Centro Estadual de Educação Tecnológica Paula Souza ETEC Júlio de Mesquita Curso Técnico em Química

ANÁLISE QUANTITATIVA DE SOLUÇÃO HIDROALCOÓLICA PELA ESCALA BRIX (ALCOOL 70%).

Aluno 1 (Aécio José da Silva)¹
Aluno 2 (Bruno Henrique Cunha)²
Aluno 3 (Gabriel Santos Costa)³
Aluno 4 (Renan de Almeida Lírio)⁴
Magali Canhamero⁵
Maria do Socorro Souza da Silva⁶

Resumo: Após o surto de Covid-19 houve uma enorme produção de álcool 70 em larga escala com o propósito de mitigar a transmissão do vírus, precisou saber com isso, se a produção do álcool atendia as exigências das diretrizes legais da Anvisa, por isso surgiu então o interesse de se realizar esta pesquisa. O mais importante diante das formulações etanólicas foi a quantificação do teor de etanol que segundo a ANVISA, para os serviços de saúde, na forma líquida, devem respeitar o teor mínimo de 68,25%.

Palavras-chave: Álcool 70%. Grau Brix. Teor. Refratometria.

1- INTRODUÇÃO

O Brasil atualmente se destaca como um dos maiores produtores de cana-deaçúcar do mundo, essa cultura tem grande importância para o cenário econômico brasileiro, atualmente o país possui destaque a nível mundial como o maior produtor, e tendo crescido exponencialmente em números de toneladas colhida, por área plantada. A produção mundial de etanol é de aproximadamente 40 bilhões de litros, sendo que 70% dessa produção correspondem ao Brasil e EUA (Bastos, 2007).

¹Aluno Curso Técnico em Química - aecio.silva3@etec.sp.gov.br

²Aluno Curso Técnico em Química - bruno.cunha37@etec.sp.gov.br

³Aluno Curso Técnico em Química - gabriel.costa406@etec.sp.gov.br

⁴Aluno Curso Técnico em Química - renan.lirio@etec.sp.gov.br;

⁵professora do curso técnico em Química - magali.canhamero01@etec.sp.gov.br

⁶professora do curso técnico em Química -maria.silva2473@etec.sp.gov.br

Em 26 de fevereiro de 2020, com a confirmação do primeiro caso do coronavírus (SARSCoV-2) na cidade de São Paulo, houve uma medida importante para tentar mitigar o crescimento da curva de transmissão. Foi destacada então a utilização de álcool 70% líquidos ou em gel, para assepsia tanto das mãos quanto de objetos, preocupação expressada em diferentes publicações. A Organização Mundial de Saúde (OMS) em 11 de março de 2020 classificou a COVID-19 como uma pandemia, o que acarretou um aumento da procura pelo álcool e resultou no desabastecimento desse produto no mercado (Gomes et al. 2020).

Com o aumento dessa demanda houve um aumento significativo na produção de álcool asséptico. Foi então que diversas marcas começaram a fabricar e vender esse produto, a fim de atender a essa busca. Diante disso, aumentou a busca pela desinfectação das mãos com álcool em gel e de superfícies com álcool líquido 70 °INPM. As vantagens desse agente desinfetante são: ter ação rápida, não deixar resíduos ou manchas, não ser corrosivo, ter baixo custo e ser adequado para desinfetar pequenos equipamentos ou dispositivos que podem ser nele imersos, além das superfícies. Porem, a concentração alcoólica deve estar entre 68 e 72 °INPM, sendo essa a faixa em que ele possui ação desinfetante (ANVISA, 2020a)

1.1 NATUREZA DO ÁLCOOL (ETANOL)

O etanol cuja fórmula molecular C₂H₆O, é um líquido incolor com peso molecular 46,07, é um composto orgânico contendo oxigênio, dentro de suas propriedades é um solvente, germicida, anticongelante, combustível, depressivo, componente de bebidas, além de grande versatilidade como intermediário químico para outros produtos. Sob condições ordinárias, é um líquido incolor e claro, volátil, inflamável, possuindo um odor agradável e característico. Suas propriedades físicas e químicas dependem primeiramente do grupo hidroxila, -OH, o qual imputa polaridade à molécula, além de promover interações intermoleculares via ligações de hidrogênio (Pereira; Andrade. 1998).

1.2 DENSIDADE E INSTRUMENTOS

Densidade absoluta de uma substância qualquer de massa m e volume V é definida por ρ = m/V, ou seja, é a razão entre a massa de um corpo pelo volume que o mesmo ocupa. sendo útil para a identificação preliminar de produtos na indústria, no controle de qualidade da produção de um determinado produto, bem como para expressar a concentração de soluções (Brito, *et al.* 2011).

Picnômetros são frascos de gargalo capilar nos quais um volume de líquido é pesado. A medida da densidade de um líquido pelo método do picnômetro é de grande precisão, uma vez que o cálculo do volume é feito pela medida da massa. Nesse método é necessário tomar algumas precauções para evitar erros como, por exemplo, os causados por bolhas de ar formadas dentro do líquido.

Os densímetros são aparelhos que permitem a determinação da densidade dos líquidos onde são mergulhados, com a leitura direta numa escala, sem a necessidade de cálculo ou aferição em uma balança. Esses aparelhos apresentam pesos constantes e constituem-se, em geral, de um cilindro fechado contendo, na parte inferior, um lastro de chumbo ou mercúrio. Os densímetros servem para determinar a densidade ou, de modo indireto, as concentrações de soluções. O alcoômetro de Gay Lussac é um densímetro especialmente concebido para determinar a concentração do álcool etílico numa solução aquosa (César, et al. 2004).

1.3 CONDUTIVIDADE EM SOLUÇÃO

As substâncias moleculares como sabemos são compostas apenas por moléculas, que não possuem carga eletrônica, impossibilitando a existência de cargas livres, por conta disso, são incapazes de conduzir corrente elétrica, em qualquer estado que essas substâncias se encontrem agregadas. A condutimetria neste caso é feita em µS e por isso deve-se ajustar o condutivímetro ao qual o elétrodo está ligado ou conectado para soluções com menor quantidade de íon em solução, onde S significa a unidade de medida Siemens. A unidade Siemens éo inverso da

unidade de resistência ohm e é uma unidade do sistema de medidas SI. (Bastos, 2015).

1.4 REFRATOMETRIA

A Lei de Snell-Descartes nos dá o desvio angular sofrido por um raio de luz ao passar para um meio diferente do qual ele estava percorrendo. Cada meio apresenta um tipo "resistência" a passagem da radiação. Essa resistência também depende do comprimento de onda da radiação. Essa tal "resistência" é conhecida como índice de refração (n) uma grandeza adimensional definida pela expressão:

$$n = \frac{c}{v}$$

onde c = 3 x 10⁸ m/s é a velocidade da luz no vácuo e v é a velocidade da luz num certo meio, para medição do índice de refração, utilizam-se refratômetros (Pilling, 2011).

Vários fatores podem influenciar o índice de refração: temperatura, pressão, natureza físico-química da substância, comprimento de onda da luz incidente e concentração (no caso de soluções). Dessa forma, medidas de índice de refração podem ser utilizadas para identificar substâncias puras e para determinar a composição de misturas binárias. (BRITANNICA, 2020; ANSELMO, 2018)

1.4.1 ESCALA BRIX

A escala de brix, criada por Adolf F. Brix (1798 - 1870) foi derivada originalmente da escala de Balling, recalculando a temperatura de referência de 15,5 °C. O Brix tem por símbolo o °Bx que é uma escala numérica que mede a quantidade de sólidos solúveis em uma solução de sacarose, ou seja, carbono hidratado. A quantidade de sólido solúvel é o total de todos os sólidos dissolvidos em água, começando com açúcar, sal, proteínas, ácidos e etc. Os valores de leitura medidos é a soma de todos eles. Uma solução de 25 °Bx tem 25 gramas do açúcar sacarose 100 gramas de líquido (Pilling, 2011) da por

2 - MATERIAIS E MÉTODOS

2.1 Amostras e Reagentes

Os álcoois em gel (500mL) de diferentes marcas foram adquiridos em supermercados no município de santo André (SP). Em agosto de 2023. Estão nomeados de AG1 a AG2 ocultando marcas e fabricantes.

Os álcoois líquidos 70% (1L) de diferentes marcas foram adquiridos em supermercados município de santo André (SP). Em agosto de 2023. Foram nomeados de AL1 a AL2 ocultando marcas e fabricantes.

2.2 Picnometria

Para a realização deste ensaio, utilizou-se uma balança analítica (Marte modelo AW220), e picnômetros de 25mL. Os devidos cuidados preliminares para as boas práticas de laboratório foram tomados: a utilização de luvas para que os dedos não tocassem o picnômetro, eliminação de bolhas de ar que aderem à superfície do picnômetro, lavagem cuidadosa durante a troca de líquidos e aferição constante de temperatura.

A água é utilizada como líquido padrão de referência na determinação de densidade relativa de líquidos. Desta forma, pesou-se o picnômetro com água destilada.

Inicialmente, pesou-se o picnômetro vazio, previamente lavado e seco naturalmente. Pesou-se os picnômetros com solução hidroalcóolica nas amostras líquidas nomeadas de AL1 a AL2, já para os álcoois em gel foi utilizado um picnômetro de aço inox, e as análises foram feitas em outro laboratório fora da escola. Todas as medidas foram realizadas 5 vezes.

Tabela 01: Média de 5 análises.

DENSIDADE	AZ (L1)	AC (L2)	ACA-G1	ATP-G2
A 01	0,8519 g/ml	0,8713 g/ml	0,8565 g/ml	0,8830 g/ml
A 02	0,8500 g/ml	0,8718 g/ml	0,8555 g/ml	0,8799 g/ml
A 03	0,8511 g/ml	0,8710 g/ml	0,8561 g/ml	0,8823 g/ml
A 04	0,8499 g/ml	0,8728 g/ml	0,8559 g/ml	0,8795 g/ml
A 05	0,8507 g/ml	0,8708 g/ml	0,8567 g/ml	0,8827 g/ml
AX	0,8507 g/ml	0,8715 g/ml	0,8561 g/ml	0,8815 g/ml

Fonte: Próprios autores

2.3 Alcoolmetria

A determinação da graduação alcoólica foi realizada utilizando alcoômetro Gay Lussac, aparelho que mede a concentração alcoólica em uma mistura de álcool e água. (BRASIL, 2012). As amostras foram medidas em provetas de 100mL de vidro transparente. As medidas foram realizadas e triplicata.

2.4 Condutividade

A condutividade foi medida em um condutivímetro digital. A sonda foi colocada na amostra a ser medida, e, em seguida, o medidor aplicou uma tensão entre dois eletrodos dentro da sonda. O medidor converteu a leitura da queda de voltagem para micros Siemens (µs), indicando o total de sólidos dissolvidos, que são a quantidade de sólidos capazes de passar através de um filtro de fibra de vidro. O valor esperado para o álcool era um valor muito baixo e isso se confirmou com os resultados (Tabela 03).

2.5 Refractometria

Foram medidos os índices de refração dos padrões e das amostras em um refratômetro WYA-2S – Refratômetro ABBE Digital de Bancada. As amostras AG1 a AG2 e AL1 a AL2 foram espalhadas diretamente na superfície do prisma com o auxílio de um conta-gotas, verificando a homogeneidade das amostras para que não houvesse formação de bolhas e ajustando a ocular para limpar a imagem das linhas

cruzadas. Cada amostra teve 10 teste repetidos (Tabela 01), a partir do índice de refração dos padrões que foi obtido uma média de cada amostra (ANSELMO, 2018).

Dados obtidos

Tabela 02: Média de 10 análises.

BRIX	AZ (L1)	AC (L2)	ACA-G1	ATP-G2
A1	19,9	19,3	20,2	21,1
A2	20,1	19,4	20,1	21,2
A3	20,0	19,4	20,2	21,2
A4	20,1	19,3	20,2	21,2
A5	20,1	19,3	20,2	21,2
A6	20,0	19,3	20,2	21,2
A7	19,9	19,3	20,2	21,1
A8	20,7	19,3	20,0	21,1
A9	19,9	19,3	20,0	20,9
A10	19,8	19,3	20,0	21,0
AX	20,05	19,32	20,12	21,12
Media x 4	80,2	77,28	80,48	84,48

Fonte: Próprios autores

Os resultados que estão apresentados nessa tabela, foram multiplicados por quatro e tirado a media de cada amostra, para determinarmos o valor do grau brix presente. A quantidade encontrada foi adicionada na tabela geral, onde estão todos dados das análises feitas nesse trabalho.

3 - RESULTADOS

Tabela 03: Resultados das amostras no laboratório.

ÁLCOOL 70%	DENSIDADE	CONDUTIVIDADE	°Bx
AMOSTRA Z (L1)	0,8507 g/mL	4,05 µS	80,2
AMOSTRA C (L2)	0,8715 g/mL	8,05 µS	77,28
AMOSTRA CA-G1	0,8561 g/mL	57,8 μS	80,48
AMOSTRA TP-G2	0,8815 g/mL	89,7 µS	84,48

Fonte: Próprios autores

4 - CONCLUSÃO

Em relação aos dados obtidos, observou-se pela escala de Brix um percentual de álcool acima do valor indicados nos rótulos dos produtos. As amostras apresentaram densidades dentro da faixa esperada e condutividade baixa.

A eficiência da solução hidroalcoolica no combate aos microrganismos se encontra justamente na proporção de massa entre a água 30% e o álcool 70% (m/m), soluções com uma quantidade acima de 70%, por ser o álcool muito volátil, se torna inviável como esterilizantes, a mistura com água prolonga a atuação do álcool.

A pesquisa demonstrou a importância de monitorar rigorosamente a qualidade das soluções hidroalcoólicas produzidas em larga escala, especialmente em tempos de alta demanda, como durante a pandemia de Covid-19. Através de métodos precisos como a picnometria, alcoolmetria, condutividade e refratometria, é possível assegurar que os produtos atendam aos padrões de qualidade necessários para serem eficazes na desinfecção. Este estudo reforça a necessidade de um controle contínuo e rigoroso na produção de álcool 70%, garantindo segurança e eficácia para o uso da população.

REFERÊNCIAS

ANSELMO, E. O. **Refratometria**. Instituto de Química. UFG. Goiânia, 2018. Disponível em: < https://files.cercomp.ufg.br/weby/up/56/o/refratometria.pdf> Acesso em 10 de novembro de 2023.

ANVISA. NOTA TÉCNICA Nº 47/2020/SEI/COSAN/GHCOS/DIRE3/ANVISA. 2020a.

Disponível em: https://www.gov.br/anvisa/pt-br/arquivos-noticias-anvisa/586json-file-

1. Acesso em: 30 novembro 2023.

Andréa Gomes da Silva, Henrique Luís da Silva Santos, Alex Aguiar Figueiredo, Fabiany Cruz Gonzaga, Cristiane Patrícia de Oliveira. A UESB como apoio ao enfrentamento da pandemia Covid-19: o caso da produção de antisséptico - Campus Itapetinga-BA

Disponível

em:
https://periodicos2.uesb.br/index.php/ccsa/article/view/7116 acesso em: 25novembro

BRITANNICA, Snell1s law, The Editors of Encyclopaedia Britannica. Disponível em: < https://www.britannica.com/science/wave-physics> Acesso em 12 de nov de 2023

ERICK JUAN MELO BASTOS. **UMA REVISÃO SOBRE QUÍMICA ELETROANALÍTICA; ANÁLISE CONDUTIMÉTRICA, SEUS CONCEITOS E APLICAÇÕES.** UNIVERSIDADE FEDERAL FLUMINENSE INSTITUTO DE QUÍMICA

QUÍMICA INDUSTRIAL. 2015. Disponível em https://app.uff.br/riuff/bitstream/handle/1/4813/Monografia-Erick-Bastos_Para-Vers%c3%a3o-Final2.pdf?sequence=1&isAllowed=y. Acesso em 03 de dezembro de 2023

Janaína César Marco; Aurélio De Paoli; João Carlos de Andrade. **A Determinação da Densidade de Sólidos e Líquidos.** Universidade Estadual de Campinas, Instituto de Química. 2004. Disponível em https://d1wqtxts1xzle7.cloudfront.net/35692623/densidade-

libre.pdf?1416741211=&response-content-

disposition=inline%3B+filename%3DC_A_Determinacao_da_Densidade_de_Solido .pdf&Expires=1701369350&Signature=ZuNjUHezr1gVfo~bJ0ZmBIPIPw0uRgzJ5DNT ndh~DK-uILSbjqPxI-

GBvGccXPoiA7fFS6vqAv0Vbjp5xcvA7z0eLSy0t44mGQCpDsrBRiPvy~umepRQXW S WSjf38j8XhzCyGGrLo7zftF7tsMXRPk76lTpz4YwdyPpnlu-EtXd~98on~ci1bcmnWgZUQQU-

NZG8qXrXAdleQQcHV6n9GrBB3dcG9H39bz6h18Ulr0nCIMAlArhkjp9oW43muql9sR HKHM2-TN1nlrd-10No1a-RQU6f03sxW4DrCGCCMMLLeA-

aa8vxysjzfZuKrp42I9NEIHYCuJouO470XlBhg &Key-Pair-

Id=APKAJLOHF5GGSLRBV4ZA. Acesso em 23 de novembro de 2023.

Janielly Pereira de Lima; Mariana Gonçalves Pereira; Vivian Jamily Mariano da Silva; Ana Karla Costa de Oliveira. Importância do álcool em gel 70°INMP e propriedades comparativas ao álcool líquido 46,2°INPM. Editora científica digital.

José Gilberto Jardine Talita Delgrossi Barros. disponível em: https://www.embrapa.br/agencia-de-informação-

tecnológica/temáticas/agroenergiaálcool#:~:text=A%20produ%C3%A7%C3%A3o%2 0mundial%20de%20etanol,400%20mil%20litros%20por%20dia) acesso em: 25 de novembro de 2023

Prof. Marcos Aires de Brito Prof. Fábio Peres Gonçalves Prof. José Carlos Gesser. – Introdução ao Laboratório de Química. Departamento de Química - UFSC. 2011.

Disponivel em https://qmc.ufsc.br/geral/Exp.Quimica5119/EXPERIENCIA4_densidade.pdf. Acesso em 30 de novembro de 2023.

Maurício Uchikawa Graziano; Kazuko Uchikawa Graziano; Flávia Morais Gomes Pinto; Camila Quartim de Moraes Bruna; Rafael Queiroz de Souza; Cesar Angelo Lascala. Eficácia da desinfecção com álcool 70% (p/v) de superfícies contaminadas sem limpeza prévia. 2013. Disponivel em SciELO - Brasil - Effectiveness of disinfection with alcohol 70% (w/v) of contaminated surfaces not previously cleaned Effectiveness of disinfection with alcohol 70% (w/v) of contaminated surfaces not previously cleaned surfaces not previously cleaned. Acesso em 04 de dezembro de 2023.

MILENA FÉLIX DA SILVA. **AVALIAÇÃO DA CONFORMIDADE DE ÁLCOOL ETÍLICO ANTISSÉPTICO E HIGIENIZANTE DURANTE A FLEXIBILIZAÇÃO DE COMERCIALIZAÇÃO PELA ANVISA.** UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS CURSO DE BACHARELADO EM QUÍMICA. 2021. Disponível em MFS08022022-MQ059.pdf. Acesso em 17 de novembro de 2023. Prof. Dr. Sérgio Pilling. – Refratometria. Determinação do índice de refração de líquidos. Universidade do vale do Paraíba – SP. 2011. Disponível em FQE2_EXP11_Refratometria.pdf. Acesso em 17 de novembro de 2023.

Prof. Dr. Sergio Pilling. – **Refratometria. Determinação do índice de refração de líquidos**. Universidade do vale do Paraíba – SP. 2011. Disponível em FQE2_EXP11_Refratometria.pdf. Acesso em 17 de novembro de 2023.

Pedro Afonso de Paula Pereira e Jailson B. de Andrade. REATIVIDADE E QUANTIFICAÇÃO DE METANOL E ETANOL NA ATMOSFERA. Instituto de

Química - UFBA - Campus de Ondina - Salvador – Bahia. 1998. Disponível em https://www.scielo.br/j/qn/a/n4SWXCXCzbFBQwQgbBJRsmr/?format=pdf&lang=pt. Acesso em 27 de novembro de 2023.

Samanta Komarchewski Rodrigues; Laís Aline Grossel; Mário Fritsch; António Carlos Mattar Munhoz. **ANÁLISE FÍSICO-QUÍMICA E DA EFICÁCIA MICROBIOLÓGICA DE ÁLCOOL EM GEL COMERCIALIZADOS EM FARMÁCIAS DE MAFRA**. Santa catarina. 2022. Dispovivel em 8_Analise_Fisico_Quimica.pdf. Acesso em 04 de dezembro de 2023.

Valéria Delgado Bastos. **Etanol, alcoolquímica e biorrefinarias.** 2007. Disponível em BS 25 Etanol, Alcoolquímica e Biorrefinarias_P.pdf. Acesso em 04 de dezembro de 2023.

Vol. 01. 2022. Disponível em file:///C:/Users/Usu%C3%A1rio/Downloads/artigovivian.pdf. Acesso em 03 de dezembro de 2023.