve como objetivo abranger a maior variedade possível de atividades abordadas em ITIL v2, tornando a experiência com o simulado mais eficaz. As questões utilizadas podem ser consultadas no Anexo A.

2.5.2. Seleção Aleatória de Questões

Para possibilitar a variabilidade e aleatoriedade do simulado, o sistema utilizou a biblioteca Random, a qual possui diversas funções adaptativas de seleções aleatórias com diversos parâmetros. O sistema implementou uma lógica de seleção aleatória de 40 questões do conjunto total de 155 questões definidas no banco de dados e garantiu que no momento que o usuário iniciasse a aplicação, fossem escolhidas no mínimo 3 questões de cada conteúdo de ITIL v2. Essa abordagem teve como principal funcionalidade uma distribuição de questões equilibrada, com o objetivo de manter o balanceamento entre conteúdos da matéria na aplicação.

2.5.3. Coleta de Dados

A coleta de dados se baseou em duas principais etapas, sendo elas, banco de dados de questões e respostas do usuário. No banco de dados de questões, o sistema acessa o arquivo criado no banco de dados SQLite, que contém todas as questões selecionadas sobre as áreas de ITIL v2. Cada questão possui cinco alternativas (A, B, C, D e E) e cada uma delas está associada às áreas selecionadas e categorizadas. A tabela de questões incluiu os seguintes campos: enunciado, alternativas, resposta correta e área, processo e atividades da questão.

Durante o andamento do simulado, as respostas do usuário são coletadas por meio do *framework* e interface *web* desenvolvidos e, a cada questão, a alternativa selecionada é armazenada temporariamente na aplicação, para que no final fosse possível comparar e gerar o *feedback* personalizado para o usuário.

2.5.4. Avaliação das Respostas

Após o usuário submeter a resposta, o sistema compara com a resposta correta prédefinida para a respectiva questão e possui uma lógica de soma de pontos por conteúdo da questão, atribuindo pontos positivos para cada resposta correta e pontos negativos para respostas totalmente incorretas.

2.5.5. Geração de *Feedback*

Com base no desempenho do usuário de cada questão por conteúdo, o sistema calcula e deixa visível a porcentagem de acertos e os pontos de melhoria para aquela aplicação de simulado, destacando os principais déficits e os temas sugeridos para a revisão do conteúdo.

2.6. Diagramas

2.6.1. MER e DER

O Modelo Entidade-Relacionamento é uma descrição teórica, apresentando de forma conceitual as entidades e seus relacionamentos sem a necessidade de especificar detalhes técnicos de como o sistema foi implementado, ou seja, MER é conceitual, usado para entender o domínio do problema e descrever o sistema.

A figura 1 traz um modelo que descreve a estrutura de banco de dados que foi desenvolvida para a aplicação, onde os usuários podem realizar simulados compostos por diversas questões relacionadas a conteúdos específicos. Cada execução gera um resultado registrado na base, permitindo o rastreamento do desempenho de cada usuário em diferentes áreas e questões.

A entidade *User* representa os usuários do sistema, mais especificamente os estudantes que utilizaram a ferramenta. A entidade *MockExam* refere-se aos simulados, cada um composto por diversas perguntas associadas a um ou mais conteúdo. Conteúdos esses que são definidos pelas entidades *Activities*, *Process* e *Area*, que representam os assuntos abordados nas questões. A entidade *Questions* contém as perguntas que tiverem composto o *MockExam*, enquanto a entidade *Result* armazena os resultados de cada execução realizada pelos usuários, permitindo o acompanhamento do desempenho.

User 1 Do N MockExam 1 Has N Result

Activities N Has N Questions

Process 1 Has N Area

Figura 1: Modelo de Entidade-Relacionamento

Fonte: Autoria própria

O Diagrama Entidade-Relacionamento trata-se de uma representação gráfica das entidades, relacionamentos e atributos de um sistema de banco de dados, usado para descrever como os dados se relacionam e como entidades se conectam, ajudando a visualização da estrutura e como as entidades interagem.

A figura 2 traz um diagrama que descreve a estrutura de banco de dados que foi desenvolvida para a aplicação. Na entidade *User* foram armazenadas informações sobre os estudantes que utilizaram o sistema, incluindo identificador único, nome e número do registro do estudante. A entidade *MockExam* representa os simulados realizados, contendo informações como o identificador, o usuário que o realizou, a data de execução, o número de perguntas e a pontuação obtida.

A relação entre simulados e perguntas é gerenciada pela entidade *MockExamQuests*, que associa cada simulado às perguntas que ele contém. As perguntas são armazenadas na entidade *Questions*, onde cada questão possui um identificador, um texto, alternativas de resposta e a resposta correta. Cada questão também foi vinculada a sua respectiva *Activity*, representando o assunto abordado, e toda atividade está ligada a um *Process* e uma *Area*, responsáveis também por categorizar as questões.

A entidade *Result* registra o desempenho do usuário em cada questão, armazenando a resposta dada e indicando se estava correta. Com essa estrutura, o sistema consegue organizar as execuções, associar perguntas a conteúdos e avaliar o desempenho dos usuários em cada tentativa de simulado.

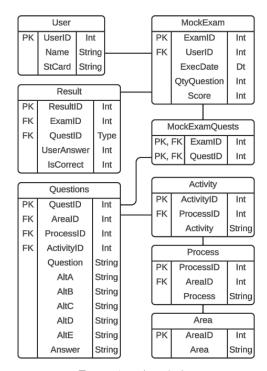


Figura 2: Diagrama de Entidade-Relacionamento

Fonte: Autoria própria

2.6.2. Caso de Uso

O diagrama de Caso de Uso representa o fluxo de interação entre o usuário e o sistema, detalhando os principais passos que o estudante realiza ao interagir com o sistema. A figura 3 representa o fluxo previsto de funcionamento da ferramenta, ilustrando as interações do usuário com a ferramenta durante a realização de um simulado.

O fluxo inicia quando o usuário acessa o *link* da plataforma e se conecta ao sistema. Uma vez conectados, os usuários se autenticam por meio de seu registro acadêmico, garantindo que o acesso seja seguro e personalizado. Uma vez verificada sua identidade, ele pode iniciar a simulação, que envolve responder a uma série de perguntas.

Para cada pergunta feita, o usuário seleciona uma opção entre as opções (A, B, C, D ou E) e finaliza as etapas dessa pergunta após completar a seleção da resposta. Ao mesmo tempo, o sistema coletava dados de cada resposta, armazenando informações que seriam processadas ao final da simulação. Quando o usuário responde todas as questões, ele encerra a simulação.

Neste momento, o sistema inicia a verificação das respostas, comparando-as com um padrão pré-estabelecido. Os resultados obtidos são armazenados e o sistema gera o *feedback* personalizado, proporcionando ao usuário uma visão detalhada do seu desempenho, apontando pontos fortes e pontos que podem ser melhorados.

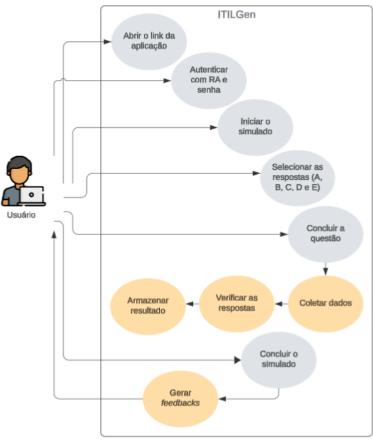


Figura 3: Diagrama de Caso de Uso

Fonte: Autoria própria

2.6.3. Classe

O diagrama de Classes representa a estrutura da ferramenta, descrevendo a interação entre as diferentes classes envolvidas no processo de realização de simulados por usuários.

A classe principal é a Usuario, que contém os atributos RA e Senha, representando as credenciais de acesso. Essa classe possui métodos como autenticar(), iniciarSimulado(), responderQuestao(resposta) e concluirSimulado(), que definem as ações que o usuário pode realizar no sistema. O usuário utiliza a classe Simulado, que é responsável por armazenar as questões e as respostas fornecidas. A classe Simulado possui atributos como questoes, que é uma lista de objetos da classe Questao, e respostasUsuario, um mapa que relaciona cada questão à resposta correspondente. Entre os métodos do simulado estão coletarDados(), verificarRespostas(), armazenarResultado() e gerarFeedback(), que controlam o fluxo de execução.

A classe Questao representa cada pergunta do simulado, contendo os atributos enunciado, alternativas e respostaCorreta. Ela possui o método validarResposta(resposta), que verifica se a resposta dada está correta. A classe Resposta, por sua vez, armazena a alternativa escolhida (alternativaSelecionada) e um valor booleano (correta) que indica se a resposta está correta.

Após o término da execução, a classe Simulado gera um objeto da classe *Feedback*, que contém uma mensagem personalizada e a pontuação final. O método gerarMensagem() é responsável por criar essa mensagem com base no desempenho. O relacionamento entre as classes é claro: o Usuario utiliza um Simulado, que contém diversas Questao, armazena Resposta e gera um *Feedback*.

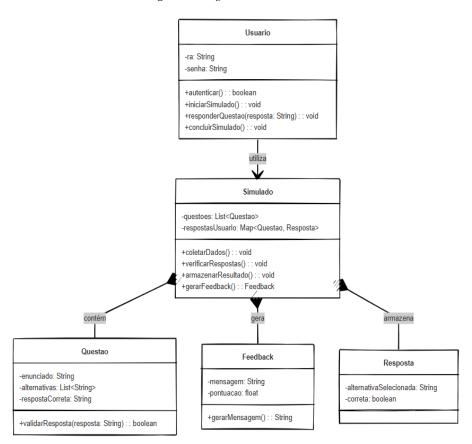


Figura 4: Diagrama de Classes

Fonte: Autoria própria

2.6.4. Sequência

O diagrama de Sequência mostra como os objetos interagem em um determinado cenário de uso, destacando a ordem das mensagens trocadas no tempo. Ele ajuda a visualizar o fluxo de execução, a comunicação entre os atores (usuários ou sistemas) e os componentes envolvidos.

O processo se inicia com a abertura do link da aplicação. Em resposta, o sistema exibe a página de login. Em seguida, o usuário insere suas credenciais (RA e senha), e o sistema realiza a autenticação, confirmando o acesso.

Com o login validado, pode-se iniciar o simulado, e o sistema passa a exibir as questões. A partir desse ponto, entra-se em um ciclo repetitivo para cada pergunta: o usuário seleciona uma alternativa (A, B, C, D ou E) e conclui a questão. O sistema, então, coleta os dados da resposta, verifica sua correção, armazena o resultado e retorna o resultado da questão.

Após responder todas as questões, o usuário conclui o simulado. O ITILGen gera os *insights* com base nas respostas dadas, e o usuário recebe um *feedback* final sobre seu desempenho.

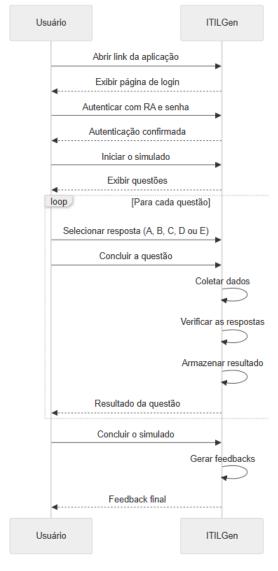


Figura 5: Diagrama de Sequência

Fonte: Autoria própria

2.6.5. Arquitetura do Sistema

O seguinte diagrama destaca o fluxo de informações entre os principais módulos do sistema, demonstrando como os dados se movem do usuário para os módulos de análise e *feedback*, através do banco de dados e do *back-end*.

A figura 4 apresenta a organização do sistema, onde a interação começa com o usuário que acessa o sistema. O servidor utiliza uma API de autenticação para verificar e autorizar o acesso. Após autenticado, o sistema se conecta ao Banco de Dados Relacional, que armazena as informações do simulado, e utiliza o *Framework* Django para gerenciar a lógica do *back-end* e do *front-end*.

Após isso, o sistema aplica um método de seleção de questões, escolhendo 40 questões para compor o simulado, que são apresentadas com opções de resposta de A a E. Depois que foram respondidas as questões, o sistema realiza uma análise das respostas, armazenando os dados para consulta e processamento futuro.

Nesse ponto, ocorre a verificação dos pontos de melhoria, onde a aplicação examina o desempenho para identificar áreas em que o usuário pode aprimorar seus conhecimentos. Por fim, o *feedback* é retornado ao usuário, e os dados da sessão são armazenados para fins de análise e melhoria contínua do sistema.

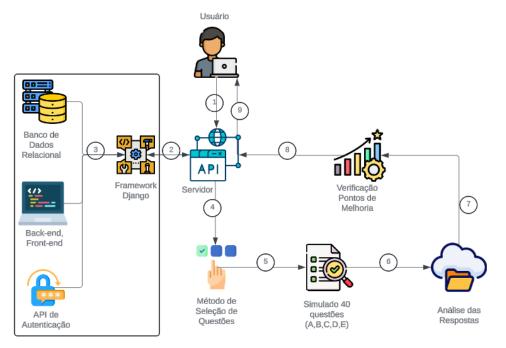


Figura 6: Representação da Arquitetura do Sistema

Fonte: Autoria própria

Dessa forma, a metodologia adotada neste trabalho permitiu estruturar de maneira sistemática todas as etapas do desenvolvimento da ferramenta proposta, desde a definição do problema até a aplicação prática da solução. Com base em métodos quantitativos e experimentais, foi possível validar a eficácia do sistema e obter dados consistentes para análise, assegurando a coerência entre os objetivos do projeto e os resultados esperados.

CAPÍTULO III

3. Resultados e Discussão

Neste capítulo, conduziremos um discurso sobre a apresentação e implementação do sistema, e análise dos dados da avaliação dos usuários da ferramenta desenvolvida neste trabalho.

3.1. Apresentação

O sistema tem como propósito apoiar estudantes no aprendizado de gestão e governança de TI, voltado para a certificação ITIL v2, por meio de simulados que avaliam o desempenho individual e fornecem *feedback* quantitativo direcionado sobre os principais pontos de melhoria. A plataforma foi concebida com foco na usabilidade e na eficiência da análise dos resultados, combinando uma interface *web* intuitiva com um *back-end* em Python e banco de dados SQLite.

Utilizando uma seleção aleatória de questões categorizadas por área, processo e atividade, o sistema proporciona uma experiência única a cada tentativa, favorecendo uma avaliação abrangente dos conhecimentos do usuário. Além disso, utiliza a aplicação de um algoritmo que calcula o desempenho por área permite a geração de relatórios com gráficos e recomendações específicas, baseadas nas respostas obtidas.

Essa abordagem facilita a identificação das principais dificuldades de cada estudante, promovendo um direcionamento mais eficaz dos estudos. A proposta supri a carência de ferramentas interativas e analíticas voltadas ao acompanhamento do progresso acadêmico, contribuindo para uma preparação mais assertiva, personalizada e fundamentada em dados concretos.

3.2. Implementação

A implementação foi acompanhada de um estudo experimental com o objetivo de validar sua eficácia e precisão. A ferramenta foi aplicada a uma amostra de aproximadamente 30 alunos dos cursos de Análise e Desenvolvimento de Sistemas da FATEC Indaiatuba, sendo todos matriculados na disciplina de Gestão e Governança de TI.

O experimento foi conduzido ao final do plano de estudos sobre ITIL v2, permitindo que os alunos, já familiarizados com o conteúdo, realizassem avaliações práticas utilizando o sistema antes de realizaram a prova desta parte da ementa. Durante a aplicação, foram analisadas tanto as respostas dos simulados quanto a efetividade do *feedback* gerado.

A análise envolveu dados quantitativos, como índices de acerto e erro por conteúdo, e dados qualitativos, obtidos por meio de relatos dos alunos sobre usabilidade, clareza e relevância do retorno fornecido.

Os resultados obtidos foram utilizados para aprimorar o sistema e planejar futuras ações, com foco em oferecer um suporte educacional cada vez mais eficaz, personalizado e alinhado às necessidades dos estudantes.

3.3. Análise de Dados

Nesta seção, foi realizada a análise dos dados derivados da implementação dos testes de validação da eficácia da ferramenta. O propósito desta análise é proporcionar *insights* relevantes sobre a eficácia e a precisão do modelo desenvolvido, enriquecendo assim a compreensão dos dados adquiridos.

3.3.1. Análise das Avaliações dos Usuários

A análise dos dados coletados antes e depois da implementação do sistema revela uma transformação significativa na preparação dos alunos para a prova baseada em conteúdos da certificação ITIL v2. Antes do uso da ferramenta, muitos estudantes apresentavam dificuldades em identificar seus pontos fracos: 45% atribuíram nota 3, em uma escala de 0 a 5, à própria capacidade de reconhecer quais conteúdos deveriam melhorar. Além disso, 76% afirmaram que não sentiam que revisavam os conteúdos de forma adequada, cometendo erros na escolha dos temas a serem estudados. Ainda, 76% nunca haviam utilizado uma ferramenta de simulação com *feedback* personalizado, o que evidencia uma lacuna nas metodologias de estudo tradicionais adotadas pelos alunos.

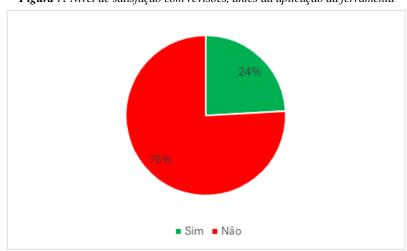


Figura 7: Nível de satisfação com revisões, antes da aplicação da ferramenta

Fonte: Autoria própria

Após a introdução da ferramenta, os resultados foram amplamente positivos. 93% dos alunos afirmaram que a ferramenta ajudou em sua preparação para a avaliação, e 100% disseram que a recomendariam para um colega, o que demonstra um forte índice de aprovação e satisfação.

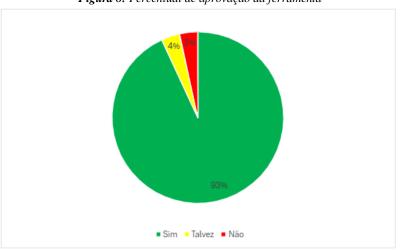


Figura 8: Percentual de aprovação da ferramenta

Fonte: Autoria própria

Os recursos mais valorizados foram: o resumo geral do desempenho com notas por categoria (29%), a indicação de pontos fracos em cada área (28%), e as sugestões de conteúdos específicos para revisão (22%). Essa estrutura de *feedback* personalizado se mostrou fundamental para aumentar a confiança dos estudantes e tornar o processo de aprendizagem mais direcionado e eficaz.

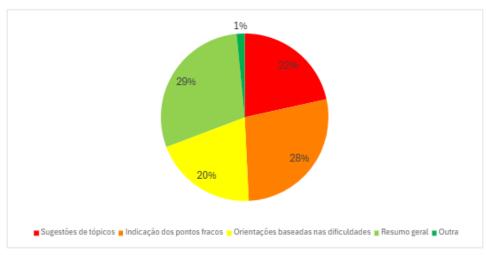


Figura 9: Nível de satisfação com atributos da plataforma

Fonte: Autoria própria

A pesquisa também evidencia que, antes da implementação, os alunos não dispunham de recursos que oferecessem uma análise detalhada de seu desempenho, o que pode ter contribuído para a baixa autoconfiança e para escolhas de estudo ineficientes. Com o uso, os alunos passaram a ter acesso a informações personalizadas sobre suas fraquezas, possibilitando revisões mais focadas. Esse fator foi essencial para ampliar a percepção sobre suas dificuldades e potencializar a preparação para a certificação.

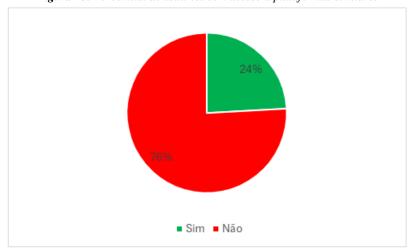


Figura 10: Percentual de usuários sem acesso a plataformas similares

Fonte: Autoria própria

A conclusão mais relevante da análise é que a aplicação de simulados com *feedback* personalizado, como o oferecido pelo sistema, se mostrou uma solução eficaz para os principais desafios enfrentados pelos alunos. A pesquisa demonstra que a ferramenta não apenas supriu falhas nas abordagens tradicionais de estudo, mas também impactou positivamente a autoconfiança e a eficiência na preparação. Essa experiência representa um modelo que pode ser replicado por outras instituições de ensino, com foco na personalização do aprendizado.

Em resumo, a plataforma preencheu uma lacuna significativa no aprendizado dos usuários em ITIL v2. O uso de simulados com *feedback* personalizado demonstrou ser uma estratégia poderosa para aprimorar tanto o aprendizado quanto a segurança dos estudantes na tomada de decisões sobre o que revisar. O sucesso da ferramenta destaca a importância de adaptar os métodos de estudo às necessidades específicas dos alunos, maximizando seu desempenho e autonomia no processo de aprendizagem.

3.4. Trabalhos Futuros

A ferramenta ITILGen pode servir como base para pesquisas futuras, especialmente em projetos com temáticas semelhantes, já que algumas funcionalidades relevantes não foram incluídas no escopo atual devido às limitações de tempo. No entanto, sua estrutura oferece potencial para expansão e aprimoramento.

Como sugestões para trabalhos futuros, recomenda-se o desenvolvimento de recursos como indicação de páginas e vídeos complementares para estudo, ampliação do conteúdo para abranger outras áreas da gestão e governança em tecnologia da informação e certificações correlatas, usos futuros de inteligência artificial e mineração de dados na educação – recomendações personalizadas, comentários direcionados e previsões de desempenho, além da integração com metodologias de aprendizagem, como a técnica Pomodoro — um método que consiste em dividir o tempo de estudo em blocos de alta concentração (geralmente 25 minutos) intercalados com breves pausas, promovendo foco e produtividade. Essas melhorias podem agregar valor significativo à proposta original, tornando a ferramenta ainda mais eficaz e abrangente.

3.5. Considerações Finais

O desenvolvimento deste trabalho forneceu reflexões relevantes para o uso da tecnologia para apoiar a aprendizagem. A criação da simulação inteligente de gestão e governança de TI demonstra como algoritmos simples de correção e análise podem diagnosticar efetivamente deficiências de aprendizagem, mesmo com recursos de computação limitados.

A coleta estruturada de respostas identifica padrões de erro e destaca os conteúdos com as maiores taxas de erro, dando aos alunos uma imagem clara de seu desempenho. O sistema não apenas exibe o número de acertos e erros, mas também fornece os percentuais sobre quais áreas exigem mais atenção.

Essa abordagem valoriza o uso de métodos computacionais em contextos de ensino, transformando simulações em ferramentas de treinamento que estimulam o autoconhecimento e a aprendizagem contínua. Dessa forma, o sistema vai além da avaliação tradicional para se tornar um facilitador da construção do conhecimento.

A escolha do ITIL v2 como base do tema aumenta a relevância prática do trabalho ao combinar o conteúdo da simulação com um modelo amplamente reconhecido pelo mercado de TI. Isso amplia sua utilidade para estudantes e profissionais que buscam certificação ou aprimoramento técnico.

Do ponto de vista acadêmico, o programa enfatiza a importância de aliar teoria à prática, exigindo organização, análise crítica e tomada de decisão constante — habilidades essenciais para profissionais que conseguem criar soluções reais. Também mantivemos o respeito pelos princípios pedagógicos, como clareza, acessibilidade e foco no *feedback* formativo.

Conclui-se que o uso de algoritmos em simulações educacionais é uma área promissora para a inovação pedagógica. As propostas apresentadas demonstram o potencial da tecnologia para fornecer diagnósticos precisos, *feedback* personalizado e promover a autonomia dos alunos.

REFERÊNCIAS

ALVES, F. P.; JAQUES, P. Um ambiente virtual com feedback personalizado para apoio a disciplinas de programação. Anais do Workshop de Computação e Informática na Educação (WCBIE), 2014. Disponível em: http://milanesa.ime.usp.br/rbie/index.php/wcbie/article/view/3171/2739. Acessado em: 05/11/2024.

Atam, O., & Tekdal, M. (2010). Fen ve teknoloji dersi ısı-sıcaklık konusunda hazırlanan simülasyon tabanlı bir yazılımın ilköğretim 5.sınıf öğrencilerin akademik başarılarına ve kalıcılığa etkisi. Eğitim ve Teknolojileri Araştırma Dergisi, 1(2), 1-18. Disponível em: https://doi.org/10.35379/cusosbil.678745. Acessado em: 05/11/2024.

BALULA, Ana; MARTINS, Ciro. BET on Top Hat – Challenges to improve language proficiency. ResearchGate, jul. 2015. Disponível em: https://www.researchgate.net/publication/284158624_BET_on_Top_Hat_-_Challenges_to_improve_language_proficiency. Acessado em: 05/11/2024.

Biggs, J., & Tang, C. (2007). Teaching for Quality Learning at University. McGraw-Hill Education.

Disponível

em: https://www.researchgate.net/publication/215915395_Teaching_for_Quality_Learning_at_Un iversity. Acessado em: 05/11/2024.

Black, P., & Wiliam, D. (1998). "Assessment and Classroom Learning." Assessment in Education: Principles, Policy & Practice, 5(1), 7-74. Disponível em: https://doi.org/10.1080/0969595980050102. Acessado em: 05/11/2024.

Bloom, B. S. (1956). Taxonomy of Educational Objectives: The Classification of Educational Goals. Longmans, Green. Disponível em: https://books.google.com.br/books/about/Taxonomy_of_Educational_Objectives.html?id=hos 6AAAAIAAJ&redir_esc=y. Acessado em: 05/11/2024.

Bloom, B. S. (1984). The 2 Sigma Problem: The Search for Methods of Group Instruction as Effective as One-to-One Tutoring. Educational Researcher, 13(6), 4–16. Disponível em: https://doi.org/10.3102/0013189X013006004. Acessado em: 05/11/2024.

BRAINSCAPE. Disponível em: https://www.brainscape.com. Acessado em: 05/11/2024.

BRAINSCAPE. Why It Works. Disponível em: https://www.brainscape.com/spaced-repetition. Acessado em: 05/11/2024.

Butler, A. C. (2010). "Repeated testing produces superior transfer of learning relative to repeated studying." Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(5), 1118. Disponível em: https://doi.org/10.1037/a0021360. Acessado em: 05/11/2024.

COHEN, P. A.; KULIK, J. A.; KULIK, C. L. C. (1982). Educational outcomes of tutoring: A meta-analysis of findings. American Educational Research Journal, v.19, n.2, p.237-248, 1982. Disponível em: https://doi.org/10.3102/0034654315581420. Acessado em: 05/11/2024.

Collins, A.M (2008). Rethinking Education in the Age of Technology. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds) Intelligent Tutoring Systems. ITS 2008. Lecture Notes in Computer Science, vol 5091. Springer, Berlin, Heidelberg, 2008. Disponível em: https://doi.org/10.1007/978-3-540-69132-7_1. Acessado em: 05/11/2024.

COSTA, Evandro; FECHINE, Joseana; SILVA, Priscylla; ROCHA, Hemilis. Modelos de Feedback para estudantes em Ambientes Virtuais de Aprendizagem. V Congresso Brasileiro de Informática na Educação (CBIE 2016). Disponível em: https://edisciplinas.usp.br/pluginfile.php/5619623/mod_resource/content/0/Modelos%20de%2 0Feedback%20para%20estudantes%20em%20AVA.pdf. Acessado em: 05/11/2024.

CRAIG, Scotty D.; GRAESSER, Arthur C. (2011). Learning with ALEKS: The Impact of Students' Attendance in a Mathematics After-School Program. ResearchGate, jun. 2011. Disponível em: https://www.researchgate.net/publication/221297524_Learning_with_ALEKS_The_Impact_o f_Students'_Attendance_in_a_Mathematics_After-School_Program. Acessado em: 05/11/2024.

DE MIRANDA, Lucas Raphael Ferreira. Feedbacks formativos e motivacionais em uma disciplina de introdução à computação. Universidade de Brasília - Biblioteca Central, 2023. Disponível em: https://bdm.unb.br/handle/10483/36997. Acessado em: 05/11/2024.

Dunlosky, J., et al. (2013). "Improving students' learning with effective learning techniques: Promising directions from cognitive and educational psychology." Psychological Science in the Public Interest, 14(1), 4-58. Disponível em: https://doi.org/10.1177/1529100612453266. Acessado em: 05/11/2024.

Gardner, H. (1999). Intelligence Reframed: Multiple Intelligences for the 21st Century. Basic Books. Disponível em: https://doi.org/10.2307/3587873. Acessado em: 05/11/2024.

GIL, Antônio C. Como elaborar projetos de pesquisa. 4. ed. São Paulo: Atlas S.A, 2002.

HATTIE, J. (2009). Visible Learning: A Synthesis of Over 800 Meta-Analyses Relating to Achievement. New York: Routledge, 2009. Disponível em: https://www.researchgate.net/publication/270585193_Visible_Learning_A_Synthesis_of_Ove r_800_Meta-Analyses_Relating_to_Achievement. Acessado em: 05/11/2024.

Hattie, J., & Timperley, H. (2007). The Power of Feedback. Review of Educational Research, 77(1), 81-112. Disponível em: https://doi.org/10.3102/003465430298487. Acessado em: 05/11/2024.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). Internet já é acessível em 90,0% dos domicílios do país em 2021. Agência de Notícias IBGE, 22 dez. 2022. Disponível em: https://agenciadenoticias.ibge.gov.br/agencia-noticias/2012-agencia-denoticias/noticias/34954-internet-ja-e-acessivel-em-90-0-dos-domicilios-do-pais-em-2021. Acessado em: 05/11/2024.

JOIV. A study on the effectiveness of different types of questions in online surveys. Disponível em: https://www.joiv.org/index.php/joiv/article/view/170/162. Acessado em: 05/11/2024.

Karpicke, J. D., & Roediger, H. L. (2008). "The critical importance of retrieval for learning." Science, 319(5865), 966-968. Disponível em: https://www.science.org/doi/10.1126/science.1152408. Acessado em: 05/11/2024.

Kerlinger, F. N. (1986). Foundations of Behavioral Research. Holt, Rinehart, and Winston.10.4236/jmf.2023.133022

Knowles, M. S. (1984). The Adult Learner: A Neglected Species. Gulf Publishing. Disponível em: https://files.eric.ed.gov/fulltext/ED084368.pdf. Acessado em: 05/11/2024.

Li, N. (2020). Use of Simulation to Enhance Learning in Certification Exams. Journal of Educational Practice, vol. 15, no. 3, pp. 233-242. Disponível em: https://files.eric.ed.gov/fulltext/EJ1286535.pdf. Acessado em: 05/11/2024.

LOTT, B. Personalization in Learning: A 21st Century Strategy for Student Success. Educational Leadership, 2019. Disponível em: https://doi.org/10.14507/er.v25.2418. Acessado em: 05/11/2024

LUCKESI, Cipriano Carlos. *Avaliação da aprendizagem escolar: estudos e proposições.* 21. edd. São Paulo: Cortez, 2011. Disponível em: https://books.google.com.br/books?id=uNTDAwAAQBAJ&printsec=frontcover&hl=pt-BR#v=onepage&q&f=false. Acessado em: 04/11/2024.

Mayer, R.E., & Alexander, P.A. (Eds.). (2010). Handbook of Research on Learning and Instruction (1st ed.). Routledge. Disponível em: https://doi.org/10.4324/9780203839089. Acessado em: 05/11/2024.

Meyer, D.K. and Schutz, P.A. (2020). Why Talk about Qualitative and Mixed Methods in Educational Psychology? Introduction to Special Issue. Educational Psychologist, 55, 193-196. Disponível em: https://doi.org/10.1080/00461520.2020.1796671. Acessado em: 05/11/2024.

Miles, M. B., & Huberman, A. M. (1994). Qualitative Data Analysis: An Expanded Sourcebook. SAGE Publications. Disponível em: https://vivauniversity.wordpress.com/wp-content/uploads/2013/11/milesandhuberman1994.pdf. Acessado em: 05/11/2024.

MONTEIRO, Edwin Juan Lopes Barboza. Um método baseado na Teoria da Resposta ao Item para avaliação e feedback automático no contexto de educação digital. 2021. 61 f. Dissertação – Universidade Federal do Amazonas, Manaus, 2021. Disponível em: https://tede.ufam.edu.br/bitstream/tede/8406/2/Disserta%C3%A7%C3%A3o_EdwinMonteiro _PPGI.pdf. Acessado em: 05/11/2024.

MORELLATO, Claudete; FELIPPIM, Maria Cristina Torres; PASSERINO, Liliana Maria; GELLER, Marlise. Softwares educacionais e a educação especial: refletindo sobre aspectos pedagógicos. Renote - Novas Tecnologias na Educação, v. 4, n. 1, p. 1-9, jul. 2006. Disponível em: https://seer.ufrgs.br/index.php/renote/article/view/13887/7803. Acessado em: 05/11/2024.

Nicol, D. J., & Macfarlane-Dick, D. (2006). Formative assessment and self-regulated learning: a model and seven principles of good feedback practice. Studies in Higher Education, 31(2), 199–218. Disponível em: https://doi.org/10.1080/03075070600572090. Acessado em: 05/11/2024.

POSTMAN. Documentação da API: RW1Yq1Vq. Disponível em: https://documenter.getpostman.com/view/3967924/RW1Yq1Vq#1c7ca439-f1ce-ee3f-234c-68efced5a51b. Acessado em: 05/11/2024.

QUIZLET. Disponível em: https://quizlet.com/br. Acessado em: 05/11/2024.

QUIZLET. Impact report 2019. Disponível em: https://quizlet.com/blog/2019-impact-report. Acessado em: 05/11/2024.

SANOSI (2018). Abdulaziz B. The effect of Quizlet on vocabulary acquisition. Asian Journal of Education and e-Learning, v. 6, n. 4, p. 71-77, ago. 2018. Disponível em: https://www.researchgate.net/profile/Abdulaziz-Sanosi/publication/327108959_The_Effect_

of_Quizlet_on_Vocabulary_Acquisition/links/5b7a8aeb92851c1e12219602/The-Effect-of-Quizlet-on-Vocabulary-Acquisition.pdf. Acessado em: 05/11/2024.

Schraw, G., & Dennison, R. S. (1994). Assessing Metacognitive Awareness. Contemporary Educational Psychology, 19(4), 460–475. Disponível em: https://doi.org/10.1006/ceps.1994.1033. Acessado em: 05/11/2024.

SCHUSTER, Margia Elisa. *Mercado de trabalho de tecnologia da informação.* 2008. Trabalho de Conclusão de Curso (Graduação) — Universidade (nome da instituição, se disponível), 2008. Disponível em: http://hdl.handle.net/10183/17539. Acessado em: 01/11/2024.

Sengel, E., Özden, M. Y., & Geben, Ö. (2002). Bilgisayar simülasyonlu deneylerin lise öğrencilerinin yer değiştirme ve hız kavramlarını anlamadaki etkisi. V. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi. ODTÜ **Eğitim** Fakültesi. Disponível em: https://www.academia.edu/516834/B%C4%B0LG%C4%B0SAYAR_S%C4%B0MULASYO NLU_DENEYLER%C4%B0N_L%C4%B0SE_%C3%96%C4%9ERENC%C4%B0LER%C4 %B0N%C4%B0N_YERDE%C4%9E%C4%B0%C5%9ET%C4%B0RME_VE_HIZ_KAVR AMLARINI_ANLAMADAK%C4%B0_ETK%C4%B0S%C4%B0. Acessado em: 05/11/2024.

Shute, V. J. (2008). Focus on formative feedback. Review of Educational Research, 78(1), 53-189. Disponível em: https://doi.org/10.3102/0034654307313795. Acessado em: 05/11/2024.

SILVA, Lorraine Pereira da; MARTINS, Rosane Maria. A importância da utilização de boas práticas ITIL na Governança de TI. *Ciência Atual*, Rio de Janeiro, v. 8, n. 2, p. 2-6, 2016. Disponível em: https://revista.saojose.br/index.php/cafsj/article/view/159. Acessado em: 02/11/2024.

Slavin, R. E. (2010). Instruction based on cooperative learning. In R. E. Mayer & P. A. Alexander (Eds.), Handbook of Research on Learning and Instruction (1st ed., pp. 344-360). Routledge. Disponível em: https://doi.org/10.4324/9780203839089. Acessado em: 05/11/2024. **STANFORD UNIVERSITY. (2022).** Stanford Accelerator for Learning. Stanford Education Report, 2022. Disponível em: https://acceleratelearning.stanford.edu/. Acessado em: 05/11/2024.

SURVEYMONKEY. SurveyMonkey API Documentation: Registering an App. Disponível em: https://api.surveymonkey.com/v3/docs#registering-an-app. Acessado em: 05/11/2024. **TOP HAT.** Top Hat. Disponível em: https://tophat.com/. Acessado em: 05/11/2024.

WATERMAN (2013). Sarabeth. The effects of Brainscape's Confidence-Based Repetition on two adults' performance on knowledge-based quizzes. 2013. Master's Project (M.Sc.) – State University of New York at Fredonia, New York, 2013. Disponível em: https://soar.suny.edu/handle/20.500.12648/505. Acessado em: 05/11/2024.

ANEXO A – Banco de Questões Utilizadas no Simulado

Este anexo apresenta o conjunto de questões selecionadas para a aplicação do simulado desenvolvido no trabalho. As questões foram organizadas com base em conteúdos relevantes em ITIL v2 e extraídas de diferentes fontes de estudo, conforme descrito no corpo do trabalho. Ademais, as questões que compõem a avaliação aplicada aos participantes, se encontram listadas abaixo.

Quadro 4: Questões Utilizadas no Simulado

Enunciado	Alternativa A	Alternativa B	Alternativa C	Alternativa D	Alternativa E	Resposta	Área	Processos	Atividades
What is the main objective of Incident Management in ITIL V2?	Identifying the root cause of problems.	Restore normal service operation as soon as possible.	Implementing changes to the IT infrastructure.	Monitoring the performance of IT services.	Developing new applications.	В	Service Support (Suporte de Serviço)	Incident Management (Gerenciamento de Incidentes)	Resolution and Recovery
Which of the following is NOT a typical step in the Incident Management process?	Incident detection & recording.	Classification and initial support.	Implementing changes.	Investigation and diagnosis.	Resolution and recovery.	С	Service Support (Suporte de Serviço)	Incident Management (Gerenciamento de Incidentes)	Global
What is an "incident" according to ITIL V2?	A service request from a user.	Any event that is not part of the standard operation of a service and that causes or may cause an interruption or reduction in the quality of the service.	An unauthorized change in the IT infrastructure.	An identified failure that has not yet caused an impact on the service.	A planned software update.	В	Service Support (Suporte de Serviço)	Incident Management (Gerenciamento de Incidentes)	Incident Detection and Recording

What is the difference between an "incident" and a "problem" in the context of ITIL V2?	An incident is a service interruption; a problem is the unknown cause of one or more incidents.	An incident is an identified root cause; a problem is a temporary service interruption.	An incident is a change request; a problem is a failure in implementation.	There is no difference; both are synonyms.	An incident is a hardware failure; a problem is a software failure.	A	Service Support (Suporte de Serviço)	Incident Management (Gerenciamento de Incidentes)	Incident Detection and Recording, Classification and Initial Support
When can an Incident be closed?	As soon as the Service Desk receives the incident.	After the initial incident analysis begins.	Once the incident has been resolved and the end user confirms service restoration.	Only during the scheduled monthly review of incidents.	After the Change Manager approves the resolution.	С	Service Support (Suporte de Serviço)	Incident Management (Gerenciamento de Incidentes)	Closure
What are the two types of escalation?	Operational escalation and technical escalation.	Functional escalation and hierarchical escalation.	Tactical escalation and strategic escalation.	Service escalation and control escalation.	Management escalation and process escalation.	В	Service Support (Suporte de Serviço)	Incident Management (Gerenciamento de Incidentes)	Classification and Initial Support
How does Incident Management use the CMDB?	It is used to capture historical incident trends for reporting purposes.	It is used to track hardware warranties and maintenance contracts.	It automatically assigns incidents to the appropriate support staff based on workload.	It stores end-user satisfaction feedback after incident resolution.	It provides details on configuration items (CIs) that help identify relationships and dependencies, facilitating incident diagnosis and resolution.	Е	Service Support (Suporte de Serviço)	Incident Management (Gerenciamento de Incidentes)	Investigation and Diagnosis
When should an incident be escalated to the next level of support?	When the user requests it.	When the incident is resolved.	When the incident is logged.	When the current level of support lacks the knowledge or resources to resolve the incident.	When the IT manager is available.	D	Service Support (Suporte de Serviço)	Incident Management (Gerenciamento de Incidentes)	Classification and Initial Support, Investigation and Diagnosis

Which of the following is a common metric used to measure the efficiency of Incident Management?	Average resolution time.	Number of changes implemented.	Service availability percentage.	Number of trained users.	Total cost of ownership (TCO).	A	Service Support (Suporte de Serviço)	Incident Management (Gerenciamento de Incidentes)	Resolution and Recovery
What is the first step in the Incident Management process in ITIL V2?	Investigation and diagnosis.	Classification and initial support.	Closure of the incident.	Resolution and recovery.	Incident detection & recording.	E	Service Support (Suporte de Serviço)	Incident Management (Gerenciamento de Incidentes)	Incident Detection and Recording
Which of the following is a responsibility of Incident Management?	Implementing permanent solutions for known problems.	Monitoring the IT infrastructure to prevent incidents.	Providing a workaround to quickly restore service.	Managing contracts with suppliers.	Developing new software functionalities.	С	Service Support (Suporte de Serviço)	Incident Management (Gerenciamento de Incidentes)	Global
What is the main benefit of categorizing incidents in the Incident Management process?	Facilitating prioritization and allocation of appropriate resources.	Increasing the number of recorded incidents.	Reducing the need for a Service Desk.	Eliminating the need for escalation.	Avoiding communication with users.	A	Service Support (Suporte de Serviço)	Incident Management (Gerenciamento de Incidentes)	Classification and Initial Support
Which of the alternatives presents two main objectives of Incident Management?	To ensure only the most severe incidents are handled and that all incidents are escalated to the management level.	To restore normal service operation as quickly as possible and to minimize the adverse impact on business operations, ensuring that the	To manage all incidents without involving end users and to document every step in the incident resolution process.	To ensure only temporary fixes are applied and to prevent any changes in the IT infrastructure configuration.	To integrate incident responses with change management and to use configuration management only for auditing purposes.	В	Service Support (Suporte de Serviço)	Incident Management (Gerenciamento de Incidentes)	Resolution and Recovery

		best possible levels of service quality and availability are maintained.							
Who plays the major role in Incident Management?	Configuration Manager	Problem Manager	Change Manager	Service Desk	Release Manager	D	Service Support (Suporte de Serviço)	Incident Management (Gerenciamento de Incidentes)	Incident Detection and Recording, Classification and Initial Support
What is the main objective of Problem Management in ITIL v2?	To restore normal service operation as quickly as possible.	To monitor the IT infrastructure.	To identify and eliminate the root causes of incidents.	To manage contracts with suppliers.	To develop new applications.	С	Service Support (Suporte de Serviço)	Problem Management (Gerenciamento de Problemas)	Global
Which of the following is NOT a typical activity of Problem Management?	Diagnosing and investigating incidents.	Developing workarounds.	Identifying the root cause of problems.	Logging incidents.	Creating and maintaining a known error database.	D	Service Support (Suporte de Serviço)	Problem Management (Gerenciamento de Problemas)	Global
What is the term used to describe a temporary solution implemented to minimize the impact of a problem until a permanent solution is found?	Workaround	Corrective action	Best practice.	Final resolution	Change	A	Service Support (Suporte de Serviço)	Problem Management (Gerenciamento de Problemas)	Error Control
When a known error is identified and documented, what is the next	To start logging related incidents.	To implement a permanent solution.	To close all incidents.	To register the error in the	To conduct a security audit.	D	Service Support (Suporte	Problem Management	Error Control, Problem Control

step in the Problem Management process?				known error database.			de Serviço)	(Gerenciamento de Problemas)	
What is an "incident" according to ITIL V2?	A service request from a user.	Any event that is not part of the standard operation of a service and that causes or may cause an interruption or reduction in the quality of the service.	An unauthorized change in the IT infrastructure.	An identified failure that has not yet caused an impact on the service.	A planned software update.	В	Service Support (Suporte de Serviço)	Problem Management (Gerenciamento de Problemas)	Problem Control
How does a Problem become a Known Error?	When workarounds are implemented on a trial basis without further investigation.	When the Problem is archived after being unresolved for a specified period.	When the end user confirms that the temporary fix has solved their issue permanently.	When the root cause is identified and documented, and a workaround is established (if a permanent resolution is not yet available).	When the Problem Manager decides to change its status based solely on the number of recurring incidents.	D	Service Support (Suporte de Serviço)	Problem Management (Gerenciamento de Problemas)	Error Control
Which of the following is NOT a responsibility of Problem Management?	Diagnosing and investigating the root cause of problems.	Identifying permanent solutions for incidents.	Ensuring that normal service operation is restored quickly.	Maintaining the known error database.	Logging all causes of incidents.	С	Service Support (Suporte de Serviço)	Problem Management (Gerenciamento de Problemas)	Global
At what stage of the incident lifecycle does Problem Management come into play?	Before the incident is logged.	During the investigation and diagnosis of the incident.	After the incident is resolved.	During the classification of the incident.	During the closure of the incident.	В	Service Support (Suporte de Serviço)	Problem Management (Gerenciamento de Problemas)	Problem Control

When is a "problem" considered "resolved"?	When a permanent solution is implemented.	When the related incident is closed.	When a workaround is found.	When the known error is documented.	When the root cause is identified.	A	Service Support (Suporte de Serviço)	Problem Management (Gerenciamento de Problemas)	Problem Control
What is the primary reason for implementing a known error database?	To log frequent incidents.	To facilitate the resolution of recurring problems.	To diagnose the cause of new incidents.	To develop new IT functionalities.	To document changes in the IT infrastructure.	В	Service Support (Suporte de Serviço)	Problem Management (Gerenciamento de Problemas)	Error Control
What is the primary purpose of the "root cause analysis" process in Problem Management?	To identify the cause of individual incidents.	To create a known error database.	To determine the most efficient workaround.	To implement the fix across all systems.	To prevent the occurrence of future incidents and problems.	E	Service Support (Suporte de Serviço)	Problem Management (Gerenciamento de Problemas)	Problem Control
Who is responsible for ensuring that problems are addressed appropriately and solutions are implemented?	Service Desk	IT Manager	IT Technician	Problem Specialist	System Administrator	D	Service Support (Suporte de Serviço)	Problem Management (Gerenciamento de Problemas)	Problem Control
What should be done when a permanent solution cannot be found for a problem?	The problem should be closed.	The problem should be reclassified as an incident.	A workaround should be implemented.	The problem should be escalated.	The problem should be ignored.	С	Service Support (Suporte de Serviço)	Problem Management (Gerenciamento de Problemas)	Error Control
What is the main advantage of using a workaround during the Problem	The solution is permanent and resolves the	It allows the service to be restored without	It facilitates the implementation of new changes.	It minimizes the impact of the problem while a permanent	The workaround is more cost-effective.	D	Service Support (Suporte	Problem Management	Error Control

Management process?	problem definitively.	changes to the system.		solution is implemented.			de Serviço)	(Gerenciamento de Problemas)	
What are two primary goals of Problem Management?	To ensure that temporary fixes are applied permanently and to archive all incident records for compliance.	To reduce the overall impact and recurrence of incidents by identifying and eliminating root causes, and to proactively prevent future incidents.	To provide immediate resolution to business disruptions and document every step taken during incident handling.	To maintain the Configuration Management Database and ensure all configuration items are updated in real time.	To escalate unresolved incidents to change management and enforce tighter security protocols across the system.	В	Service Support (Suporte de Serviço)	Problem Management (Gerenciamento de Problemas)	Proactive Problem Management
What is the main objective of Change Management in ITIL v2?	To monitor the IT infrastructure.	To implement new technologies.	To control the lifecycle of all changes.	To resolve incidents quickly.	To manage contracts with suppliers.	С	Service Support (Suporte de Serviço)	Change Management (Gerenciamento de Mudanças)	Management of RFCs, Change Approval, Testing and Implementation
Which of the following is NOT a responsibility of Change Management?	To assess the impact of a proposed change.	To approve or reject change requests.	To physically implement the change.	To ensure that changes are documented.	To review the success of changes after implementation.	С	Service Support (Suporte de Serviço)	Change Management (Gerenciamento de Mudanças)	Global
What is a Request for Change (RFC) in the context of ITIL V2?	A document requesting a change to the infrastructure or any aspect of IT services.	A request to alter supplier contracts.	A report of system failures.	A proposal for a new IT project.	A request for technical support.	В	Service Support (Suporte de Serviço)	Change Management (Gerenciamento de Mudanças)	Management of RFCs
What is the role of the Change Advisory Board (CAB) in the Change	To provide recommendations on proposed changes.	To resolve critical incidents.	To monitor the performance of systems.	To develop new applications.	To manage the configuration database.	D	Service Support (Suporte	Change Management (Gerenciamento de Mudanças)	Change Approval

Management process?							de Serviço)		
Which of the following best describes a "standard change" in ITIL V2?	A pre-authorized, low-risk change.	A change that requires CAB approval.	A change that has never been performed before.	A change that always fails.	An emergency change to resolve a critical failure.	A	Service Support (Suporte de Serviço)	Change Management (Gerenciamento de Mudanças)	Acceptance and Filtering, Change Approval
What is the main difference between a "normal change" and an "emergency change" in ITIL V2?	Normal changes are always low-risk.	Normal changes do not follow any process.	Emergency changes are planned in advance.	Emergency changes are implemented to resolve critical incidents immediately.	Emergency changes do not need approval.	D	Service Support (Suporte de Serviço)	Change Management (Gerenciamento de Mudanças)	Change Approval
What should be evaluated during the post-implementation review of a change?	Only the technical aspects of the change.	Whether the change was implemented within budget.	The satisfaction of suppliers with the change.	Whether the change was kept confidential.	The effectiveness of the change and any issues that arose.	E	Service Support (Suporte de Serviço)	Change Management (Gerenciamento de Mudanças)	Review All Implemented Changes
Which of the following is an activity of the Change Management process?	To monitor the daily performance of systems.	To develop marketing strategies.	To manage supplier contracts.	To assess risks associated with a proposed change.	To perform daily data backups.	D	Service Support (Suporte de Serviço)	Change Management (Gerenciamento de Mudanças)	Global
Why is it important to have a formal Change Management process?	To increase bureaucracy in the organization.	To minimize service interruptions and ensure that changes are made	To ensure that all changes are charged to customers.	To avoid any type of change in IT services.	To ensure that only the IT team can request changes.	В	Service Support (Suporte de Serviço)	Change Management (Gerenciamento de Mudanças)	Change Approval, Testing and Implementation, Review All Implemented Changes

		in a controlled manner.							
What document is updated after a successful change is implemented?	Configuration Management Database (CMDB)	Service Level Agreement (SLA)	Service Catalog	Business Continuity Plan	Incident Report	A	Service Support (Suporte de Serviço)	Change Management (Gerenciamento de Mudanças)	Review All Implemented Changes, Close the RFC
What is the main objective of Release Management in the context of ITIL V2?	To ensure that changes are assessed, authorized, and implemented correctly.	To facilitate the build and delivery of releases, minimizing impacts and risks in production.	To continuously monitor the performance of IT services.	To ensure compliance with security policies.	To manage hardware and software assets.	В	Service Support (Suporte de Serviço)	Release Management (Gerenciamento de Atualização)	Define Release Guidelines and Release Policies, Manage Release Implementation
Which of the following activities is NOT a function of Release Management?	To plan and schedule the build and implementation of the release.	To develop the release package.	To manage the configuration and IT assets.	To validate and test the release before implementation.	To prepare communication and documentation for the release.	С	Service Support (Suporte de Serviço)	Release Management (Gerenciamento de Atualização)	Global
What is the importance of the testing environment in Release Management?	It serves to train end users.	It acts as a backup for data.	It is where the release is definitively implemented.	It allows for validating the integrity and functionality of the release without affecting production.	It does not have significant relevance.	D	Service Support (Suporte de Serviço)	Release Management (Gerenciamento de Atualização)	Monitor the Creation of Releases, Manage Release Implementation
What are the goals of Release Management?	To ensure that emergency changes are implemented immediately without prior planning.	To record all configuration item details in the CMDB after every release.	To manage each release by conducting only post-deployment reviews to verify quality.	To solely focus on reducing the number of post- release incidents without any consideration for	To plan, schedule, and control the movement of releases to test and live environments, minimizing risks and disruption while	E	Service Support (Suporte de Serviço)	Release Management (Gerenciamento de Atualização)	Define Release Guidelines and Release Policies, Manage Release Implementation,

				the deployment process.	ensuring that changes meet business requirements.				Monitor the Creation of Releases
Which of the following elements is NOT part of the Release Management lifecycle?	Post- implementation performance monitoring.	Planning.	Build and testing.	Deployment and delivery.	Post- implementation review.	A	Service Support (Suporte de Serviço)	Release Management (Gerenciamento de Atualização)	Global
In ITIL V2, what is meant by "release"?	A set of new IT policies and procedures.	A set of hardware and software components, tested and grouped for deployment.	An isolated security update.	A service delivery contract for IT.	A disaster recovery plan.	В	Service Support (Suporte de Serviço)	Release Management (Gerenciamento de Atualização)	Monitor the Creation of Releases, Manage Release Implementation
What is the function of "builds" within Release Management?	To build and configure the production environment.	To document incidents occurring in the IT environment.	To develop the package that will be tested and subsequently implemented.	To monitor the performance of systems after deployment.	To manage software maintenance contracts.	С	Service Support (Suporte de Serviço)	Release Management (Gerenciamento de Atualização)	Monitor the Creation of Releases
What are the benefits of effective Release Management?	Reduction of risks and service interruptions, increased customer satisfaction, and better alignment with business needs.	Increased operational costs and downtime.	Exclusive reduction of hardware costs.	Simplification of technical support processes without impacting service.	Increased complexity of IT processes.	A	Service Support (Suporte de Serviço)	Release Management (Gerenciamento de Atualização)	Define Release Guidelines and Release Policies, Manage Release Implementation, Perform Software and Hardware Audits
Which of these options best describes the importance of	It can be replaced by verbal	It is used only after a failure in the release.	It is only used for audits.	It is irrelevant in simple releases.	It is essential to ensure that the process is repeatable,	E	Service Support (Suporte	Release Management	Define Release Guidelines and Release Policies,

documentation in Release Management?	communication between teams.				auditable, and understandable by all parties involved.		de Serviço)	(Gerenciamento de Atualização)	Control the DSL and DHS
Which of the following documents is NOT commonly associated with the Release Management process?	Test plan.	Configuration record (CMDB).	Post- implementation report.	User manual.	Release plan.	D	Service Support (Suporte de Serviço)	Release Management (Gerenciamento de Atualização)	Global
Which practice is considered a "best practice" in Release Management according to ITIL V2?	Deploying directly to production without testing to expedite the process.	Ignoring feedback from end users.	Documenting and reviewing all stages of the release and conducting tests in a controlled environment.	Executing releases without formal planning.	Keeping Release Management completely separate from Change Management.	С	Service Support (Suporte de Serviço)	Release Management (Gerenciamento de Atualização)	Define Release Guidelines and Release Policies, Monitor the Creation of Releases, Manage Release Implementation
What is the importance of a "Release Policy" in the context of Release Management?	It defines the criteria for approving changes.	It establishes guidelines and practices for managing releases, including roles and responsibilities.	It determines the fees for IT services.	It defines network security standards.	It has no practical relevance.	В	Service Support (Suporte de Serviço)	Release Management (Gerenciamento de Atualização)	Define Release Guidelines and Release Policies
How does Release Management contribute to the continuous improvement of IT services?	It allows for the implementation of smaller and more frequent releases, facilitating the identification and correction of issues.	By eliminating the need for testing and reviews.	By centralizing all IT decisions in a single department.	By delaying changes to minimize risks.	By reducing communication between IT teams.	A	Service Support (Suporte de Serviço)	Release Management (Gerenciamento de Atualização)	Manage Release Implementation, Perform Software and Hardware Audits, Control the DSL and DHS

What is the role of the "Roll-back Plan" in Release Management?	To plan the implementation of new functionalities.	To revert changes if the release does not meet success criteria.	To train end users after deployment.	To serve as a financial document.	To represent the implementation schedule of the release.	В	Service Support (Suporte de Serviço)	Release Management (Gerenciamento de Atualização)	Manage Release Implementation
What are the main risks associated with a poorly managed release?	Only an increase in network traffic.	Exclusively the loss of financial data.	Improvement in communication between teams.	Interruption of IT services, negative impacts on customer satisfaction, and increased operational costs.	No risk, as long as the implementation is done quickly.	D	Service Support (Suporte de Serviço)	Release Management (Gerenciamento de Atualização)	Define Release Guidelines and Release Policies, Manage Release Implementation, Perform Software and Hardware Audits
What is the main function of the Service Desk in ITIL V2?	To manage changes in the IT infrastructure.	To provide a single point of contact between users and the IT organization.	To develop new applications for the company.	To monitor the performance of IT systems.	To manage contracts with external suppliers.	В	Service Support (Suporte de Serviço)	Service Desk (Atendimento)	Handle Calls from Users, Record and Track Incidentes, Keep User Informed on Request Status
Which of the following is NOT a typical responsibility of the Service Desk?	Recording and tracking incidents.	Providing first- level technical support.	Approval of changes in the IT infrastructure.	Communicating with users about the status of their requests.	Escalating issues to specialized teams when necessary.	С	Service Support (Suporte de Serviço)	Service Desk (Atendimento)	Global
What is the primary goal of the Service Desk?	To manage and oversee all change requests within the IT environment.	To act as the single point of contact for users, handling incidents and service requests and ensuring effective communication and support.	To provide problem management by performing root cause analyses and eliminating recurring incidents.	To plan and schedule new releases to minimize service disruptions during deployments.	To enforce strict security and compliance policies across all IT services.	В	Service Support (Suporte de Serviço)	Service Desk (Atendimento)	Handle Calls from Users, Record and Track Incidentes, Keep User Informed on Request Status, Initiate Escalation Procedures According SLAs

Which of the following metrics is commonly used to evaluate the performance of the Service Desk?	Number of successfully implemented changes.	Average incident resolution time.	Number of new services developed.	Network bandwidth utilization rate.	Number of backups performed daily.	В	Service Support (Suporte de Serviço)	Service Desk (Atendimento)	Record and Track Incidentes, Keep User Informed on Request Status
What is a Service Request in the context of ITIL V2?	An unplanned interruption of an IT service.	A root cause of multiple incidents.	A request from a user for information, advice, a standard change, or access to an IT service.	A failure in an IT component that has not yet affected the service.	An emergency update to fix a security vulnerability.	С	Service Support (Suporte de Serviço)	Service Desk (Atendimento)	Handle Calls from Users, Record and Track Incidentes
What is the importance of categorizing incidents in the Service Desk?	To determine the cost of resolution.	To identify patterns and trends that may indicate underlying problems.	To avoid the need for escalation.	To reduce the total number of incidents.	To comply with legal and regulatory requirements.	В	Service Support (Suporte de Serviço)	Service Desk (Atendimento)	Record and Track Incidentes, Initiate Escalation Procedures According SLAs
What is a Service Level Agreement (SLA) in ITIL V2?	A contract between the Service Desk and external suppliers.	A document that defines the expected service levels and the responsibilities between the IT service provider and the customer.	A list of all IT assets of the organization.	A business continuity plan for IT services.	An internal procedures manual for the Service Desk.	В	Service Support (Suporte de Serviço)	Service Desk (Atendimento)	Keep User Informed on Request Status, Initiate Escalation Procedures According SLAs
How does the Service Desk contribute to end- user satisfaction?	By developing new software functionalities.	By ensuring that all incidents and requests are handled efficiently and effectively, keeping users informed about the	By monitoring network performance.	By implementing strict security policies.	By reducing IT operational costs.	В	Service Support (Suporte de Serviço)	Service Desk (Atendimento)	Handle Calls from Users, Record and Track Incidentes, Keep User Informed on Request Status, Provide Management Information and

		status of their requests.							Recommendations for Service Improvement
What is the difference between a centralized Service Desk and a local Service Desk?	A centralized Service Desk serves multiple locations from a single point; a local Service Desk is physically located close to the users it serves.	A centralized Service Desk operates 24 hours a day; a local Service Desk operates only during business hours.	A centralized Service Desk deals only with critical incidents; a local Service Desk handles all types of incidents.	There is no difference; the terms are synonymous.	A centralized Service Desk is outsourced; a local Service Desk is internal.	A	Service Support (Suporte de Serviço)	Service Desk (Atendimento)	Handle Calls from Users, Coordinate Incident Handling
What is a Knowledge Base in the context of the Service Desk?	A database that stores information about all IT assets.	A repository of information and solutions that can be used to resolve incidents and provide support to users.	A list of contacts for IT suppliers and partners.	A manual of information security policies.	A network performance monitoring system.	В	Service Support (Suporte de Serviço)	Service Desk (Atendimento)	Provide Management Information and Recommendations for Service Improvement, Record and Track Incidentes
Why is it important for the Service Desk to have access to the Configuration Management Database (CMDB)?	To develop new applications.	To monitor network traffic in real-time.	To obtain detailed information about Configuration Items (CIs) and their relationships.	To financially audit the organization's IT assets.	To replace the second-level technical support team.	С	Service Support (Suporte de Serviço)	Service Desk (Atendimento)	Record and Track Incidentes, Coordinate Incident Handling
What is the main objective of Service Level Management (SLM) in ITIL V2?	To implement new IT technologies.	To monitor and continuously improve the quality of IT services.	To manage information security.	To control software assets.	To provide technical support to end users.	В	Service Delivery (Entrega de Serviço)	Service Level Management - SLM (Gerenciamento de Nível de Serviço)	Global

What is a Service Level Agreement (SLA) in the context of SLM?	An internal procedures manual for the IT team.	A document that defines the agreed service levels between the IT service provider and the customer.	A contract between the IT team and external suppliers.	A report of incidents and problems.	An information security policy.	В	Service Delivery (Entrega de Serviço)	Service Level Management - SLM (Gerenciamento de Nível de Serviço)	Negotiate SLA with Customer, Measure and Report
Which of the following activities is NOT a typical responsibility of SLM?	To define and manage the service catalog.	To monitor and report service performance against SLAs.	To negotiate and review SLAs with customers.	To develop software applications.	To implement service improvement plans.	D	Service Delivery (Entrega de Serviço)	Service Level Management - SLM (Gerenciamento de Nível de Serviço)	Global
What are the activities of Service Level Management?	To design and deploy the technical infrastructure needed to support business applications.	To manage and resolve incidents by logging, prioritizing, and coordinating actions with the appropriate technical teams.	To define, negotiate, monitor, and review Service Level Agreements (SLAs) to ensure that all IT services are delivered effectively according to agreed-upon standards.	To maintain the Configuration Management Database (CMDB) and keep track of IT assets.	To oversee change requests and control the implementation of modifications to the IT environment.	С	Service Delivery (Entrega de Serviço)	Service Level Management - SLM (Gerenciamento de Nível de Serviço)	Global
What is a Service Improvement Plan (SIP) in the context of SLM?	A plan to implement new technologies.	A plan to continually improve the service levels provided.	A disaster recovery plan.	A training plan for the IT team.	An information security plan.	В	Service Delivery (Entrega de Serviço)	Service Level Management - SLM (Gerenciamento de Nível de Serviço)	Continuously Improve Service Levels, Measure and Report

What is the difference between an SLA and an OLA (Operational Level Agreement)?	There is no difference; both are the same thing.	An SLA is an external agreement with the customer, while an OLA is an internal agreement between departments.	An SLA is an internal agreement, while an OLA is an external agreement with suppliers.	An SLA deals with technical issues, while an OLA deals with financial issues.	An SLA is optional, while an OLA is mandatory.	В	Service Delivery (Entrega de Serviço)	Service Level Management - SLM (Gerenciamento de Nível de Serviço)	Negotiate SLA with Customer, Measure and Report
Which of the following metrics is commonly used to measure service performance against SLAs?	Employee turnover rate.	Customer satisfaction.	Revenue growth.	Number of new customers.	Absenteeism rate.	В	Service Delivery (Entrega de Serviço)	Service Level Management - SLM (Gerenciamento de Nível de Serviço)	Measure and Report
How does SLM contribute to customer satisfaction?	By reducing operational costs.	By implementing new technologies.	By ensuring that IT services meet or exceed the agreed expectations.	By training the IT team.	By increasing the complexity of services.	С	Service Delivery (Entrega de Serviço)	Service Level Management - SLM (Gerenciamento de Nível de Serviço)	Negotiate SLA with Customer, Measure and Report, Continuously Improve Service Levels
What is the role of the Service Catalog in SLM?	To list all IT assets of the organization.	To document the available IT services and their details.	To record incidents and problems.	To monitor the performance of the IT team.	To manage contracts with suppliers.	В	Service Delivery (Entrega de Serviço)	Service Level Management - SLM (Gerenciamento de Nível de Serviço)	Produce, Review and Maintain the Service Catalog
What is a Service Level Requirement (SLR)?	A contract with external suppliers.	An incident report.	A description of the customer's needs and expectations regarding the service.	A metric to measure service performance.	A request for a change in the service.	С	Service Delivery (Entrega de Serviço)	Service Level Management - SLM (Gerenciamento de Nível de Serviço)	Negotiate SLA with Customer, Produce, Review and Maintain the Service Catalog

Which of the following is a key activity of SLM?	Software development.	Project management.	Negotiating SLAs with customers.	Database administration.	Technical support.	С	Service Delivery (Entrega de Serviço)	Service Level Management - SLM (Gerenciamento de Nível de Serviço)	Global
What is a UC?	A User Communication, which is the structured way IT communicates service updates to users.	A Unit Cost, representing the cost per individual service transaction or usage.	A Unique Configuration, referring to a specific setup in the Configuration Management Database (CMDB).	A Universal Change, a standard modification applied across multiple systems simultaneously.	An Underpinning Contract – an agreement with external suppliers that supports and enables the delivery of IT services in line with Service Level Agreements (SLAs).	Е	Service Delivery (Entrega de Serviço)	Service Level Management - SLM (Gerenciamento de Nível de Serviço)	Negotiate SLA with Customer, Produce, Review and Maintain the Service Catalog
What is the benefit of regularly reviewing SLAs?	To increase operational costs.	To ensure that SLAs remain aligned with the needs of the business and customers.	To reduce the quality of services.	To avoid communication with customers.	To simplify IT processes.	В	Service Delivery (Entrega de Serviço)	Service Level Management - SLM (Gerenciamento de Nível de Serviço)	Measure and Report, Continuously Improve Service Levels, Produce, Review and Maintain the Service Catalog
What is a Key Performance Indicator (KPI) in the context of SLM?	A tool for monitoring incidents.	A metric to measure customer satisfaction.	A metric used to measure the performance of a service against the SLA.	A monthly report on service quality.	A list of business objectives that IT must achieve.	С	Service Delivery (Entrega de Serviço)	Service Level Management - SLM (Gerenciamento de Nível de Serviço)	Measure and Report
Which of the following best describes an SLA report?	A report on the operational costs of the IT team.	A document that presents data on compliance with the agreed service levels.	A document with suggestions for improvements to IT services.	A report on the time spent resolving incidents.	A report on the changes made to a service.	В	Service Delivery (Entrega de Serviço)	Service Level Management - SLM (Gerenciamento	Measure and Report

								de Nível de Serviço)	
What is the main objective of Capacity Management in ITIL V2?	To develop new IT applications.	To ensure that IT capacity meets the current and future needs of the business in a costeffective manner.	To manage IT incidents and problems.	To monitor the availability of IT services.	To control IT operational costs.	В	Service Delivery (Entrega de Serviço)	Capacity Management (Gerenciamento de Capacidade)	Capacity Planning, Ongoing Activities
What are the three subcategories of Capacity Management in ITIL V2?	Business Capacity Management, Service Capacity Management, and Resource Capacity Management.	Application Capacity Management, Network Capacity Management, and Server Capacity Management.	Process Capacity Management, People Capacity Management, and Technology Capacity Management.	Data Capacity Management, System Capacity Management, and Infrastructure Capacity Management.	Software Capacity Management, Hardware Capacity Management, and User Capacity Management.	A	Service Delivery (Entrega de Serviço)	Capacity Management (Gerenciamento de Capacidade)	Application Sizing, Performance Tuning, Capacity Planning
Which of the following activities is NOT a responsibility of Capacity Management?	To plan future IT capacity based on business growth projections.	To monitor the current performance of IT systems.	To identify and resolve performance bottlenecks in IT systems.	To develop and implement disaster recovery plans.	To provide recommendations for improvements in IT infrastructure.	D	Service Delivery (Entrega de Serviço)	Capacity Management (Gerenciamento de Capacidade)	Global
How does Capacity Management contribute to operational efficiency?	By reducing the need for regular backups.	By ensuring that IT resources are used efficiently and that capacity is scaled according to demand.	By implementing stricter security policies.	By increasing the number of servers to support the workload.	By eliminating the need for performance monitoring.	В	Service Delivery (Entrega de Serviço)	Capacity Management (Gerenciamento de Capacidade)	Ongoing Activities, Performance Tuning, Demand Management
New hard drives are added to expand server storage capacity. Which ITSM	Release Management	Configuration Management	Availability Management	Capacity Management	Change Management	С	Service Delivery (Entrega	Capacity Management (Gerenciamento de Capacidade)	Ongoing Activities, Capacity Planning

process measures the reliability of the new drives?							de Serviço)		
Which of the following tools is commonly used in Capacity Management?	Data backup software.	Performance monitoring tools that collect and analyze resource usage data.	Database management systems.	Office productivity applications.	Team collaboration platforms.	В	Service Delivery (Entrega de Serviço)	Capacity Management (Gerenciamento de Capacidade)	Modeling, Regularly Scheduled Activities
What is trend analysis in the context of Capacity Management?	Forecasting impending hardware failures.	The study of historical and current resource usage behavior to forecast future needs.	Identifying usage patterns of specific applications.	Monitoring end- user activities.	Evaluating the effectiveness of staff training.	В	Service Delivery (Entrega de Serviço)	Capacity Management (Gerenciamento de Capacidade)	Modeling, Regularly Scheduled Activities
What is the importance of conducting a Business Impact Analysis (BIA) in Capacity Management?	To determine the costs associated with maintaining IT systems.	To evaluate customer satisfaction with IT services.	To measure the efficiency of internal IT processes.	To identify the potential effects of service disruptions on business processes and prioritize critical resources.	To develop marketing strategies for IT services.	D	Service Delivery (Entrega de Serviço)	Capacity Management (Gerenciamento de Capacidade)	Demand Management, Capacity Planning
How does Capacity Management assist in managing IT costs?	By eliminating the need for infrastructure investments.	By reducing the number of staff in the IT team.	By implementing stricter security policies.	By increasing the prices of IT services for customers.	By ensuring that resources are provisioned according to demand, avoiding excessive or insufficient spending.	E	Service Delivery (Entrega de Serviço)	Capacity Management (Gerenciamento de Capacidade)	Capacity Planning, Demand Management

What is the role of Capacity Management in the continuous improvement of IT services?	To develop new services to meet emerging needs.	To reduce the capacity of services to save costs.	To implement technological changes without assessing their impact.	To monitor and adjust the capacity of existing services to improve performance and efficiency.	To discontinue services that are no longer profitable.	D	Service Delivery (Entrega de Serviço)	Capacity Management (Gerenciamento de Capacidade)	Ongoing Activities, Performance Tuning, Capacity Planning
What is the main objective of Trend Analysis in Capacity Management?	To identify which IT applications are being used the most.	To predict failures of IT equipment.	To monitor IT capacity usage and forecast future needs based on historical data.	To create new IT solutions for customers.	To analyze recorded incidents to determine the root cause.	С	Service Delivery (Entrega de Serviço)	Capacity Management (Gerenciamento de Capacidade)	Modeling, Regularly Scheduled Activities
Which process is responsible for ensuring that IT capacity meets future needs?	Capacity Planning	Change Management	Configuration Management	Availability Management	Service Continuity Management	A	Service Delivery (Entrega de Serviço)	Capacity Management (Gerenciamento de Capacidade)	Capacity Planning, Demand Management
Which of the following activities is performed during Capacity Management in ITIL?	Development of new IT products.	Management of incidents and problems.	Evaluation of performance and resource utilization to ensure that the infrastructure meets demand.	Planning of infrastructure changes.	Assessment of IT suppliers.	С	Service Delivery (Entrega de Serviço)	Capacity Management (Gerenciamento de Capacidade)	Global
What is the purpose of capacity modeling in ITIL?	To create data backups to ensure service continuity.	To implement changes to IT services.	To identify the root cause of service failures.	To ensure that the IT budget is maintained.	To forecast future IT capacity needs based on trends and historical data.	E	Service Delivery (Entrega de Serviço)	Capacity Management (Gerenciamento de Capacidade)	Modeling,Capacity Planning

What is the main objective of Availability Management in ITIL V2?	To reduce the operational costs of IT services.	To monitor server performance.	To manage IT incidents and problems.	To ensure that IT services are available according to the agreed levels with the business.	To provide technical support to end users.	D	Service Delivery (Entrega de Serviço)	Avaibility Management (Gerenciamento de Disponibilidade)	Determine Availability Requirements, Create an Availability Plan, Implement, Monitor, Review and Report
What is an Availability SLA?	A contract that defines information security goals.	An agreement that specifies the expected availability levels for an IT service.	A document that describes backup and recovery processes.	A monthly service performance report.	A set of IT governance policies.	В	Service Delivery (Entrega de Serviço)	Avaibility Management (Gerenciamento de Disponibilidade)	Determine Availability Requirements, Implement, Monitor, Review and Report
What are the key components for measuring the availability of a service?	Uptime, downtime, MTBF (Mean Time Between Failures), and MTTR (Mean Time to Repair).	Operational costs and hardware investment.	Security policies and compliance.	Number of incidents and problems.	Employee skills and training.	A	Service Delivery (Entrega de Serviço)	Avaibility Management (Gerenciamento de Disponibilidade)	Implement, Monitor, Review and Report
What is the relationship between Availability Management and Business Impact Analysis (BIA)?	The BIA is used to calculate the costs of IT services.	The BIA is part of Capacity Management, not Availability.	The BIA defines the availability requirements based on the critical needs of the business.	The BIA determines disaster recovery strategies.	There is no relationship between BIA and Availability.	С	Service Delivery (Entrega de Serviço)	Avaibility Management (Gerenciamento de Disponibilidade)	Determine Availability Requirements
How does Availability Management contribute to the improvement of IT services?	By reducing the number of incidents without conducting analyses.	By automatically increasing the IT budget.	By monitoring only downtime.	By replacing Capacity Management.	By providing data to identify areas that need improvement in infrastructure and processes.	E	Service Delivery (Entrega de Serviço)	Avaibility Management (Gerenciamento de Disponibilidade)	Create an Availability Plan, Implement, Monitor, Review and Report

What are the types of availability that can be measured?	Planned and unplanned availability.	Technical and operational availability.	Physical and virtual availability.	Real-time and on- demand availability.	Minimum and maximum availability.	A	Service Delivery (Entrega de Serviço)	Avaibility Management (Gerenciamento de Disponibilidade)	Determine Availability Requirements, Implement, Monitor, Review and Report
What does MTBF mean in the context of Availability Management?	Mean Time Before Fix.	Maximum Time Between Failures.	Mean Time Between Failures.	Minimum Time Before Failure.	Mean Time By Function.	С	Service Delivery (Entrega de Serviço)	Avaibility Management (Gerenciamento de Disponibilidade)	Implement, Monitor, Review and Report
What does MTTR mean in the context of Availability Management?	Mean Time To Recovery.	Mean Time To Repair.	Maximum Time To Repair.	Minimum Time To Repair.	Mean Time To Resolve.	В	Service Delivery (Entrega de Serviço)	Avaibility Management (Gerenciamento de Disponibilidade)	Implement, Monitor, Review and Report
What is the importance of continuous monitoring in Availability Management?	It is used only to generate monthly reports.	It is used to reduce hardware costs.	It helps increase the number of recorded incidents.	It allows for the quick identification of failures and planning of corrective actions to minimize impact.	It is a separate process, unrelated to availability.	D	Service Delivery (Entrega de Serviço)	Avaibility Management (Gerenciamento de Disponibilidade)	Implement, Monitor, Review and Report
How does redundancy contribute to the availability of services?	It completely eliminates the need for maintenance.	It allows that in the event of a component failure, another takes over its function, minimizing downtime.	It increases costs without clear benefits.	It is used only for data backup.	It reduces the performance of services.	В	Service Delivery (Entrega de Serviço)	Avaibility Management (Gerenciamento de Disponibilidade)	Create an Availability Plan

What is the role of Service Level Agreements (SLAs) in Availability Management?	To define the availability requirements and the goals to be achieved.	To control the operational costs of IT services.	To record incidents and problems.	To increase the planned downtime.	To eliminate the need for monitoring.	A	Service Delivery (Entrega de Serviço)	Avaibility Management (Gerenciamento de Disponibilidade)	Determine Availability Requirements, Implement, Monitor, Review and Report, Monitor and Communicate with External Suppliers
Which of the following activities is essential to ensure the availability of a service?	To increase the number of simultaneous users.	To reduce processing capacity.	To conduct recovery and failure tests to verify the effectiveness of contingency plans.	To eliminate system redundancy.	To replace hardware unnecessarily.	С	Service Delivery (Entrega de Serviço)	Avaibility Management (Gerenciamento de Disponibilidade)	Create an Availability Plan, Implement, Monitor, Review and Report
What is the impact of a low level of availability on the business?	Only increases operational costs.	It only impacts the IT department.	There is no significant impact.	It improves system performance.	It can affect user productivity and the organization's reputation.	E	Service Delivery (Entrega de Serviço)	Avaibility Management (Gerenciamento de Disponibilidade)	Determine Availability Requirements
What is the primary goal of "Confidentiality" in the CIA Triad?	Ensuring data is accurate and unaltered.	Preventing unauthorized access to data.	Making sure data is available at all times.	Encrypting data only when in transit.	Protecting against physical damage to servers.	В	Service Delivery (Entrega de Serviço)	Avaibility Management (Gerenciamento de Disponibilidade)	Confidentiality, Integrity and Availability
Which of the following best represents a violation of "Integrity" in the CIA Triad?	An unauthorized user gains access to a database.	A system failure prevents users from accessing a service.	A hacker modifies financial records without detection.	A network administrator encrypts confidential data.	A backup server restores lost data successfully.	С	Service Delivery (Entrega de Serviço)	Avaibility Management (Gerenciamento de Disponibilidade)	Confidentiality, Integrity and Availability

What is an example of a method used to ensure "Availability" in the CIA Triad?	Implementing strong encryption for sensitive files.	Using digital signatures to verify data authenticity.	Deploying redundant systems and backup power supplies.	Restricting access to confidential information.	Hashing passwords before storing them.	С	Service Delivery (Entrega de Serviço)	Avaibility Management (Gerenciamento de Disponibilidade)	Confidentiality, Integrity and Availability
Which of the following technologies is primarily used to maintain "Confidentiality" in the CIA Triad?	Firewalls	Hash functions	Load balancers	Encryption	RAID storage	D	Service Delivery (Entrega de Serviço)	Avaibility Management (Gerenciamento de Disponibilidade)	Confidentiality, Integrity and Availability
Which of the following is the biggest threat to "Availability" in the CIA Triad?	A strong encryption algorithm making data unreadable.	A hacker modifying data in a financial database.	A DDoS (Distributed Denial of Service) attack preventing users from accessing a website.	A phishing email tricking employees into revealing credentials.	A weak password policy allowing unauthorized access.	С	Service Delivery (Entrega de Serviço)	Avaibility Management (Gerenciamento de Disponibilidade)	Confidentiality, Integrity and Availability
A company implements a hashing algorithm to verify that files have not been tampered with. This measure supports which aspect of the CIA Triad?	Confidentiality	Availability	Non-repudiation	Authentication	Integrity	Е	Service Delivery (Entrega de Serviço)	Avaibility Management (Gerenciamento de Disponibilidade)	Confidentiality, Integrity and Availability

What is the importance of regularly reviewing SLAs in the context of Availability?	To ensure that SLAs are aligned with business needs and the capabilities of the infrastructure.	To reduce hardware costs.	To increase the complexity of services.	To record incidents and problems.	To improve only the security of services.	A	Service Delivery (Entrega de Serviço)	Avaibility Management (Gerenciamento de Disponibilidade)	Implement, Monitor, Review and Report, Monitor and Communicate with External Suppliers
What is the main objective of IT Service Continuity Management (ITSCM)?	To manage IT incidents and problems.	To reduce the operational costs of IT services.	To monitor server performance.	To ensure that IT services can be restored quickly after a disaster.	To conduct security audits on IT services.	D	Service Delivery (Entrega de Serviço)	IT Service Continuity Management - ITSCM (Gerenciamento da Continuidade dos Serviços de TI)	Global
What is the IT Service Continuity Management (ITSCM) Plan?	A plan that defines the actions necessary to ensure that IT services are delivered cost- effectively.	A plan of action to prevent failures in IT systems.	A plan that describes the steps to ensure the continuity of IT services during and after a disruption.	A disaster recovery plan, exclusively for hardware.	A set of measures to reduce the impact of incidents in IT.	С	Service Delivery (Entrega de Serviço)	IT Service Continuity Management - ITSCM (Gerenciamento da Continuidade dos Serviços de TI)	Create, Test, Improve and Maintain the IT Services Continuity Plan
What should be considered when conducting a Business Impact Analysis (BIA) in the context of ITSCM?	The cost-benefit analysis of continuity solutions.	The impact of failure on business processes and the importance of services to the organization.	The number of incidents recorded in recent months.	The downtime of servers.	The amount of data stored in systems.	В	Service Delivery (Entrega de Serviço)	IT Service Continuity Management - ITSCM (Gerenciamento da Continuidade dos Serviços de TI)	Gather IT Service Continuity Requirements from BCM, Risk Assessment, Risk Analysis and Risk Management
Which of the following is an essential	Definition of roles and responsibilities, including	Detailed listing of all past incidents.	Definition of processes to detect	Calculations of hardware	Detailing of data backup solutions.	A	Service Delivery (Entrega	IT Service Continuity Management -	Create, Test, Improve and Maintain the IT

component of an IT Service Continuity Plan?	communication plans.		failures in systems.	maintenance costs.			de Serviço)	ITSCM (Gerenciamento da Continuidade dos Serviços de TI)	Services Continuity Plan
What does RTO (Recovery Time Objective) mean in the context of ITSCM?	The time required to restore all system data.	The average time it takes to identify a failure.	The time that servers must be kept online.	The time required to complete a business impact analysis.	The maximum time that a service can be down without causing significant impact on the business.	Е	Service Delivery (Entrega de Serviço)	IT Service Continuity Management - ITSCM (Gerenciamento da Continuidade dos Serviços de TI)	Create, Test, Improve and Maintain the IT Services Continuity Plan
What is RPO (Recovery Point Objective) in the context of ITSCM?	The point in time to which services need to be restored.	The maximum allowable downtime before recovery begins.	The amount of data that can be lost during a failure without impacting the business.	The time required to resolve an IT incident.	The objective of achieving high availability across all services.	С	Service Delivery (Entrega de Serviço)	IT Service Continuity Management - ITSCM (Gerenciamento da Continuidade dos Serviços de TI)	Create, Test, Improve and Maintain the IT Services Continuity Plan
What is the role of Business Impact Analysis (BIA) within ITSCM?	To determine the resources needed to support IT services.	To identify the IT services that are critical to business continuity and set priorities.	To establish SLA values for services.	To define capacity limits for IT services.	To study hardware performance to optimize services.	В	Service Delivery (Entrega de Serviço)	IT Service Continuity Management - ITSCM (Gerenciamento da Continuidade dos Serviços de TI)	Gather IT Service Continuity Requirements from BCM
What is a Disaster Recovery Plan	A plan to increase network security and protect data.	A plan that describes the data backup processes.	A training plan for IT staff.	A set of procedures to restore essential	A document that lists all IT suppliers.	D	Service Delivery (Entrega	IT Service Continuity Management - ITSCM	Create, Test, Improve and Maintain the IT

(DRP) in relation to ITSCM?				services after a disaster.			de Serviço)	(Gerenciamento da Continuidade dos Serviços de TI)	Services Continuity Plan
How does IT Service Continuity Management (ITSCM) handle communication during a crisis?	ITSCM does not concern itself with communication during crises.	ITSCM ignores communication during crises.	Communication is done only by phone.	Communication is done only by email, without the need for other channels.	ITSCM defines a communication plan to ensure that all parties involved are informed in an appropriate and timely manner.	Е	Service Delivery (Entrega de Serviço)	IT Service Continuity Management - ITSCM (Gerenciamento da Continuidade dos Serviços de TI)	Create, Test, Improve and Maintain the IT Services Continuity Plan
What are the main steps of an ITSCM process?	Implementation of solutions, testing, and security auditing.	Definition of objectives, training, and risk analysis.	Identification of risks, financial planning, and continuous improvement.	Planning, impact analysis, plan development, and testing.	Planning, testing, execution, and incident review.	D	Service Delivery (Entrega de Serviço)	IT Service Continuity Management - ITSCM (Gerenciamento da Continuidade dos Serviços de TI)	Global
How are tests conducted in ITSCM?	Tests are performed only once during the implementation of the continuity plan.	Tests are conducted periodically to ensure that the plan works when needed.	Testing is not necessary in ITSCM.	Tests are conducted only when a severe incident occurs.	Tests are conducted only based on hypothetical scenarios.	В	Service Delivery (Entrega de Serviço)	IT Service Continuity Management - ITSCM (Gerenciamento da Continuidade dos Serviços de TI)	Create, Test, Improve and Maintain the IT Services Continuity Plan
What is necessary to ensure that ITSCM is effective?	Monitoring of only one aspect of IT services.	Implementation of a single backup solution.	Continuity planning aligned with business	Avoiding changes to critical infrastructures.	Elimination of security risks.	С	Service Delivery (Entrega	IT Service Continuity Management - ITSCM (Gerenciamento	Global

			objectives and regular testing.				de Serviço)	da Continuidade dos Serviços de TI)	
What is the main objective of Financial Management for IT Services within ITIL?	To maximize the company's profits through IT.	To ensure that IT services are delivered efficiently and cost-effectively.	To reduce costs by eliminating all IT investments.	To implement new IT services without considering the budget.	To control only the costs of hardware and software.	В	Service Delivery (Entrega de Serviço)	IT Financial Management (Gerenciamento Financeiro para Serviços de TI)	Global
What are the main activities of Financial Management for IT Services?	Strategic planning, software development, and user support.	Creation of financial reports for the marketing team.	Definition of SLAs, incident management, and technical support.	Implementation of infrastructure, network monitoring, and performance analysis.	Management of costs, budgeting, and accounting for IT services.	Е	Service Delivery (Entrega de Serviço)	IT Financial Management (Gerenciamento Financeiro para Serviços de TI)	Global
How does Financial Management for IT Services support corporate governance?	By providing transparency in IT costs and investments for strategic decision- making.	By allowing IT costs to be hidden from management.	By ensuring that all IT decisions are based solely on cost reduction.	By focusing only on the acquisition cost of hardware and software.	By creating rigid processes that hinder financial changes in IT.	A	Service Delivery (Entrega de Serviço)	IT Financial Management (Gerenciamento Financeiro para Serviços de TI)	Accounting, Budgeting
What is the "Chargeback" model in Financial Management for IT Services?	A method for charging external customers for IT services provided.	A mechanism for reimbursing IT costs to suppliers.	A system in which IT costs are allocated and charged to the internal departments that consume the services.	A fixed payment model for all IT services, regardless of usage.	A way to reduce taxes for the IT department.	С	Service Delivery (Entrega de Serviço)	IT Financial Management (Gerenciamento Financeiro para Serviços de TI)	Charging

What is the main advantage of the Chargeback model?	It reduces transparency in IT costs.	It automatically increases the IT budget.	It encourages departments to use IT services more consciously and efficiently.	It eliminates the need for IT budgets.	It replaces the need to justify IT expenditures.	С	Service Delivery (Entrega de Serviço)	IT Financial Management (Gerenciamento Financeiro para Serviços de TI)	Charging
What is TCO (Total Cost of Ownership) in Financial Management for IT Services?	The total acquisition cost of hardware.	The total cost of ownership of an IT asset, including acquisition, maintenance, and operation.	The available budget for new IT investments.	The amount charged by suppliers for technical support.	The total cost of developing software.	В	Service Delivery (Entrega de Serviço)	IT Financial Management (Gerenciamento Financeiro para Serviços de TI)	Accounting, Budgeting
What does the concept of "Valuation" represent in Financial Management for IT Services?	The assessment of the value of IT assets and investments to determine their financial impact.	The process of setting prices for IT services offered to the public.	A consumption- based billing model for services.	The management of the IT budget for the upcoming year.	A method for calculating indirect costs of IT.	A	Service Delivery (Entrega de Serviço)	IT Financial Management (Gerenciamento Financeiro para Serviços de TI)	Accounting
What differentiates the Chargeback model from the Showback model?	In Showback, costs are paid by suppliers.	In Chargeback, IT services are always free.	In Showback, costs are hidden from internal users.	There is no difference between the two models.	In Chargeback, costs are directly charged to departments, whereas in Showback, costs are only displayed without actual billing.	Е	Service Delivery (Entrega de Serviço)	IT Financial Management (Gerenciamento Financeiro para Serviços de TI)	Charging
What is CapEx in the context of Financial Management for IT Services?	Ongoing operational expenses related to IT.	Capital expenditures invested in long- term IT assets and infrastructure.	A tax applied to IT assets.	Daily spending on technical support.	A method for calculating hardware depreciation.	В	Service Delivery (Entrega de Serviço)	IT Financial Management (Gerenciamento Financeiro para Serviços de TI)	Budgeting, Accounting

What are OpEx in Financial Management for IT Services?	Ongoing operational expenses, such as maintenance, support, and software licensing.	Investments in long-term IT infrastructure.	Costs solely related to hardware.	Costs exclusively related to information security.	Fixed costs that cannot be altered.	A	Service Delivery (Entrega de Serviço)	IT Financial Management (Gerenciamento Financeiro para Serviços de TI)	Budgeting, Accounting
What is a Business Case in Financial Management for IT Services?	A contract between IT and suppliers.	A financial audit of IT.	A document that outlines past IT expenses.	A detailed report that justifies an IT investment based on benefits, costs, and risks.	A marketing plan to sell IT services.	D	Service Delivery (Entrega de Serviço)	IT Financial Management (Gerenciamento Financeiro para Serviços de TI)	Budgeting, Accounting
What is the main metric used to measure the financial efficiency of IT?	Number of users served.	Total cost per IT service delivered.	Technical support response time.	Number of incidents resolved.	Number of servers installed.	В	Service Delivery (Entrega de Serviço)	IT Financial Management (Gerenciamento Financeiro para Serviços de TI)	Accounting, Budgeting
What is a benefit of efficient financial management of IT?	Greater transparency in costs and resource allocation.	Reduction in the need for financial reporting.	Elimination of the IT budget.	Reduction in the need for strategic planning.	Increased bureaucracy in decision-making.	A	Service Delivery (Entrega de Serviço)	IT Financial Management (Gerenciamento Financeiro para Serviços de TI)	Global
How can IT demonstrate value to the business?	By showing how IT investments contribute to the organizational strategy.	By keeping costs hidden from management.	By aggressively cutting costs.	By limiting user access to services.	By reducing the IT services offered.	A	Service Delivery (Entrega de Serviço)	IT Financial Management (Gerenciamento Financeiro para Serviços de TI)	Global
What is Benchmarking in Financial Management for IT Services?	A method for calculating IT ROI.	A system for forecasting future IT spending.	Comparison of the costs and efficiency of IT services with other organizations.	A short-term financial report.	An index for evaluating IT infrastructure.	С	Service Delivery (Entrega de Serviço)	IT Financial Management (Gerenciamento Financeiro para Serviços de TI)	Accounting, Budgeting

What are the activities of IT Security Management?	Monitoring system performance and resolving hardware issues before they impact availability.	Planning, scheduling, and coordinating the implementation of IT service changes.	Defining and enforcing security policies, managing risks, implementing controls, and ensuring the confidentiality, integrity, and availability of information assets.	Tracking service performance against agreed- upon Service Level Agreements (SLAs) for continuous improvement.	Documenting and archiving all configuration items in the CMDB for regulatory compliance.	С	Service Delivery (Entrega de Serviço)	IT Security Management (Gerenciamento de Segurança de TI)	Global
During which activity does IT Security Management provide content for the security section of the SLA?	During Service Operation, while handling live incidents.	During the design and negotiation of the Service Level Agreement (SLA) as part of the Service Design process.	During Change Management, when assessing the impact of modifications.	During the post- implementation review, after services are operational.	During Capacity Management, while planning for future requirements.	В	Service Delivery (Entrega de Serviço)	IT Security Management (Gerenciamento de Segurança de TI)	Plan, Report
What are the three information characteristics that Security Management serves to ensure?	Confidentiality, Integrity, Accountability	Integrity, Availability, Reliability	Availability, Confidentiality, Accuracy	Confidentiality, Integrity, Availability	Confidentiality, Availability, Compliance	D	Service Delivery (Entrega de Serviço)	IT Security Management (Gerenciamento de Segurança de TI)	Plan, Evaluate
What does "ensuring integrity" mean, detecting unauthorized changes or protecting against them?	It means both protecting against unauthorized changes and having mechanisms in place to detect any changes that occur.	It means solely detecting unauthorized changes after they occur.	It means solely protecting against unauthorized changes, without any detection mechanisms.	It means ensuring that all changes are recorded, regardless of authorization.	It means only implementing access controls without monitoring for potential unauthorized modifications.	A	Service Delivery (Entrega de Serviço)	IT Security Management (Gerenciamento de Segurança de TI)	Control, Evaluate

What is the primary objective of IT Security Management?	Increase the number of system users.	Protect the confidentiality, integrity, and availability of information.	Reduce operational costs.	Increase processing speed.	Improve user interface.	В	Service Delivery (Entrega de Serviço)	IT Security Management (Gerenciamento de Segurança de TI)	Plan, Control
Which of the following practices is a responsibility of IT Security Management?	Performing data backups.	Optimizing servers.	Creating marketing campaigns.	Software development.	Implementing access controls.	E	Service Delivery (Entrega de Serviço)	IT Security Management (Gerenciamento de Segurança de TI)	Implement, Maintain, Control
What is an information security policy?	A marketing plan for IT.	A security management software.	A document describing the rules for using technology.	A set of legal procedures.	A hardware installation guide.	С	Service Delivery (Entrega de Serviço)	IT Security Management (Gerenciamento de Segurança de TI)	Plan, Report
What is the role of risk assessment in IT Security Management?	To identify sales opportunities.	To determine training needs.	To increase server capacity.	To identify and analyze potential risks to information.	To reduce the number of employees.	D	Service Delivery (Entrega de Serviço)	IT Security Management (Gerenciamento de Segurança de TI)	Evaluate, Plan
Which is an example of a technical security control?	Security policies.	Personnel training.	Security audits.	Firewalls.	Discussion groups.	D	Service Delivery (Entrega de Serviço)	IT Security Management (Gerenciamento de Segurança de TI)	Implement, Control
What should be done after identifying a security incident?	Document and investigate the incident.	Ignore the incident.	Notify the marketing team.	Reinstall the operating system.	Increase storage capacity.	A	Service Delivery (Entrega de Serviço)	IT Security Management (Gerenciamento de Segurança de TI)	Maintain, Control, Report

What is the purpose of a business continuity plan?	Maximize company profit.	Ensure the continuity of operations in case of incidents.	Increase customer satisfaction.	Reduce energy consumption.	Improve internal communication.	В	Service Delivery (Entrega de Serviço)	IT Security Management (Gerenciamento de Segurança de TI)	Plan, Maintain
What is the function of information security audits?	Generate revenue.	Evaluate the efficiency of technical support.	Verify compliance with security policies and procedures.	Improve product design.	Increase production.	С	Service Delivery (Entrega de Serviço)	IT Security Management (Gerenciamento de Segurança de TI)	Evauate, Report
In the context of IT Security Management, which of the following best describes the concept of 'defense in depth'?	Implementing multiple layers of security controls to protect information and systems, ensuring that if one layer fails, others will still provide protection.	Focusing on a single security control that is deemed to be the most effective for all potential threats.	Regularly updating the hardware infrastructure to keep up with the latest technology trends.	Limiting access to information only to the IT department to minimize exposure to threats.	Conducting annual security training for all employees to ensure compliance with security policies.	A	Service Delivery (Entrega de Serviço)	IT Security Management (Gerenciamento de Segurança de TI)	Plan, Implement, Control
When developing an incident response plan, which of the following components is crucial for ensuring effective communication during a security incident?	A comprehensive list of all physical assets within the organization.	Clearly defined roles and responsibilities for the incident response team, including a communication strategy that specifies how information will be shared both internally and externally.	A detailed description of all software applications used by the organization.	A budget allocation for software licenses to enhance security measures.	A timeline for conducting regular system updates.	В	Service Delivery (Entrega de Serviço)	IT Security Management (Gerenciamento de Segurança de TI)	Plan, Report, Maintain

APÊNDICE A – Formulário de Pesquisa de Satisfação

Neste apêndice apresenta-se o questionário desenvolvido a fim de coletar dados sobre a experiência dos usuários durante a implementação da ferramenta ITILGen. Com o formulário, foram extraídos dados sobre as experiências anteriores com estudos, percepções de dificuldades, avaliação do sistema e sugestões de melhorias.

() 1

30	eção 1 – Experiencia com Estudos
1.	Como você costuma se preparar para os simulados e provas da disciplina de Gestão e Governança de Tecnologia da Informação?
Se	elecione no máximo 3 opções.
[] Leitura de livros ou resumos
[] Aulas práticas
[] Realização de simulados
[] Estudo em grupo
[] Outra:
2.	Com que frequência você utiliza simulados como método de estudo?
()	Nunca
()	Raramente
()	Às vezes
()	Frequentemente
()	Sempre
3.	Você sente que os simulados atuais ajudam a identificar suas dificuldades com precisão?
()	Sim
()	Não
Se	ção 2 – Percepção de Dificuldades
4.	Em uma escala de 1 a 5, como você avalia sua capacidade de identificar quais áreas da ITIL V2 demandam mais atenção durante seus estudos?
C_{ϵ}	onsidere que 1 significa 'muito difícil' e 5 significa 'muito fácil'.

() 2
() 3
() 4
() 5
5. Você sente que revisa conteúdos de maneira equilibrada ou acha que pode estar cometend erros ao gerenciar os conteúdos de revisão?
() Sim
() Não
6. Quais os principais obstáculos que você enfrenta ao se preparar para a certificação ITIL v2
[] Falta de tempo
[] Dificuldade em organizar os estudos
[] Falta de clareza sobre o que revisar
[] Outra:
Seção 3 – Avaliação da Ferramenta
7. Você já havia utilizado alguma ferramenta de simulação com feedback personalizado?
() Sim
() Não
8. Você achou que a ferramenta de simulado ITILGen ajudou na preparação para a avaliação
() Sim
() Talvez
() Não
9. O quanto você achou que a ferramenta ITILGen contribuiu para melhorar sua preparação?
Considere que 1 significa 'nenhuma contribuição' e 5 'contribuição muito alta'.
() 1
() 2
() 3
() 4
() 5
10. Qual atributo da ferramenta mais te agradou?

[] Sugestões de conteúdos específicos que devo revisar com mais atenção.
[] Indicação dos meus pontos fracos em cada área do conteúdo.
[] Orientações de estudo baseadas nas minhas dificuldades identificadas.
[] Resumo geral do meu desempenho, com notas por categoria de conteúdo.
[] Outra:
11. Você recomendaria a ferramenta ITILGen para um amigo?
() Sim
() Não
Seção 4 – Sugestões de Melhoria
12. Há mais alguma funcionalidade ou característica que você gostaria de ter visto na ferramenta ITILGen?

APÊNDICE B – Interface da Ferramenta

Neste apêndice são apresentadas as telas da plataforma *web* com o intuito de demonstrar o resultado do desenvolvimento da ferramenta e suas funcionalidades.

Na tela inicial da ferramenta, é apresentada ao usuário a opção de efetuar o login caso já possua cadastro na plataforma, ou então, caso seja sua primeira interação com o protótipo, realizar o cadastro clicando no botão de cadastro.

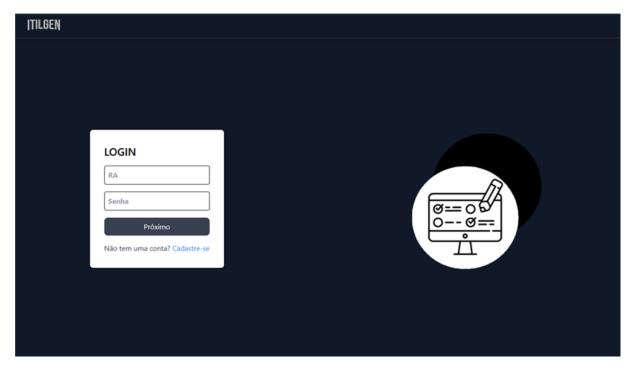


Figura 11: Tela do login

Fonte: Autoria própria

Na tela de cadastro, são solicitados ao usuário alguns dados pessoais, além do e-mail e senha que serão utilizados para efetuar o login, o mesmo deve informar o RA para se cadastrar na plataforma.

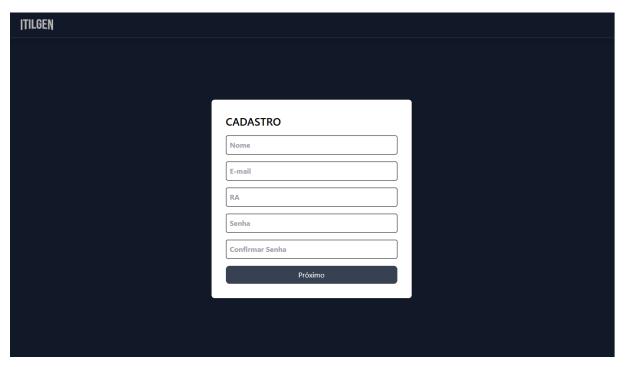
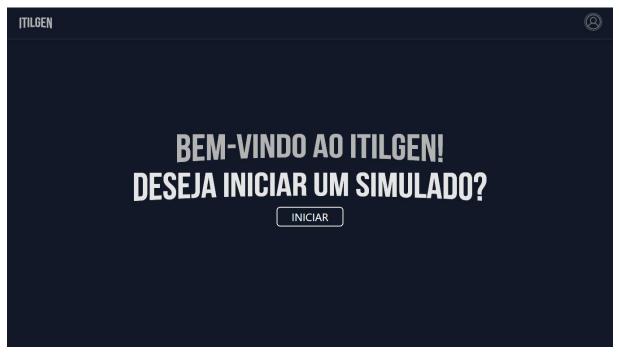



Figura 12: Tela de cadastro

Na tela de menu inicial da plataforma, o usuário possui a opção de iniciar um novo simulado clicando no botão iniciar e, também tem acesso a um menu suspenso que contém todas as funcionalidades disponíveis para sua interação com a ferramenta, bastando apenas um clique no botão da opção desejada para acessá-la.

Figura 13: Tela de inicial

Caso o usuário opte por clicar no botão iniciar, ele será encaminhado para a realização do simulado, onde individualmente cada questão será apresentada com suas respectivas alternativas, contendo ainda dois botões um para avançar para a próxima questão e outro para retomar a página anterior.

1. What is the difference between a centralized Service Desk and a local Service Desk?

A centralized Service Desk serves multiple locations from a single point; a local Service Desk is physically located close to the users it serves.

A centralized Service Desk operates 24 hours a day; a local Service Desk operates only during business hours.

A centralized Service Desk deals only with critical incidents; a local Service Desk handles all types of incidents.

There is no difference; the terms are synonymous.

A centralized Service Desk is outsourced; a local Service Desk is internal.

Figura 14: Tela do simulado

Quando apresentada em tela a última questão, será adicionado um novo botão a tela com a opção de finalizar o simulado.

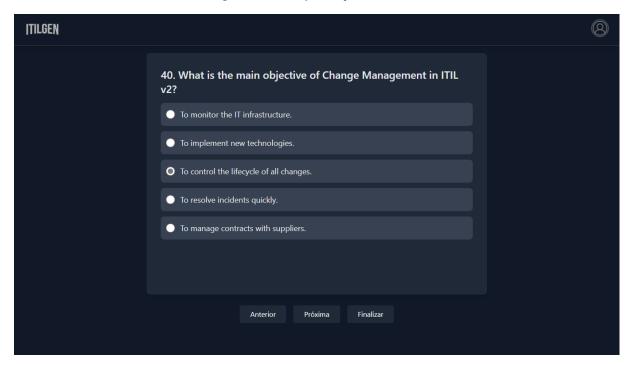


Figura 15: Tela de finalização do simulado

Se finalizado o simulado, é carregada a tela com o *feedback* e percentuais atingidos pelo usuário. O usuário, finalizando a leitura desta tela, pode clicar sobre o ícone ITILGen e ser encaminhado novamente a tela inicial da aplicação.

ITILGEN Você acertou 6 de 40 questões!

Figura 16: Tela de feedback

Como mencionado anteriormente, caso o usuário esteja na tela iniciar e clique sobre o ícone de perfil, o menu suspenso aparecerá contendo as opções de acesso ao perfil do usuário, histórico e *log-out*.

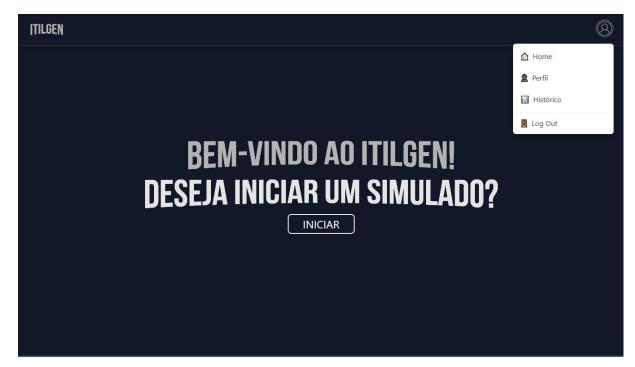


Figura 17: Tela com o menu suspenso

Fonte: Autoria própria

Na tela de histórico, o usuário possui a opção de acessar cada simulado clicando na linha de referência e, também tem acesso a um gráfico contendo a evolução de seu desempenho.

Figura 18: Tela de histórico

APÊNDICE C - Narrativas de Caso de Uso

Neste apêndice são apresentados os detalhamentos de cada Caso de Uso da ferramenta desenvolvida, contendo toda a jornada do usuário e cada interação com o sistema.

Quadro 5: USC001

Caso de Uso	USC001 - Abrir o link da aplicação						
Objetivo	Acessar a aplicação ITILGen pelo navegador.						
Ator	Usuário						
Cenário de sucesso	 O usuário abre o navegador e insere o link da aplicação. A página da aplicação ITILGen é carregada. 						
Cenário de exceção	Link inválido ou fora do ar: o navegador exibe erro de página não encontrada.						

Fonte: Autoria própria

Quadro 6: USC002

Caso de Uso	USC002 - Autenticar com RA e senha
Objetivo	Garantir acesso ao sistema por meio de autenticação.
Ator	Usuário
Cenário de sucesso	 O usuário informa o RA e a senha. O sistema verifica as credenciais. O acesso é concedido.
Cenário de exceção	RA ou senha incorretos: exibe mensagem de erro e solicita nova tentativa.

Fonte: Autoria própria

Quadro 7: USC003

Caso de Uso	USC003 - Iniciar o simulado
Objetivo	Começar o simulado após login bem-sucedido.
Ator	Usuário
Cenário de sucesso	 O usuário clica em "Iniciar Simulado". O sistema carrega a primeira questão.
Cenário de exceção	Falha no carregamento da primeira questão: exibe mensagem de erro e tenta novamente.

Quadro 8: USC004

Caso de Uso	USC004 - Selecionar as respostas (A, B, C, D ou E)
Objetivo	Permitir que o usuário responda às questões do simulado.
Ator	Usuário
Cenário de sucesso	 O usuário analisa a questão e seleciona uma das alternativas. O sistema registra a resposta.
Cenário de exceção	Nenhuma opção selecionada: impede o avanço para a próxima etapa.

Quadro 9: USC005

Caso de Uso	USC005 - Concluir a questão
Objetivo	Finalizar a resposta da questão atual e seguir para a próxima.
Ator	Usuário
Cenário de sucesso	 O usuário confirma a resposta. O sistema coleta os dados e exibe a próxima questão.
Cenário de exceção	Tentativa de prosseguir sem selecionar resposta: exibe alerta e bloqueia o avanço.

Fonte: Autoria própria

Quadro 10: USC006

Caso de Uso	USC006 - Coletar dados
Objetivo	Registrar o comportamento e as escolhas do usuário durante a resposta.
Ator	Sistema
Cenário de sucesso	 O sistema registra tempo, alternativa escolhida e outras métricas da questão.
Cenário de exceção	Falha na coleta: o sistema registra um log de erro e tenta salvar os dados novamente.

Quadro 11: USC007

Caso de Uso	USC007 - Verificar as respostas
Objetivo	Comparar a resposta do usuário com o gabarito.
Ator	Sistema
Cenário de sucesso	 O sistema compara a resposta do usuário com a correta. Classifica a resposta como correta ou incorreta.
Cenário de exceção	Resposta inválida ou ausente: marca como incorreta e registra no log.

Quadro 12: USC008

Caso de Uso	USC008 - Armazenar resultado
Objetivo	Salvar o desempenho do usuário no banco de dados.
Ator	Sistema
Cenário de sucesso	1. O sistema salva os acertos, erros e tempo gasto.
Cenário de exceção	Falha de banco de dados: o sistema tenta novamente ou salva temporariamente no cache/localStorage.

Fonte: Autoria própria

Quadro 13: USC009

Caso de Uso	USC009 - Concluir o simulado
Objetivo	Encerrar o simulado após todas as questões.
Ator	Usuário
Cenário de sucesso	 O usuário clica em "Finalizar Simulado". O sistema processa os dados finais e confirma o encerramento.
Cenário de exceção	Tentativa de concluir com questões em branco: sistema alerta e bloqueia o encerramento.

Fonte: Autoria própria

Quadro 14: USC010

Caso de Uso	USC010 - Gerar feedbacks
Objetivo	Fornecer ao usuário sugestões e análise personalizada baseada no seu desempenho.
Ator	Sistema
Cenário de sucesso	 O sistema analisa os dados coletados. Gera feedbacks personalizados com base nos erros e acertos. Exibe os feedbacks ao usuário.
Cenário de exceção	Falha na geração dos feedbacks: sistema exibe mensagem genérica e sugere revisar manualmente as respostas.