CENTRO ESTADUAL DE EDUCAÇÃO TECNOLÓGICA PAULA SOUZA FACULDADE DE TECNOLOGIA DE CAMPINAS CURSO DE TECNOLOGIA EM PROCESSOS QUÍMICOS

RODRIGO GODOY

VALIDAÇÃO DE METODOLOGIA ANALÍTICA DE CROMATOGRAFIA LÍQUIDA DE ALTA EFICIÊNCIA PARA CONTROLE DE QUALIDADE DE RADIOFÁRMACO ¹⁸F PSMA-1007

CAMPINAS/SP 2023

CENTRO ESTADUAL DE EDUCAÇÃO TECNOLÓGICA PAULA SOUZA FACULDADE DE TECNOLOGIA DE CAMPINAS CURSO DE TECNOLOGIA EM PROCESSOS QUÍMICOS

RODRIGO GODOY

VALIDAÇÃO DE METODOLOGIA ANALÍTICA DE CROMATOGRAFIA LÍQUIDA DE ALTA EFICIÊNCIA PARA CONTROLE DE QUALIDADE DE RADIOFÁRMACO ¹⁸F-PSMA-1007

Trabalho de Graduação apresentado por Rodrigo Godoy, como pré-requisito para a conclusão do Curso Superior de Tecnologia em Processos Químicos, da Faculdade de Tecnologia de Campinas, elaborado sob a orientação da Prof.^a Dra. Fabiana Cristina Andrade Corbi

CAMPINAS/SP 2023

FICHA CATALOGRÁFICA CEETEPS - FATEC Campinas - Biblioteca

G589v

GODOY, Rodrigo Validação de metodologia analítica de cromatografia líquida de alta eficiência para controle de qualidade de radiofármaco 18F PSMA-1007. Rodrigo Godoy. Campinas, 2023. 52 p.; 30 cm.

Trabalho de Graduação do Curso de Processos Químicos Faculdade de Tecnologia de Campinas. Orientador: Profa. Dra. Fabiana Cristina Andrade Corbi.

1. Validação. 2. Radiofármaco. 3. Metodologia. I. Autor. II. Faculdade de Tecnologia de Campinas. III. Título.

CDD 544

Catalogação-na-fonte: Bibliotecária: Aparecida Stradiotto Mendes - CRB8/6553

TG PQ 23.1

Rodrigo Godoy

Validação de metodologia analítica de cromatografia líquida de alta eficiência para controle de qualidade de radiofármaco 18F PSMA-1007

Trabalho de Graduação apresentado como exigência parcial para obtenção do título de Tecnólogo em Processos Químicos, pelo CEETEPS / Faculdade de Tecnologia – Fatec Campinas.

Campinas, 23 de junho de 2023.

BANCA EXAMINADORA

dacorbi

Profa. Fabiana Cristina Andrade Corbi Fatec Campinas

Prof. Aurimar Moreira Reis Fatec Campinas

Profa. Luciene Maria Garbuio Castello Branco Fatec Campinas

RESUMO

A validação da metodologia analítica de cromatografia líquida de alta eficiência (HPLC) para o controle de qualidade do radiofármaco 18F-PSMA-1007 foi realizada utilizando um processo essencial, que envolve a determinação de parâmetros de desempenho, estudos de robustez e estabilidade, seletividade, linearidade, precisão, exatidão e limites de detecção e quantificação. A partir dos parâmetros utilizados, foi possível garantir a segurança e a eficácia dos radiofármacos que são utilizados em exames de imagem molecular de próstata, além da metodologia atender os requisitos obrigatórios da norma regulamentadora RDC 166. Os resultados demonstraram que o método empregado é eficaz para a determinação da impureza, mas não apresentou um grau de robustez confiável, o que não inviabiliza a utilização deste método, mas obriga o acompanhamento dos parâmetros definidos na robustez que não tiveram um desempenho satisfatório, como a variação da concentração do gradiente e a coluna de fabricantes diferentes. Para os demais parâmetros exigidos, o método demonstrou um alto grau de confiabilidade.

Palavras-chave: validação; radiofármaco; metodologia.

ABSTRACT

The validation of the analytical methodology of high performance liquid chromatography (HPLC) for the quality control of the radiopharmaceutical 18F-PSMA-1007 was carried out using an essential process, which involves the excellence of performance standards, studies of robustness and stability, selectivity, linearity, precision, accuracy and limits of detection and quantification. From the parameters used, it was possible to guarantee the safety and efficacy of the radiopharmaceuticals that are used in molecular imaging tests of the prostate, the methodology meeting the mandatory requirements of the regulatory standard RDC 166. The results proved that the applied method is also effective for the impurity projected, but did not present a reliable degree of robustness, which does not make the use of this method unfeasible, but requires the monitoring of the parameters defined in the robustness that did not have a projected performance, such as the variation in the concentration of the gradient and the column of different manufacturers. For the other required parameters, the method demonstrated a high degree of reliability.

Keywords: validation; radiopharmaceutical; methodology.

LISTA DE FIGURAS

14
15
16
23
27

LISTA DE GRÁFICOS

Gráfico 1 – Gráfico de regressão linear PSMA-Precursor.	. 38
Gráfico 2 – Gráfico de resíduos PSMA-Precursor.	. 39
Gráfico 3 – Gráfico de regressão linear PSMA-OH	. 40
Gráfico 4 – Gráfico de resíduos PSMA-OH	. 40

LISTA DE QUADROS

Quadro 1 - Análises do [18F]-PSMA-1007	. 15
Quadro 2 - Dados para cálculo LD e LQ para PSMA-Precursor	. 36
Quadro 3 - Dados para cálculo LD e LQ para PSMA-OH.	. 36
Quadro 4 - Parâmetro e critérios de aceitação seletividade.	. 36
Quadro 5 – Dados diluentes sem padrões.	. 37
Quadro 6 – Dados diluentes com padrão PSMA-Precursor	. 37
Quadro 7 – Dados diluentes com padrão PSMA-OH.	37
Quadro 8 – Parâmetro e critérios de aceitação seletividade	. 37
Quadro 9 – Dados linearidade PSMA-Precursor.	. 38
Quadro 10– Dados linearidade PSMA-OH	. 39
Quadro 11 – Parâmetro e critérios de aceitação linearidade	. 40
Quadro 12 – Dados repetibilidade PSMA-precursor.	. 41
Quadro 13 – Dados repetibilidade PSMA-OH	. 41
Quadro 14 – Parâmetros e critérios de aceitação de repetibilidade	. 41
Quadro 15 – Dados Precisão Intermediária PSMA-Precursor	. 42
Quadro 16 – Dados Precisão Intermediária PSMA-OH.	42
Quadro 17 – Parâmetro e critérios de aceitação precisão intermediária.	. 42
Quadro 18 – Dados exatidão PSMA-Precursor.	43
Quadro 19 – Dados Precisão Intermediária.	43
Quadro 20 – Parâmetros e critérios de aceitação e exatidão	43
Quadro 21 – Dados robustez PSMA-Precursor área	44
Quadro 22 – Dados robustez PSMA-OH área.	45
Quadro 23 – Dados robustez PSMA-Precursor tempo de retenção.	. 46
Quadro 24 – Dados robustez PSMA-OH tempo de retenção	. 47
Quadro 25 – Parâmetros e critérios de aceitação robustez	. 47

LISTA DE TABELAS

Tabela 1 - Reagentes utilizados	24
Tabela 2 - Condição cromatográfica.	26
Tabela 3 - Variação do Gradiente	27

LISTA DE ABREVIAÇÕES

PET	Tomografia por emissão do pósitron
СТ	Tomografia computadorizada
[¹⁸ F]-PSMA-1007	Radiofármaco antígeno de membrana específico da próstata
¹⁸ F-FDG	Radiofármaco Fludesoxiglicose
PSMA	Antígeno de membrana específico da próstata

LISTA DE SÍMBOLOS

121	lodo radioativo
¹³¹	lodo radioativo
M ^{ee}	Molibdênio radioativo
¹⁸ F	Flúor radioativo
β+	Pósitron de carga positiva
C18	Molécula com 18 carbonos
mL/mim	Mililitro por minuto
μL	Microlitro
nm	Nanômetro
°C	Graus Celso

Sumário 1 introdução	10
1.1 CONTEXTUALIZAÇÃO	10
1.2 JUSTIFICATIVA	11
1.3 OBJETIVO	11
2 REVISÃO BIBLIOGRÁFICA	12
2.1 RADIOFÁRMACOS	12
2.2 RADIOFÁRMACO PSMA	12
2.3 FABRICAÇÃO 18F PSMA-1007	13
2.4 CONTROLE DE QUALIDADE	14
2.4.1 Controle de qualidade de radiofármacos	14
2.4.2 Controle de qualidade PSMA	15
2.5 CROMATOGRAFIA LÍQUIDA DE ALTA EFICIÊNCIA	16
2.6 MÉTODOS DE SEPARAÇÃO	17
2.7 VALIDAÇÃO DA METODOLOGIA	18
2.8 NORMATIVA RDC 166	19
2.8.1 Seletividade/Especificidade	19
2.8.2 Linearidade	20
2.8.3 Precisão	20
2.8.4 Exatidão	21
2.8.5 Limite de Detecção e Quantificação	22
2.8.6 Robustez	22
3 MATERIAIS E MÉTODOS	24
3.1 EQUIPAMENTOS	24
3.2 REAGENTES	24
3.3 SOLUÇÕES	25
3.3.1 Solução Água/Etanol (60:40)	25
3.3.2 Solução A	25
3.3.3 Solução diluente PSMA	25
3.3.4 Solução fosfato de sódio 0,02M	25
3.3.5 Solução padrão PSMA – standard 0,1 mg/ml	25
3.3.6 Solução padrão PSMA – precursor 0,1 mg/ml	25
3.3.7 Solução padrão PSMA – OH 0,1 mg/ml	26
3.4 CONDIÇÕES CROMATOGRÁFICAS	26
3.5 PREPARO DE PADRÕES E AMOSTRA	27
3.5.1 Preparo de solução padrão de calibração	27

3.5.2 Preparo de solução padrão de Linearidade	28
3.5.3 Preparo de solução padrão de Exatidão	29
3.5.4 Preparo de solução padrão de Robustez	29
3.5.5 Preparo de solução padrão de Seletividade	29
3.5.6 Preparo de solução padrão de Repetibilidade	29
3.5.7 Preparo de solução padrão de Precisão intermediaria	29
5 RESULTADO E DISCUSSÃO	30
5.1 LIMITE DE DETECÇÃO E QUANTIFICAÇÃO	30
5.2 SELETIVIDADE	30
5.3 LINEARIDADE	30
5.4 PRECISÃO	31
5.5 EXATIDÃO	31
5.6 ROBUSTEZ	31
6 CONCLUSÃO	32
REFERÊNCIAS BIBLIOGRÁFICAS	33
APÊNDICE A - Dados e cálculos do limite de detecção e quantificação	36
APÊNDICE B - Dados e cálculos de seletividade	37
APÊNDICE C - Dados, cálculos e gráficos da Linearidade	38
APÊNDICE D - Dados e cálculos de precisão (Repetibilidade)	41
APÊNDICE E - Dados e cálculos de precisão (Precisão intermediária).	42
APÊNDICE F - Dados e cálculos da exatidão	43
APÊNDICE G - Dados da Robustez	44

1 INTRODUÇÃO

1.1 CONTEXTUALIZAÇÃO

Atualmente a medicina nuclear e a utilização de radionuclídeos para diagnóstico e tratamento oncológico são amplamente conhecidas, como por exemplo as imagens de tomografia por emissão do pósitron associado à tomografia computadorizada (PET/CT). Tendo sua origem em 1925, com Hermann Blumgart, em que realizou o primeiro procedimento médico utilizando materiais radioativos para diagnóstico pró-celular. No mesmo ano, Otto C. Yens desenvolveu o primeiro instrumento que possibilitava o diagnóstico, detectando indicadores radioativos (PATTON, 2003; ROBILOTTA, 2006; CRF-SP, 2019).

No ano de 1945 o Laboratório Nacional Oak Ridge, nos Estados unidos, anunciou a disponibilidade de produção dos radionuclídeos à iniciativa privada, e assim, o Laboratório Nacional Brookhaven passou a produzir o iodo-121 (¹²¹I), o primeiro radiofármaco utilizado para o estudo da tireoide. Após produção, observou-se que os produtos não seguiam requisitos para comprovação de sua esterilidade e apirogenicidade. Com o passar do tempo, parâmetros mais rígidos foram adotados, com a compra da produção de radionuclídeos do Laboratório Nacional Brookhaven pelo Laboratório Abbot transformou a produção de radionuclídeos supracitados para a produção de radiofármaco, sendo assim o primeiro produtor mundial. Só em 1950 iniciou a comercialização do primeiro radiofármaco o iodo-131 (¹³¹I) (CRF-SP, 2019).

Em 1957, mais dois radionuclídeos foram desenvolvidos, como o molibdênio-99 (⁹⁹M) e o tecnécio-99 metaestável (99mTc). O 99mTc ficou conhecido como o elemento 43 e ainda, até os dias de hoje, é o mais utilizado na medicina nuclear na marcação de liofilizados (CRF-SP, 2019).

No Brasil, o órgão CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) em conjunto com a Universidade de São Paulo (USP), criaram em 1957 o Instituto de Energia Atômica (IEA). Após três anos de sua criação, em 1959, iniciou-se a produção do radiofármaco ¹³¹I, para diagnóstico e terapia de doenças da tireoide. Em 1963 o IEA, com as normas farmacêuticas consolidadas, começava sua rotina de produção de radionuclídeos e radiofármacos. Atualmente o instituto é conhecido como IPEN (Instituto de Pesquisas Energéticas e Nucleares) (CARVALHO, 2011; CRF-SP, 2019).

Até 2006 a Constituição Federal garantia ao poder público a exclusividade na exploração e produção de radioisótopos em território nacional, porém com o aumento da

demanda do uso de radiofármacos, foi aprovada a Emenda Constitucional nº 49 de 8 de fevereiro de 2006, que permitiu à indústria privada produzir e comercializar de radiofármacos e radioisótopos de meia vida curta (SANTOS-OLIVEIRA, 2008). Hoje há onze instalações autorizadas, sendo duas governamentais.

1.2 JUSTIFICATIVA

A critério de exigência na produção de medicamentos, pelo qual, passará por análise físico-química e microbiológica, deve cumprir as normas de validação descritas pela RDC166/17, da Agência Nacional de Vigilância Sanitária (Anvisa), quando comparada com norma anterior (RE 899/07) percebe-se avanços em suas atualizações. Outro requisito importante a ser levado em consideração são as Boas Práticas de Fabricação (BPF), pela qual assegura a qualidade de um produto farmacêutico, e assim, garantindo que os resultados analíticos sejam confiáveis, endossando a liberação de um fármaco com qualidade e eficácia.

1.3 OBJETIVO

O objetivo deste trabalho foi a validação da metodologia de análise cromatografia líquida de alta eficiência do radiofármaco [¹⁸F]-PSMA-1007, descrita na Farmacopeia Europeia, seguindo normas da RDC 166/17 e exigências do órgão Anvisa.

2 REVISÃO BIBLIOGRÁFICA

2.1 RADIOFÁRMACOS

Radiofármacos são moléculas ligadas à um radioisótopo (exemplo: ¹⁸F). Essas substâncias são utilizadas nos exames de diagnóstico e tratamento de tumores, não tendo ação farmacológica. A constituição radionuclídica de um radiofármaco irá definir se este será utilizado para um diagnóstico ou para um tratamento (OLIVEIRA, 2006).

Radioisótopos são elementos químicos com núcleo instável e para alcançar a estabilidade emitem radiação, que podem ser do tipo alfa (α), beta (β) e gama (γ). Os radioisótopos, também conhecido como radionuclídeos, são produzidos artificialmente em sua grande maioria, chegando a ter mais de 3000 radioisótopos conhecidos. A produção destes materiais pode ocorrer através de reatores e aceleradores, expondo um alvo a bombardeamento de nêutrons ou prótons (KAPLAN, 1978).

Radionuclídeos de meia-vida curta, como o ¹⁸F-FDG e o ⁶⁷Ga-citrato de gálio, são emissores de radiação β + e tem a finalidade de gerar imagem em PET/CT, para diagnóstico de áreas de tumores. O ¹⁸F⁻FDG detecta tumores na cabeça, pescoço, pulmões, linfomas e é através deste exame que é possível estudar o metabolismo do cérebro e do coração. O ⁶⁷Ga-citrato de gálio tem a finalidade de detectar tumores primários como linfomas, tumores nos pulmões e melanoma, assim como a localização de doença inflamatória aguda e infecções (OLIVEIRA, 2006).

Os radionuclídeos de meia-vida longa, como ¹³¹I⁻ iodeto de sódio e ³²P⁻ortafostato de sódio, são empregados no tratamento do hipertireoidismo, carcinomas papilar e folicular da tireoide e tratamento paliativo para dores nas metástases ósseas, sendo que este último tratamento é possibilitado através do uso de ³²P⁻ortafostato de sódio (OLIVEIRA, 2006).

2.2 RADIOFÁRMACO PSMA

O diagnóstico do câncer de próstata e o seu manejo no tratamento estão em constante evolução. A busca por marcadores que possam identificar e localizar uma lesão é fundamental para o prognóstico do tratamento dos pacientes. O PSMA (Antígeno Específico da Membrana da Próstata) é uma glicoproteína de membrana que funciona como uma glutamato carboxipeptidase/folato hidrosale que está super-expressa no câncer de próstata. A propensão de metástases e a recidiva dos pacientes que foram submetidos à prostectomia, uma vez que as metástases apresentam as mesmas células de PSMA provenientes do tumor primário de próstata (ROWE, et al., 2016).

2.3 FABRICAÇÃO 18F PSMA-1007

A Fabricação do ¹⁸F PSMA-1007 inicia-se com a irradiação de prótons, ou também chamada de irradiação do cíclotron, onde o próton é irradiado em um alvo de água enriquecida. Essa água tem por característica o oxigênio (¹⁸O), um isótopo do oxigênio (¹⁶O), onde esse isótopo tem em sua constituição estrutural 8 prótons e 10 nêutrons. O próton é proveniente do gás hidrogênio (H₂), que recebe uma alta voltagem, transformando-se em um prisma, sendo arremessado da fonte de íons para o centro do tanque do cíclotron, onde H⁻ será acelerado através de dipolos magnéticos que o direcionarão por todo percurso até o porta-alvo. O prisma, quando se aproxima do porta alvo, passa por uma folha de carbono (foil), que realizará a remoção dos elétrons e direcionará o feixe de prótons H⁺ para o porta alvo. Quando o próton do hidrogênio atinge o núcleo do ¹⁸O, esse próton se fixa nesse núcleo expulsando um nêutron, onde desta forma ocorre a formação do elemento sintético fluoreto (¹⁸F⁻). A reação nuclear pode ser observada na equação abaixo (Equação 1) (SCHIRRMACHE, 2011).

$${}^{18}\text{O} + \text{p} \rightarrow {}^{18}\text{F} + \text{n ou }_{\text{p}}({}^{18}\text{O}, {}^{18}\text{F})_{\text{n}}$$
 Equação 1

Na finalização da irradiação, a água enriquecida com ¹⁸F⁻ é enviada para um reator chamado de sintetizador, onde passa por uma coluna de troca iônica retendo o ¹⁸F⁻. Após toda água enriquecida ter passado pela coluna, utiliza-se uma solução de hidrogenocarbonato de tetrabutilamônia (Concentração: 0,0075 M), que fará o encapsulamento do ¹⁸F⁻, removendo-o da coluna e enviando para o sintetizador, onde será aquecido para evaporação do hidrogenocarbonato de tetrabutilamônia. Nesse momento, temos o início da síntese: adicionando uma alíquota de dimetilsulfóxido e o precursor PSMA-1007. Esta mistura, também denominada solução, é enviada para uma coluna C18, onde, passará pelo processo de substituição nucleofílica direta, em que o grupo amina se liga ao ¹⁸F, formando o [¹⁸F]-PSMA-1007. A substituição nucleofílica pode ser observada na figura 1 (DI IORIO, 2021).

Figura 1 - Reação de substituição nucleofílica direta

Fonte: DI IORIO, 2021.

2.4 CONTROLE DE QUALIDADE

O Controle de qualidade de uma indústria farmacêutica é um requisito indispensável para a obtenção das Boas Práticas de Fabricação (BPF), quando se refere à coleta de amostra, as definições das especificações, realizações de validações analítica e execução das análises.

2.4.1 Controle de qualidade de radiofármacos

O controle de qualidade de uma indústria de radiofármacos, tem como diretriz a verificação da qualidade de um produto, que será utilizado por seres humanos. Apesar da escassez deste tipo de indústria no Brasil, os radiofármacos seguem os critérios iguais de uma indústria farmacêutica convencional, seguindo as normativas e exigências da Anvisa, para a produção e verificação de qualidade de um radiofármaco.

O processo de controle de qualidade de um radiofármaco difere-se de um medicamento convencional, pois no radiofármaco há três tipos de categorias de análise que devem ser realizadas, sendo elas: análises físico-químicas, microbiológicas e radioativas, pelas quais devem seguir parâmetros pré-estabelecidos em normas oficiais como Farmacopeia Brasileira, United States Pharmacopeia e European Pharmacopeia.

Todos os métodos descritos na Farmacopeia devem ser otimizados e desenvolvidos para o laboratório em que será utilizado, levando, consequentemente, à validação analítica da metodologia. Toda validação deverá atender as exigências RDC166/17, para que se possa trazer a confiabilidade para os resultados, alcançado nas análises exigidas. Tomando como guia a RDC166/17 temos a figura 2, que definirá quais os parâmetros que devem ser seguidos.

Figura 2 - Parâmetros de validação.

Parâmetro Avaliado	Identificação	Teste de Impurezas		Doseamento -dissolução (quantificação)
		Quantitativo	Ensaio Limite	-uniformidade de conteúdo -potência
Exatidão	não	sim	não	Sim
Precisão Repetibilidade	não	sim	não	Sim
Precisão Intermediária	não	sim ⁽¹⁾	não	sim ⁽¹⁾
Seletividade (2)	sim	sim	sim	sim
Limite de Detecção	não	não ⁽³⁾	sim	não
Limite de quantificação	não	sim	não	não ⁽³⁾
Linearidade	não	sim	não	sim
Intervalo	não	sim	não	sim
 ⁽¹⁾ Nos casos em que foi conduzida a reprodutibilidade, não é necessário conduzir a precisão intermediária. ⁽²⁾ Nos casos de ensaios de identificação, pode ser necessária a combinação de dois ou mais procedimentos analíticos para atingir o nível necessário de discriminação. ⁽³⁾ Pode ser necessário em alguns casos. 				

Fonte: RESOLUÇÃO DA DIRETORIA COLEGIADA - RDC Nº 166, DE 24 DE JULHO DE 2017

2.4.2 Controle de qualidade PSMA

Para realizar o controle de qualidade do [¹⁸F]-PSMA-1007 foram utilizadas as Farmacopeias Europeia e Brasileira, que descrevem os parâmetros que devem ser observados, procedimentos, análises que devem ser executadas e também seus limites, para que o radiofármaco seja considerado apto para uso.

Para o [¹⁸F]-PSMA-1007 ser considerado apto para uso, este deve ser aprovado nas análises de qualidade, que são divididas em dois grupos, sendo elas análises físico-químicas e análises microbiológicas. O Quadro 1 indica estas análises.

Análise físico-química	Análise microbiológica
Identidade radionuclílica	
Pureza radionuclílica	Esterelidade
Pureza química	
Solventes residuais	Teor de endotoxinas bacterianas
Potencial hidrogeniônico (pH)	

Quadro 1 - Análises do [18F]-PSMA-1007

2.5 CROMATOGRAFIA LÍQUIDA DE ALTA EFICIÊNCIA

A cromatografia líquida de alta eficiência tem sido altamente utilizada na química analítica, por sua versatilidade em quantificação e qualificação de compostos mais ou menos complexo, em qualquer tipo de amostra, sendo ela dissolvida em um líquido, há a possibilidade de quantificar e identificar com alta precisão (McMaster, 2007; SARGAÇO, 2013). Na figura 03 apresenta um sistema de cromatografia líquida de alta eficiência, com a descrição simplificada dos seus principais componentes.

O sistema de bombeamento pode ser trabalhado de duas maneiras: sistema isocrático e sistema gradiente. No sistema isocrático é bombeado apenas uma fase móvel durante todo o período da análise, e no sistema gradiente, que utiliza mais de uma fase móvel, podendo variar a porcentagem das fases móveis durante a corrida. A bomba cria um aumento da pressão no sistema que é controlado através de um medidor, em um fluxo específico (ml/min), podendo ser alterado dependendo do tipo de coluna utilizada e da configuração do próprio sistema (McMaster, 2007; SARGAÇO, 2013).

Figura 3 - Sistema representativo da cromatografia líquida de alta eficiência

Fonte: Analytical Methods, High performance liquid chromatography, The Lindle Group, 2013, consultado em 06 de Abril de 2022: http://hiq.lindegas.com/en/analytical_methods/liquid_chromatography/high_performance_liquid_chromatograp hy.html

O sistema de injeção automática, realiza a coleta da amostra líquida e a dispensa em um loop de capacidade conhecida, então a amostra é transferida para o caminho da fase móvel, onde, será encaminhada para a coluna cromatográfica (McMaster, 2007; SARGAÇO, 2013).

A coluna, também conhecida como fase estacionaria, é onde se inicia a separação dos compostos da amostra por mecanismos de interação moleculares entre estes, e com a interação fase móvel e fase estacionaria. As colunas podem oferecer diferentes tipos de interação, podendo assim, realizar a separação por partição, absorção ou troca iônica, dependendo do tipo de material em que a coluna é composta e dos analitos analisados. Entender o tipo de mecanismo que a coluna trabalha é de extrema importância para que se realize uma separação satisfatória dos compostos da amostra. A característica do material de enchimento da coluna afeta a separação do analito, seletividade e resolução cromatográfica (McMaster, 2007; SARGAÇO, 2013).

A partir da separação dos compostos da coluna, a fase móvel continua sendo bombeada até o analito chegar no detector, que será escolhido dependendo da amostra analisada, para uma melhor resolução, e assim respondendo as mudanças de concentração de todos analitos presentes (McMaster, 2007; SARGAÇO, 2013).

O detector é responsável por emitir um sinal que é recebido por um sistema computadorizado, que processa de forma a gerar um cromatograma, onde, pode se distinguir diferentes analitos e diferentes tempos de retenções, possibilitando a identificação do analito e a quantificação com a respetivas áreas apresentadas. O software que realiza o processamento dos dados também é responsável por permitir a realização de parâmetros operacionais como fluxo da fase móvel e volume de injeção da amostra (McMaster, 2007; SARGAÇO, 2013).

2.6 MÉTODOS DE SEPARAÇÃO

O método de separação é definido pelo tipo de material que é constituído a coluna cromatográfica, sendo a separação por partição uma das mais utilizadas. No caso deste tipo de separação, a polaridade do analito da amostra, da fase móvel e da fase estacionária, determina o tempo de retenção dos diferentes analitos, que interagiram com a coluna (CHAMPION, 2009; SARGAÇO, 2013).

Os dois tipos de separações por partição são: NP-HPLC, separação por fase normal, e RP-HPLC, separação por fase reserva. No tipo separação por fase normal, há uma elevada

- for a fact a contract to include the standard to the include the

polaridade na fase estacionaria, já a fase móvel possuí baixa polaridade, obtendo uma baixa interação com a coluna, sendo os primeiros a serem eluídos (CHAMPION, 2009).

Na separação por fase reserva as características são invertidas, onde, a fase móvel passa a ter uma alta polaridade e a fase estacionaria uma baixa polaridade. A polaridade da fase estacionaria, neste caso, é dada pela utilização de sílica modificada quimicamente, promovendo assim, uma ligação de cadeias de hidrocarbonetos hidrofóbicos, podendo ter cadeias que variam em uma faixa de oito a dezoito átomos de carbono, aumentando a característica hidrofóbica da coluna (ENGELHARDT, 2011; CLAESSENS, 2001).

A corrida cromatográfica no modo de separação RP-HPLC se comporta da seguinte maneira: compostos com polaridade baixa passam por mais tempo retidos na coluna, por terem uma baixa afinidade com a fase móvel e uma alta afinidade com a fase estacionaria; já os compostos com maior polaridade são eluidos pela fase móvel, por possuir maior compatibilidade com estes compostos (CHAMPION, 2009).

A técnica de separação RP-HPLC, tem mais de 80% na aplicabilidade dos métodos envolvidos em HPLC. A maior abrangência deste método de separação é devido aos vários mecanismos de separação possíveis de executar com base em interações hidrofóbicas e hidrofílicas, junto com a grande quantidade de fase estacionaria de alta qualidade, permitindo que este método realize a separação de uma grande variedade de substâncias (CHAMPION, 2009; CLAESSENS, 2001).

2.7 VALIDAÇÃO DA METODOLOGIA

A validação de uma metodologia analítica tem como prática trazer a legitimidade do método desenvolvido e equipamento utilizado, com a evidência documental dos parâmetros rigorosos pré-estabelecidos, podendo garantir, desta forma, que o processo produtivo mantenha a uniformidade, mantendo o nível de qualidade dentro dos limites estabelecidos (VALENTINI, 2007).

Uma metodologia validada está atrelada ao equipamento e há um único tipo de concentração daquela amostra, sendo que, ao mudar o equipamento e a concentração de uma amostra, a metodologia deverá ser validada novamente. A validação parcial deve ocorrer apenas quando há transferência da metodologia de um laboratório da mesma instituição, não sendo aceita uma validação que tenha ocorrido em um outro laboratório (GARFIELD, 2004; MORETTO, 2000).

2.8 NORMATIVA RDC 166

A normativa RDC Nº 166, DE 24 DE JULHO DE 2017, tem como objetivo estabelecer os critérios adotados para uma validação da metodologia analítica, utilizada na produção de insumos farmacêuticos e medicamentos (ANVISA RDC n.166, 2017).

2.8.1 Seletividade/Especificidade

A seletividade tem por necessidade ser o primeiro parâmetro a ser avaliado ao iniciar uma validade de metodologia analítica. A importância deste parâmetro é fundamental para que se entenda como os demais parâmetros como linearidade, precisão e exatidão e irão se comportar. No caso de um método que será validado, não obter parâmetros satisfatórios de seletividade comprometerá os demais parâmetros (ANVISA RDC n.166, 2017; DE SOUSA NUNES, 2005; SARGAÇO, 2013).

O objetivo da seletividade em uma validação é a capacidade de demonstrar que o método analítico empregado tem a capacidade de identificar e quantificar o analito de interesse, mesmo que a amostra apresente outros componentes, como matriz, impureza e diluentes. A critério de especificidade de um método, a garantia de que o sinal medido tenha a origem apenas no analito de interesse. Desta forma, para o método ser considerado seletivo, deve-se possuir várias respostas de diversos analito em uma matriz e conseguir distinguir a resposta de um componente de outro. No entando, o método é específico quando responde apenas a um analito da matriz (ANVISA RDC n.166, 2017; DE SOUSA NUNES, 2005; SARGAÇO, 2013).

A seletividade proporciona a possibilidade de visualizar interferências que possam ocorrer por meio de componentes da matriz, podendo levar à amplificação ou diminuição do sinal instrumental e/ou resposta instrumental do analito. Há algumas maneiras de obtenção da seletividade, sendo ela por adição de padrão ou a comparação de matriz com e sem o analito de interesse (ANVISA RDC n.166, 2017; DE SOUSA NUNES, 2005; SARGAÇO, 2013).

O caso do método por adição de padrão, a recuperação deve ser avaliada através da equação 2. Os valores para que um método seja considerado seletivo deve estar entre 80% e 120 % de recuperação (ANVISA RDC n.166, 2017; DE SOUSA NUNES, 2005; SARGAÇO, 2013).

$$\% Recuperação = \frac{[AF] - |A|}{|P| * 100}$$
 Equação 2

Onde: |AF| é a concentração da amostra com padrão; |A| a concentração de amostra; |P| o incremento de concentração esperado pela adição do padrão.

2.8.2 Linearidade

A linearidade em um método analítica é demostrada pela capacidade analítica de obter uma resposta satisfatória diretamente proporcional à concentração do analito de uma amostra, assim, avaliando-a relação da linearidade em toda faixa determinado pelo método. Como critério de avaliação, têm-se a utilização de no mínimo cinco concentrações diferentes da substância química de referência definida, e deve ser realizada em triplicada (ANVISA RDC n.166, 2017; DE SOUSA NUNES, 2005; SARGAÇO, 2013).

> Para realizar a avaliação da linearidade de um método, os dados obtidos devem ser apresentados correspondendo todos os critérios, como representação gráfica das respostas em função da concentração do analito, o gráfico dispersão dos resíduos, acompanhado de sua avaliação estatística e equação da reta de regressão de y em x, estimada pelo método dos mínimos quadrados. Avaliação da associação linear entre as variáveis por meio dos coeficientes de correlação (r) e de determinação (r²). Avaliação da significância do coeficiente angular. A homocedasticidade dos dados deve ser investigada para a utilização do modelo adequado. Nos testes estatísticos, deve ser utilizado um nível de significância de 5% (cinco por cento). O coeficiente de correlação deve estar acima de 0,990. O coeficiente angular deve ser significativamente diferente de zero (ANVISA RDC n.166, 2017).

2.8.3 Precisão

A precisão de uma validação analítica que tem por objetivo a identificação e estimativa dos erros das medidas obtidas através dos resultados das múltiplas análises das amostras. Como é impossível eliminar por completo todos os erros, é preciso conhecer e entender a origem destes erros na validação, para que se possa tentar minimizá-los (ANVISA RDC n.166, 2017; DE SOUSA NUNES, 2005; SARGAÇO, 2013).

Uma metodologia só pode ser considerada precisa, quando os resultados das análises independentes, que são repetidas do mesmo analito e preparadas de maneira, respeitando todos os critérios da metodologia analítica a ser validada, estão com valores próximo aos determinados pelo método. Desta forma, a precisão é determinada a partir da repetibilidade, e deve ser complementada utilizando a precisão intermediária ou reprodutibilidade (ANVISA RDC n.166, 2017; DE SOUSA NUNES, 2005; SARGAÇO, 2013).

A avaliação da precisão é demonstrada pela dispersão dos resultados, que devem ser calculados através da equação 3, que resulta no desvio padrão relativo (DPR) das medidas obtidas (ANVISA RDC n.166, 2017).

$$DPR = \frac{DP}{CMD} \times 100$$

Equação 3

Onde, o DP é o desvio padrão e CMD, a concentração média determinada.

A repetibilidade deve ser capaz de seguir os critérios, como avaliar as amostras sob as mesmas condições de operação, mesmo analista e mesma instrumentação, em uma única corrida analítica. Utilizar, no mínimo, 9 (nove) determinações, contemplando o intervalo linear do método analítico, ou seja, 3 (três) concentrações: baixa, média e alta, com 3 (três) réplicas em cada nível ou 6 (seis) réplicas a 100% (cem por cento) da concentração do teste individualmente preparadas (ANVISA RDC n.166, 2017). A determinação da precisão intermediária deve ser capaz de obedecer aos critérios, como expressar a proximidade entre os resultados obtidos da análise de uma mesma amostra, no mesmo laboratório, em pelo menos dois dias diferentes, realizada por operadores distintos. Contemplar as mesmas concentrações e o mesmo número de determinações descritas na avaliação da repetibilidade (ANVISA RDC n.166, 2017). A reprodutibilidade deve ser obtida por meio da proximidade dos resultados obtidos em laboratórios diferentes. A reprodutibilidade é aplicável em estudos colaborativos ou na padronização de métodos analíticos para inclusão desses em compêndios oficiais, mediante testes estatísticos adequados (ANVISA RDC n.166, 2017).

2.8.4 Exatidão

A exatidão na validação da metodologia analítica é obtida através por meio dos resultados avaliados de maneira individual em relação ao valor de referência que obtida através da curva de calibração. O valor obtido para comprovar que o método é exato deve ter sido verificado por no mínimo 9 determinações, por meio 3 concentrações: baixa, média e alta, em triplicata por nível, sendo as amostras preparadas de forma independente (ANVISA RDC n.166, 2017; DE SOUSA NUNES, 2005; SARGAÇO, 2013).

A exatidão é calculada pela relação entre concentração média, obtida experimentalmente, e a concentração teórica correspondente, de acordo com a equação 4, devese calcular o desvio padrão relativo (DPR) para cada concentração (ANVISA RDC n.166, 2017; DE SOUSA NUNES, 2005; SARGAÇO, 2013).

$$Exatidão = \frac{Concetração média experimental}{concetração teorica} * 100 Equação 4$$

2.8.5 Limite de Detecção e Quantificação

O limite de detecção (LD) em uma amostra apresenta a menor concentração que pode ser detectada nas condições experimentais estabelecidas, mas não poder ser quantificada. O limite de quantificação (LQ) da amostra é a menor quantidade respectiva do analito que pode ser quantificado, respeitando os critérios de precisão e exatidão e as condições experimentais estabelecidas. Os parâmetros LD e LQ podem ser calculados a partir das equações (5) e (6) (ANVISA RDC n.166, 2017; DE SOUSA NUNES, 2005; SARGAÇO, 2013).

$$LD = \frac{3,3 \times \sigma}{IC}$$

$$LQ = \frac{10 \times \sigma}{IC}$$
Equação 5
Equação 6

Onde, IC é a inclinação da curva de calibração, σ é o desvio padrão e pode ser obtido de 3 formas:

1 – A partir do desvio padrão do intercepto com o eixo Y de, no mínimo, 3 curvas de calibração construídas contendo concentrações do analito próximas ao suposto limite de detecção;

2 – A partir do desvio padrão residual da linha de regressão;

3 – A partir da estimativa de ruído proveniente da análise de um apropriado número de amostras do branco.

2.8.6 Robustez

A robustez de um método analítico é avaliada através das pequenas variações em alguns parâmetros da metodologia desenvolvida. Essas intervenções nos métodos quantitativos, devem causar variações no resultado que deverão ser analisados de acordo com os critérios estabelecido pela exatidão. No método qualitativo é verificado a variação da resposta analítica. Os parâmetros considerados para indicar a robustez de um método analítico estão na figura 4 (ANVISA RDC n.166, 2017; DE SOUSA NUNES, 2005; SARGAÇO, 2013).

Preparo das Amostras	Estabilidade das soluções analíticas
	Tempo de extração
	Compatibilidade de filtros
Espectrofotometria	Variação do pH da solução
	Diferentes lotes ou fabricantes de solventes
Cromatografia Líquida	Variação do pH da fase móvel
	Variação na composição da fase móvel
	Diferentes lotes ou fabricantes de colunas

Figura 4 - Condições para a avaliação da robustez do método.

Fonte: RESOLUÇÃO DA DIRETORIA COLEGIADA - RDC Nº 166, DE 24 DE JULHO DE 2017

3 MATERIAIS E MÉTODOS

3.1 EQUIPAMENTOS

Os equipamentos utilizados para o desenvolvimento da metodologia e validação da análise foram os seguintes:

- Cromatógrafo líquido de alta eficiência, marca Shimadzu, composto com os seguintes componentes, CBM-20A (módulo de comunicação), FCV-10ALvc (equipamento seletor de fase móvel), LC-10A_i (bomba mecânica), SIL-10A_i (injetor automático), SPD-M20A (detector espectrofotométrico, de comprimento de onda na faixa do ultravioleta);
- Coluna C18 150 x 4,6 mm 2,7 micron (InfinityLab Poroshell 120 EC-C18, Agilent) e uma pré-coluna 5 x 4,6 mm – 2,7 micron (InfinityLab Poroshell 120 EC-C18, Agilent);
- Balança analítica, marca METLER TOLEDO;
- Sistema de ultrapurificação de água, marca Millipore, modelo Direct-Q 8;
- Balão volumétrico 10 ml e 5 ml.

3.2 REAGENTES

Os reagentes e padrões de PSMA utilizados e respetivas especificações do fabricante estão apresentados na Tabela 1.

Reagente	Marca
PSMA – OH	ABX
PSMA – Precursor	ABX
PSMA – Standard	ABX
Acetonitrila grau HPLC	Merck
Fosfato de sódio	Química moderna
Etanol grau HPLC	Merck
Ácido fosfórico 80%	Merck
Fosfato de potássio	Merck
Cloreto de sódio	Merck
Cloreto de potássio	Merck

Tabela 1 - Reagentes utilizados

Fonte: Autor (2022)

3.3 SOLUÇÕES

3.3.1 Solução Água/Etanol (60:40)

Esta solução foi preparada através da medida em proveta de 60 ml de água ultrapura, sendo transferida para um recipiente e adicionado 40 ml de etanol medido em proveta.

3.3.2 Solução A

Para o preparo foram pesados 800 mg de cloreto de sódio, 20 mg de fosfato de potássio, 114 mg de cloreto de potássio e 20 mg de fosfato de sódio e transferidos para um balão volumétrico de 100 ml sendo avolumado com água ultrapura.

3.3.3 Solução diluente PSMA

Esta solução foi preparada a partir das soluções de água/etanol (60:40) e solução A, sendo transferido para o recipiente 30 ml de solução A e 10 ml de água/etanol (60:40).

3.3.4 Solução fosfato de sódio 0,02M

Esta solução tampão foi utilizada como a fase móvel do HPLC e foi pesado 2,7598 g de fosfato de sódio e transferido para um balão volumétrico de 1 litro, sendo avolumado com água ultrapura e adicionado 0,485 ml de ácido fosfórico 80% para ajuste de pH 2,5.

3.3.5 Solução padrão PSMA - standard 0,1 mg/ml

O frasco de padrão adquirido contém apenas 1 mg de PSMA – standard, sendo assim, foi realizado a diluição diretamente no frasco com 5 mL de solução diluente PSMA e agitado por 16 minutos em ultrassom; o conteúdo do frasco foi transferido para um balão volumétrico de 10 mL e avolumado com a solução diluente PSMA.

3.3.6 Solução padrão PSMA – precursor 0,1 mg/ml

O frasco de padrão adquirido contém apenas 1 mg de PSMA – percursor, sendo assim, foi realizado a diluição diretamente no frasco com 4 mL de etanol e 1 mL água ultrapura, sendo agitado por 5 minutos em ultrassom até a dissolução do padrão, o conteúdo foi transferido para um balão volumétrico de 10 mL e avolumado com água ultrapura.

3.3.7 Solução padrão PSMA - OH 0,1 mg/ml

O frasco de padrão adquirido contém apenas 1 mg de PSMA – OH, sendo assim, foi realizado a diluição diretamente no frasco com 4 mL de etanol e 1 mL água ultrapura e agitado por 5 minutos em ultrassom até a dissolução do padrão, o conteúdo foi transferido para um balão volumétrico de 10 mL e avolumado com água ultrapura.

3.4 CONDIÇÕES CROMATOGRÁFICAS

A condições cromatográficas foram otimizadas para melhor adequação no sistema onde foi realizada as análises das soluções padrão e apresentada na tabela 2.

Tabela 2 - Condição cromatográfica.	
Parâmetros	Condições
Modo de Separação	Fase reversa
Fluxo	0,8 mL/mim
Volume de injeção	20 µL
Detector (comprimento de	225 nm
onda)	
Temperatura do forno da coluna	30°C
Temperatura da amostra	Ambiente
Tempo de corrida	26 minutos
Fase móvel	Acetonitrila e Fosfoto de sódio 0,02 M em modo gradiente
E (1 (2022)	

Fonte: Autor (2022)

O gradiente foi configurado de forma em que as fases moveis alteram suas concentrações durante a corrida cromatográfica. A Tabela 3 apresenta a variação do gradiente e a Figura 5 apresenta o Sistema Gradiente expresso no equipamento.

Tempo (min)	Fosfato de sódio 0,02M	Acetonitrila
0-2	75%	25%
2 - 10	68%	32%
10 - 14	40%	60%
14 - 17	40%	60%
17 – 17,5	75%	25%
17,5 – 26	75%	25%

 Tabela 3 - Variação do Gradiente

Fonte: Autor (2022)

Fonte: Autor.

3.5 PREPARO DE PADRÕES E AMOSTRA

3.5.1 Preparo de solução padrão de calibração

A partir das soluções padrões de PSMA de concentração conhecida de 0,1 mg/ml foram geradas as diluições para a realização de uma curva com pontos definidos em 150%, 100% e

50 % e a concentração definida como de partida de 0,01mg/ml, sendo realizada conforme demonstrado no Fluxograma 01.

Fluxograma 01 – Curva Padrão PSMA

Fonte: Autor (2022)

3.5.2 Preparo de solução padrão de Linearidade

O preparo do padrão de linearidade teve como ponto de partida a concentração de 0,1 mg/ml igual a 100% da concentração especificada, deste ponto foi preparada uma solução de 0,02 mg/ml igual a 200% da concentração de partida, e então, a partir desta solução foi realizada as diluições 120%, 100%, 90%, 60%, 30% e LQ.

3.5.3 Preparo de solução padrão de Exatidão

O preparo do padrão de exatidão teve como ponto de partida a concentração de 0,1 mg/ml igual a 100% da concentração especificada, deste ponto foram preparadas as soluções de 0,01 mg/ml e a partir desta solução foi realizada as diluições 120%, 100%, 80%.

3.5.4 Preparo de solução padrão de Robustez

O preparo do padrão de robustez teve como ponto de partida a concentração de 0,1 mg/ml igual a 100% da concentração especificada e deste ponto foram preparadas as soluções de 0,01 mg/ml e a partir desta solução foi realizada a diluição de 100%.

3.5.5 Preparo de solução padrão de Seletividade

O preparo do padrão de seletividade teve como ponto de partida a concentração de 0,1 mg/ml igual a 100% da concentração especificada, deste ponto foram preparadas as soluções de 0,01 mg/ml e a partir desta solução foi realizada a diluição de 100%; também foram preparadas duas soluções de 100%, uma utilizando água ultrapura e outra utilizando solução fisiológica 0,9%.

3.5.6 Preparo de solução padrão de Repetibilidade

O preparo do padrão de repetibilidade teve como ponto de partida a concentração de 0,1 mg/ml igual a 100% da concentração especificada, deste ponto foram preparadas as soluções de 0,01 mg/ml, e a partir desta solução foi realizada a diluição de 100%.

3.5.7 Preparo de solução padrão de Precisão intermediaria

O preparo do padrão de precisão intermediaria teve como ponto de partida a concentração de 0,1 mg/ml igual a 100% da concentração especificada, deste ponto foram preparadas as soluções de 0,1 mg/ml, e a partir desta solução foi realizada a diluição de 100%, sendo preparado por outro analista.

5 RESULTADO E DISCUSSÃO

5.1 LIMITE DE DETECÇÃO E QUANTIFICAÇÃO

O Limite de Detecção e quantificação foram calculados a partir da curva de calibração que utilizou os dados de linearidade com quatro faixas de concentrações: 120%, 90%, 60% e 30%.

Para a determinação de LD (limite de detecção) e LQ (limite de quantificação) devem ser utilizados as Equações 5 e 6, que se encontram na seção "2.8.5 Limite de Detecção e Quantificação", em Revisão Bibliográfica, e também se apresentam abaixo.

$$LD = \frac{3,3 \times \sigma}{IC}$$

$$LQ = \frac{10 \times \sigma}{IC}$$
Equação 5
Equação 6

Onde, IC é a inclinação da curva de calibração, σ é o desvio padrão.

Para o cálculo do σ utilizou-se o desvio padrão do intercepto com o eixo Y de, no mínimo, três curvas de calibração construídas, contendo concentração do analito próxima ao suposto limite de detecção. O IC é o coeficiente angular da curva de calibração. Os dados podem ser observados no Apêndice A, nos Quadros 2 e 4.

5.2 SELETIVIDADE

A seletividade foi demonstrada analisando doze amostras, sendo divididas da seguinte maneira: três amostras de solução fisiológica 0,9%, três amostras de fase móvel, três amostras de diluente solução fisiológica 0,9% com padrão e três amostras de fase móvel com padrão. Os dados obtidos junto com o critério estabelecidos podem ser observados no Apêndice B, nos Quadros 5 a 8.

5.3 LINEARIDADE

A linearidade foi demostrada a partir das análises em triplicatas de cinco concentrações diferentes, partindo de uma solução padrão de concentração de 200% da concentração limite de 0,01mg/ml, e foram realizadas as diluições de 120%, 100%, 90%, 60%, 30%. Os dados obtidos

podem ser observados nos Apêndice C, demostrados nos Quadros 9 e 11, e nos Gráficos de 1 a 4.

5.4 PRECISÃO

A precisão foi avaliada pelos ensaios de Repetibilidade e Precisão Intermediaria, onde, um analista realizou seis análises na concentração de 100% em um dia, com os dados apresentados no Apêndice D, Quadro 12 e 14, e outro analista realizou seis análises nas mesmas condições no dia seguinte, com os dados apresentados no Apêndice E, nos Quadro 15 e 17.

5.5 EXATIDÃO

Para ensaio de exatidão foram avaliadas, em triplicatas, com padrões nas concentrações alta, média e baixa, os dados podem ser obtidos podem ser observados no Apêndice F, nos Quadros 18 e 20.

5.6 ROBUSTEZ

25.

Na robustez foram avaliados os efeitos de alterações da alguns parâmetros operacionais sobre os resultados obtidos. Dentre os parâmetros alterados foram:

- Alteração nas concentrações do gradiente (5% para mais e para menos de acetonitrila);
- Coluna de fabricante diferente;
- Alteração no pH da fase móvel de fosfato de sódio 0,02M (pH: 2,0; 3,0);
- Estabilidade da solução (0h, 24h, 48h, 72h,).

Os Dados obtidos dos ensaios podem ser observado nos Apêndice G, nos Quadros 21 a

6 CONCLUSÃO

A metodologia adota para análise do radiofármaco [¹⁸F]-PSMA-1007 demonstrou se adequada, conseguindo com alta eficaz realizar a identificação e quantificação das impurezas químicas. Os dados e cálculos podendo ser observado no apêndice A, quadro de 2 a 4.

Na avaliação da seletividade, não houve nenhum pico interferente no tempo de retenção dos padrões de PSMA-Precursor e PSMA-OH, tanto na solução fisiológica quanto na fase móvel. O método analítico demostrou capacidade de identificar e mensurar os analitos de interesse, na presença de componentes que podem estar presentes nas amostras. Demonstrado no apêndice B, quadro de 5 a8.

O método foi avaliado na faixa de 30% a 120% com padrões de PSMA-Precursor e PSMA-OH, através da linearidade, foi considerado linear obtendo-se um coeficiente de correlação acima de 0,99, que é homocedástico através da avaliação da igualdade de variância (Teste de Cochran), com desvio padrão relativo menor que 5% e uma taxa de recuperação dentro do aceitável em ambos os padrões conforme apresentado no apêndice C, nos quadros 11.

As amostras avaliadas nos ensaios de repetibilidade e precisão intermediárias, sob as mesmas condições de operação e mesmo instrumento, com diferentes analistas e dias diferentes, ambos apresentaram resultados de desvio padrão relativo de no máximo 5% e recuperação de 90% a 110% dentro dos critérios descritos no apêndice D, quadro 14 e apêndice E, quadro17.

O ensaio de exatidão, expresso pela relação de percentual de recuperação entre 90% a 110% do analito, com concentrações conhecidas, apresentaram valores dentro dos critérios estabelecidos para o desvio padrão relativo máximo de 5%, observado no apêndice F, quadro 20.

Nos ensaios para análise da robustez do método, consegue-se observar na comparação das áreas entra as diversas alterações feitas que o desvio padrão relativo é menos que 5% podendo gerar uma falsa impressão que o método é robusto, mas quando levado em consideração os tempos de retenção das triplicatas, é observado o desvio padrão relativo acima dos 50%, observado no apêndice G, quadro 25, determinado que o método é robusto para variação de pH, e não é robusto para as demais alterações no sistema.

Dessa maneira, o método atende a todos os parâmetros avaliados, seletividade, linearidade, precisão, exatidão e robustez parcial, e pode ser considerado eficiente para o

propósito a que se destina, ou seja, ensaio de identificação e quantificação de impureza no produto [¹⁸F]-PSMA-1007.

REFERÊNCIAS BIBLIOGRÁFICAS

AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA. ANVISA. Resolução RDC n. 166, de 24 de Julho de 2017. **Dispõe sobre a validação de métodos analíticos e dá outras providências**, 2017.

BLANC, D.; COMMANAY, L.; TEYSSIER, J. L. - La détection des particules par scintillation. **Onde Électrique, 508/509:1** - 8, 1969.

CARVALHO, Fernando P. As descobertas científicas de Marie Curie e o seu legado à ciência e à humanidade. **Revista Captar: Ciência e Ambiente para Todos**, v. 3, n. 2, p. 1-11, 2011.

CHAMPION, Bill. HPLC Separation Fundamentals. Agilent Technologies, Inc 2009.

CLAESSENS H.A., Trends and progress in the characterization of stationary phases for reversed-phase liquid chromatography. Trends in analytical chemistry, Vol. 20, 2001, p. 563-583.

CRF-SP: Conselho Regional de Farmácia do Estado de São Paulo. "Radiofarmácia – 1ª Edição - 2019". Disponível em: http://www.crfsp.org.br/images/cartilhas/radiofarmacia.pdf>. Acesso em: 11 de out. de 2020.

DE SOUSA NUNES, Rogéria et al. Validação de metodologia analítica para doseamento do timol em extratos vegetais de Lippia sidoides Cham por CLAE. **Rev. Bras. Farm**, v. 86, n. 3, p. 87-91, 2005.

DI IORIO, Valentina et al. [18F] F-PSMA-1007 Radiolabelling without an On-Site Cyclotron: A Quality Issue. Pharmaceuticals, v. 14, n. 7, p. 599, 2021.

ENGELHARDT H., **Bonded Stationary phases. In: Corradini D. (ed), Handbook of HPLC, 2nd ed., Chromatographic Science Series.** Taylor and Francis Group, 2011, p. 47-66. GARFIELD, F. M. Quality assurance principles for analytical laboratories. Arlington: Association of Official Analytical Chemistry International, p. 220. 1994.

GIAROLA, Rodrigo Sanchez. Estudo teórico experimental da resposta radiométrica de câmaras de ionização utilizadas em dosimetria em feixes de raios X para diagnóstico radiológico. 2014. Tese de Doutorado. Universidade de São Paulo.

KAPLAN, I. Física nuclear, vol. 2. Guanabara Dois, Rio de Janeiro, 1978.McMaster M.C. (ed.), HPLC: A Practical User's Guide, 2nd ed., Wiley & Sons Inc, New Jersey, 2007, p. 3-14.

MORETTO L.D., SHIB M. A era da validação. Pharmaceutical Technology. 4:4-48. 2000.

MONTANHEIRO, MARIA NAZARETH STOLF. Gamma spectrometry analysis for simultaneous detection of 54 Mn, 65 Zn and 59 Fe in aqueous solutions and plant tissues. Sao Paulo Univ., 1975.

MONTANHEIRO, Maria Nazareth S.; NASCIMENTO FILHO, Virgílio F.; PINTO, Fernando A. Introdução à espectrometria gama. **Boletim Didático**, n. 021, 1977.

OLIVEIRA, Rita et al. Preparações radiofarmacêuticas e suas aplicações. **Revista Brasileira de Ciências Farmacêuticas**, v. 42, n. 2, p. 151-165, 2006.

PRADO, Marcos de Freitas. Análise comparativa dos indicadores de produção e controle de qualidade da síntese do 18FDG produzido por dois diferentes equipamentos. 2015.

PATTON, Dennis D. The birth of nuclear medicine instrumentation: Blumgart and Yens, 1925. Journal of Nuclear Medicine, v. 44, n. 8, p. 1362-1365, 2003.

ROBILOTTA, Cecil Chow. A tomografia por emissão de pósitrons: uma nova modalidade na medicina nuclear brasileira. **Revista Panamericana de Salud Pública**, v. 20, p. 134-142, 2006.

SANTOS-OLIVEIRA, Ralph; CARNEIRO-LEÃO, Ana Maria dos Anjos. História da radiofarmácia e as implicações da Emenda Constitucional N. 49. **Revista Brasileira de Ciências Farmacêuticas**, v. 44, n. 3, p. 377-382, 2008.

SARGAÇO, Bruno Ruela. **Otimização e validação de um método de cromatografia líquida de alta resolução (HPLC) para a determinação do edulcorante ciclamato: ocorrência em adoçantes de mesa.** 2013. Tese de Doutorado. Instituto Superior de Engenharia de Lisboa.

SCAFF, L. A. M. Física na Radioterapia A Base Analógica de uma Era Digital. **São Paulo:** Editora Projeto Saber, 2010.

SCHIRRMACHE, R.; WANGLER, C.; SCHIRRMACHER, F. Fluorine-18 radiochemistry: theory and practice. In: **Pharmaceutical Radiochemistry Scintomics**, v 1 of Munich moleculas imaging Handbook series. 31, 2011

VALENTINI, Sóstenes Rosa; SOMMER, Willy Arno; MATIOLI, Graciette. Validação de métodos analíticos. Arquivos do MUDI, v. 11, n. 2, p. 26-31, 2007.

APÊNDICE A - Dados e cálculos do limite de detecção e quantificação.

Curv	/a 1	Cur	Curva 2		va 3
Conc. (mg/ml)	Área	Conc. (mg/ml)	Área	Conc. (mg/ml)	Área
0,0030	243598	0,0030	250766	0,0030	247407
0,0060	498546	0,0060	497398	0,0060	495561
0,0090	762179	0,0090	734993	0,0090	730621
0,0120	909174	0,0120	909711	0,0120	912400
Coeficiente	38781	Coeficiente	44600	Coeficiente	38087
linear curva 1	38284	linear curva 2	44009	linear curva 3	30707
Coeficiente	75345367	Coeficiente	7381/1333	Coeficiente	71331633
angular curva 1	75545507	angular curva 2		angular curva 3	74554055
Média coeficiente linear			40627		
Desvio Padrão do coeficiente linear		3467			
Média	a do coeficiente an	gular	74498111		

Quadro 2 - Dados para cálculo LD e LQ para PSMA-Precursor.

Fonte: Autor

Quadro 3 - Dados para cálculo LD e LQ para PSMA-OH.

Curv	/a 1	Curva 2		Curva 3		
Conc. (mg/ml)	Área	Conc. (mg/ml)	Área	Conc. (mg/ml)	Área	
0,0030	312849	0,0030	322243	0,0030	321437	
0,0060	634930	0,0060	639328	0,0060	638601	
0,0090	950262	0,0090	943835	0,0090	941882	
0,0120	1327025	0,0120	1327408	0,0120	1334832	
Coeficiente	22100	Coeficiente	21707	Coeficiente	26670	
linear curva 1	-55199	linear curva 2	-21797	linear curva 3	-20079	
Coeficiente	111028667	Coeficiente	110666733	Coeficiente	111//2267	
angular curva 1	111928007	angular curva 2	110000755	angular curva 3	111440007	
Média coeficiente linear			-27225			
Desvio Padrão do coeficiente linear		5720				
Média	a do coeficiente an	gular	74498111			

Fonte: Autor

Quadro 4 - Parâmetro e critérios de aceitação seletividade.

Parâmetros	Critérios de aceitação	Resultado PSMA - Precursor	Resultado PSMA - OH
L.D.	mg/ml e área	0,00026 e 12725	0,00028 e 18016
L.Q.	mg/ml e área	0,00078 e 38560	0,00086 e 54595

APÊNDICE B - Dados e cálculos de seletividade.

Quadro 5 – Dados diluentes sem padrões.

Amostro	PSMA-PF	RECURSOR	PSMA-OH		
Alliosua	Área	Média das Áreas	Área	Média das Áreas	
Solução Fisiológica 0,9 % A					
Solução Fisiológica 0,9% B					
Solução Fisiológica 0,9% C					
Fase móvel A					
Fase móvel B					
Fase móvel C]			

Fonte: Autor

Quadro 6 – Dados diluentes com padrão PSMA-Precursor.

Amostra	Concentração Teórica (%)	Concentração Amostra (%)	Recuperação (%)	Área	Média das Áreas	Pureza média dos picos (%)
(Fisiológica + padrão) A	0,0100	0,0105	105	832577		
(Fisiológica + padrão) B	0,0100	0,0104	104	831094		
(Fisiológica + padrão) C	0,0100	0,0105	105	831901	831586	99.83
(Fase móvel + padrão) A	0,0100	0,0105	105	831662	031300	<i>))</i> ,05
(Fase móvel + padrão) B	0,0100	0,0104	104	831003		
(Fase móvel + padrão) C	0,0100	0,0104	104	831280		

Fonte: Autor

Quadro 7 – Dados diluentes com padrão PSMA-OH.

Amostra	Concentração Teórica (%)	Concentração Amostra (%)	Recuperação (%)	Área	Média das Áreas	Pureza média dos picos (%)
(Fisiológica + padrão) A	0,0100	0,0098	98	1052506		
(Fisiológica + padrão) B	0,0100	0,0097	97	1048837		
(Fisiológica + padrão) C	0,0100	0,0097	97	1050105	1040511	00.42
(Fase móvel + padrão) A	0,0100	0,0097	97	1045267	1048511	98,43
(Fase móvel + padrão) B	0,0100	0,0097	97	1046411		
(Fase móvel + padrão) C	0,0100	0,0097	97	1047942		

Fonte: Autor

Quadro 8 - Parâmetro e critérios de aceitação seletividade.

Parâmetros	Critérios de aceitação	Resultado PSMA - Precursor	Resultado PSMA - OH
Pureza média do pico	Maior 98 %	99,83	98,43
Recuperação	Entre 90 e 110 %	OK	OK

	Concentração	Área do	Concentração	Re	cuperação	D	PR	D
Amostra	(mg/mL)	pico	obtida		(%)	((%)	Residuo
Linearidade 30% A	0,0030	243598	0,0027		90			-19523
Linearidade 30% B	0,0030	250766	0,0028		93,3	1.	.451	-12355
Linearidade 30% C	0,0030	247407	0,0027		90			-15714
Linearidade 60% A	0,0060	498546	0,0060		100			7220
Linearidade 60% B	0,0060	497398	0,0060		100	0.	.303	6072
Linearidade 60% C	0,0060	495561	0,0060		100			4235
Linearidade 90% A	0,0090	732179	0,0092		102,2			12648
Linearidade 90% B	0,0090	734993	0,0092		102,2	2.	.302	15462
Linearidade 90% C	0,0090	730621	0,0091		101,1			11090
Linearidade 100% A	0,0100	826445	0,0104		104			30846
Linearidade 100% B	0,0100	832812	0,0105		105	0,	,387	37213
Linearidade 100% C	0,0100	830328	0,0104		104			34729
Linearidade 120% A	0,0120	909174	0,0115		95,8	0.190		-38562
Linearidade 120% B	0,0120	909711	0,0115		95,8			-38025
Linearidade 120% C	0,0120	912400	0,0115		95,8	95,8		-35336
	Coeficientes	da Regressão	y = ax + b PSM	A-Pre	cursor			
		Curva 1	Curva 2		Curva 3	3	Médi	$a \pm DPR$
Coeficiente Angu	ılar (a):	70425980	75816700)	7625440	00	10944	$2093 \pm 0,3$
Coeficiente Line	ear (b):	68811	38602		33228		-2150	$07 \pm 21,1$
Coeficiente de Corre	elação (r):	0,9715	0,9944		0,9952		0,9974	$1 \pm 0,0004$
	Estatí	stica de regre	ssão – PSMA-Prec	ursor				
R múltiplo						0,	995	
R-Quadrado						0,	990	
R-quadrado ajustado						0,	989	
Erro padrão						265	06,27	
Observações						1	15	
$C_{calculado}$ = maior variânc	ia em y / soma de	todas as variâ	ncias			0,3	3859	
$C_{tabelado}$ (para o n° 3 de n	eplicatas de y e n°	5 de pontos				0,7	885	

APÊNDICE C - Dados, cálculos e gráficos da Linearidade.

Quadro 9 – Dados linearidade PSMA-Precursor.

Fonte: Autor

Gráfico 2 – Gráfico de resíduos PSMA-Precursor.

Quadro 10- Dados linearidade PSMA-OH.

Amostra	Concentração (mg/mL)	Área do pico	Concentração obtida	Recuperação (%)	DPR (%)	Resíduo
Linearidade 30% A	0,0030	312849	0,0029	96,6		6029
Linearidade 30% B	0,0030	322243	0,0030	100	1,633	15423
Linearidade 30% C	0,0030	321437	0,0030	100		14617
Linearidade 60% A	0,0060	634930	0,0059	98,3		-216
Linearidade 60% B	0,0060	639328	0,0059	98,3	0,370	4182
Linearidade 60% C	0,0060	638601	0,0059	98,3		3455
Linearidade 90% A	0,0090	950262	0,0088	97		-13210
Linearidade 90% B	0,0090	943835	0,0087	96	0,464	-19637
Linearidade 90% C	0,0090	941882	0,0087	96		-21590
Linearidade 100% A	0,0100	1027002	0,0095	95		-45912
Linearidade 100% B	0,0100	1045105	0,0097	97	0,970	-27809
Linearidade 100% C	0,0100	1043712	0,0097	97		-29202
Linearidade 120% A	0,0120	1327025	0,0123	102,5		35227
Linearidade 120% B	0,0120	1327408	0,0123	102,5	0,331	35610
Linearidade 120% C	0,0120	1334832	0,0124	103,3		43034
		Coeficientes	s da Regressão (y =	= ax + b)		
		Curva 1	Curva 2	Curva 3	Média	± DPR
Coeficiente Angular (a):		109565220	109076120	109684940	1094420	93 ± 0,3
Coeficiente Linear (b):		-26108	-17025	-21387	-21507	$\pm 21,1$
Coeficiente de Correlação	(r):	0,9971	0,9978	0,9972	0,9974 ±	0,0004
	E	statística de re	gressão – PSMA-0	НС		
R múltiplo					0,997	
R-Quadrado					0,995	
R-quadrado ajustado					0,994	
Erro padrão				2	7229,140	
Observações	• • -				15	
$C_{calculado}$ = maior variânc	âncias		0,5874			

$C_{tabelado}$ (para o n° 3 de replicatas de y e n° 5 de pontos	0,7885
Fonte: Autor	

Gráfico 3 – Gráfico de regressão linear PSMA-OH.

: Autor
: Aut

Parâmetros Critérios de aceitação		Resultado PSMA - Precursor	Resultado PSMA - OH
Coeficiente de correlação (r)	Mínimo 0,990	0,994	0,997
Coeficiente de determinação (r2)	Maior 0,990	0,990	0,995
Recuperação	Entre 90 e 110 %	OK	OK
DPR (%)	Máximo 5,0%	30 % DPR = 1.451 60 % DPR = 0.303 90 % DPR = 2.302 100 % DPR = 0.387 120 % DPR = 0.190	30 % DPR = 1.451 60 % DPR = 0.303 90 % DPR = 2.302 100 % DPR = 0,970 120 % DPR = 0.190
Gráfico de Resíduos Perfil de dispersão	Aleatoriamente distribuído ao redor do eixo x	Confirme gráfico 02	Confirme gráfico 04
Teste de Cochran (nível de 5% de significância)	$C_{Cal} < C_{Tab}$ (homocedasticidade) – aplicar Mínimos Quadrados Ordinários	$C_{Cal} = 0,3859$ < $C_{Tab} = 0,7885$	$C_{Cal} = 0,5874$ < $C_{Tab} = 0,7885$

Quadro 11 – Parâmetro e critérios de aceitação linearidade.

|--|

Amostra	Área	Média das Áreas	DPR (%)	Concentração Teórica (mg/ml)	Concentração Recuperada (mg/ml)	Fator de Recuperação (%)						
Precisão Padrão A	831246	832507		0,0100	0,0104	104						
Precisão Padrão B	833808		832507	0.167	0,0100	0,0105	105					
Precisão Padrão C	831264				0,0100	0,0104	104					
Precisão Padrão D	831881			052507	052507	032307	032307	032307	052507	0.52507 0,107	0,0100	0,0105
Precisão Padrão E	834132			0,0100	0,0105	105						
Precisão Padrão F	832710			0,0100	0,0105	105						

Fonte: Autor

Quadro 13 – Dados repetibilidade PSMA-OH.

PRECISÃO REPETIBILIDADE (PSMA-OH)							
Amostra	Área	Média das Áreas	DPR (%)	Concentração Teórica (mg/ml)	Concentração Recuperada (mg/ml)	Fator de Recuperação (%)	
Precisão Padrão A	1051119	1053039	-	0,0100	0,0097	97	
Precisão Padrão B	1054478			0,0100	0,0098	98	
Precisão Padrão C	1051765		0.241	0,0100	0,0097	97	
Precisão Padrão D	1050636		039 0,241	0,0100	0,0097	97	
Precisão Padrão E	1052848			0,0100	0,0098	98	
Precisão Padrão F	1057392			0,0100	0,0098	98	

Fonte: Autor

Quadro 14 – Parâmetros e critérios de aceitação de repetibilidade.

Parâmetros	Critérios de aceitação	Resultado PSMA - Precursor	Resultado PSMA - OH
DPR (%)	Máximo 5 %	0,241	0,167
Recuperação	Entre 90 e 110 %	ОК	ОК

APÊNDICE E - Dados e cálculos de precisão (Precisão intermediária).

Amostra	Área	Média das Áreas	DPR (%)	Concentração Teórica (mg/ml)	Concentração Recuperada (mg/ml)	Fator de Recuperação (%)	
Precisão Intermediaria A	833652	830778		0,0100	0,0107	107	
Precisão Intermediaria B	826156			0,0100	0,0108	108	
Precisão Intermediaria C	830007		830778	0 336	0,0100	0,0108	108
Precisão Intermediaria D	833706		0,550	0,0100	0,0107	107	
Precisão Intermediaria E	830681			0,0100	0,0108	108	
Precisão Intermediaria F	830463			0,0100	0,0108	108	

ſ	Juadro	15 -	Dados	Precisão	Intermediária	PSMA_Precurse	
Ľ	Juauro	13 -	Dauos	Flecisao	Interneularia	r SMA-riecuis	л

Fonte: Autor

Quadro 16 – Dados Precisão Intermediária PSMA-OH.

PRECISÃO INTERMEDIÁRIA (PSMA-OH)							
Amostra	Área	Média das Áreas	DPR (%)	Concentração Teórica (mg/ml)	Concentração Recuperada (mg/ml)	Fator de Recuperação (%)	
Precisão Intermediaria A	1050701			0,0100	0,0097	97	
Precisão Intermediaria B	1053553)355 0,308	0,0100	0,0098	98	
Precisão Intermediaria C	1051534	1050255		0,0100	0,0097	97	
Precisão Intermediaria D	1045793	1050555		0,0100	0,0097	97	
Precisão Intermediaria E	1053408			0,0100	0,0098	98	
Precisão Intermediaria F	1047143			0,0100	0,0097	97	

Fonte: Autor

Quadro 17 – Parâmetro e critérios de aceitação precisão intermediária.

Parâmetros	Critérios de aceitação	Resultado PSMA - Precursor	Resultado PSMA - OH
DPR (%)	Máximo 5 %	0,336	0,308
Recuperação	Entre 90 e 110 %	ОК	OK

		Concentração	Concentração		Recuperação	
Amostra	Área	Teórica	Recuperada	Recuperação (%)	Média por nível	DPR (%)
		(mg/ml)	(mg/ml)		(%)	
Exatidão 80% A	676991	0,0080	0,0084	105		
Exatidão 80% B	679878	0,0080	0,0084	105	105,00	0,000
Exatidão 80% C	679867	0,0080	0,0084	105		
Exatidão 100% A	826445	0,0100	0,0104	104		
Exatidão 100% B	832812	0,0100	0,0105	105	104,33	0,553
Exatidão 100% C	830328	0,0100	0,0104	104		
Exatidão 120% A	916013	0,0120	0,0115	95,8		
Exatidão 120% B	912671	0,0120	0,0116	96,6	96,07	0,481
Exatidão 120% C	910676	0,0120	0,0115	95,8		

APÊNDICE F - Dados e cálculos da exatidão.

Quadro 18 – Dados exatidão PSMA-Precursor.

Fonte: Autor

Quadro 19 – Dados Precisão Intermediária.

EXATIDÃO (PSMA-OH)						
		Concentração	Concentração		Recuperação	
Amostra	Área	Teórica	Recuperada	Recuperação (%)	Média por nível	DPR (%)
		(mg/ml)	(mg/ml)		(%)	
Exatidão 80% A	861901	0,0080	0,0080	100		
Exatidão 80% B	866351	0,0080	0,0080	100	100,43	0,747
Exatidão 80% C	869353	0,0080	0,0081	101,3		
Exatidão 100% A	1027002	0,0100	0,0095	95		
Exatidão 100% B	1045105	0,0100	0,0097	97	96,33	1,199
Exatidão 100% C	1043712	0,0100	0,0097	97		
Exatidão 120% A	1324243	0,0120	0,0123	102,5		
Exatidão 120% B	1329145	0,0120	0,0123	102,5	102,5	0,000
Exatidão 120% C	1327791	0,0120	0,0123	102,5		

Fonte: Autor

Quadro 20 - Parâmetros e	critérios	de aceitação	e exatidão.
-			

Donômotros	Critérios de aceitação	Resultado	Resultado
Parametros		PSMA - Precursor	PSMA - OH
		Baixa 80 % = 0,000	Baixa 80 % = 0,747
DPR (%)	Máximo 5 %	Média 100 % = 0,553	Média 100 % = 1,199
		Alta 120 % = 0,481	Alta 120 % = 0,000
		Baixa 80 % = 105,00	Baixa 80 % = 100,43
Recuperação	Entre 90 e 110 %	Média 100 % = 104,33	Média 100 % = 96,33
		Alta 120 % = 96,07	Alta 120 % = 102,50

APÊNDICE G - Dados da Robustez.

Amostra	Condições	Área	Média das Áreas	DPR (%)
Robustez A	Fase móvel com + 5% de acetonitrila durante toda a corrida	841006		
Robustez B	Fase móvel com + 5% de acetonitrila durante toda a corrida	840865		
Robustez C	Fase móvel com + 5% de acetonitrila durante toda a corrida	841900		
Robustez A	Fase móvel com - 5% de acetonitrila durante toda a corrida	842242		
Robustez B	Fase móvel com - 5% de acetonitrila durante toda a corrida	841044		
Robustez C	Fase móvel com - 5% de acetonitrila durante toda a corrida	844383		
Robustez A	Coluna de fabricante diferente	820044	838568	0.945
Robustez B	Coluna de fabricante diferente	825945		-,,
Robustez C	Coluna de fabricante diferente	825034		
Robustez A	Fase móvel pH 2,0	843719		
Robustez B	Fase móvel pH 2,0	845130		
Robustez C	Fase móvel pH 2,0	843464		
Robustez A	Fase móvel pH 3,0	840258		
Robustez B	Fase móvel pH 3,0	841325		
Robustez C	Fase móvel pH 3,0	842158		

Quadro 21 – Dados robustez PSMA-Precursor área.

Amostra	Condições	Área	Média das Áreas	DPR (%)
Robustez A	Fase móvel com + 5% de acetonitrila durante toda a corrida	1010482		
Robustez B	Fase móvel com + 5% de acetonitrila durante toda a corrida	1015633		
Robustez C	Fase móvel com + 5% de acetonitrila durante toda a corrida	1014016		
Robustez A	Fase móvel com - 5% de acetonitrila durante toda a corrida	1060984		
Robustez B	Fase móvel com - 5% de acetonitrila durante toda a corrida	1065544		
Robustez C	Fase móvel com - 5% de acetonitrila durante toda a corrida	1069367		
Robustez A	Coluna de fabricante diferente	999636		2,663
Robustez B	Coluna de fabricante diferente	1012328	1034157	
Robustez C	Coluna de fabricante diferente	1010831		
Robustez A	Fase móvel pH 2,0	1016364		
Robustez B	Fase móvel pH 2,0	1018631		
Robustez C	Fase móvel pH 2,0	1016757		
Robustez A	Fase móvel pH 3,0	1066654		
Robustez B	Fase móvel pH 3,0	1068762		
Robustez C	Fase móvel pH 3,0	1066365		

Quadro 22 – Dados robustez PSMA-OH área.
--

Amostra	Condições	Tempo de retenção	Média das Áreas	DPR (%)
Robustez A	Fase móvel com + 5% de acetonitrila durante toda a corrida	13,688		
Robustez B	Fase móvel com + 5% de acetonitrila durante toda a corrida	13,692		
Robustez C	Fase móvel com + 5% de acetonitrila durante toda a corrida	13,698		
Robustez A	Fase móvel com - 5% de acetonitrila durante toda a corrida	2,914		
Robustez B	Fase móvel com - 5% de acetonitrila durante toda a corrida	2,917		
Robustez C	Fase móvel com - 5% de acetonitrila durante toda a corrida	2,913		
Robustez A	Coluna de fabricante diferente	5,032	6.513	59.048
Robustez B	Coluna de fabricante diferente	4,873		
Robustez C	Coluna de fabricante diferente	4,873		
Robustez A	Fase móvel pH 2,0	5,516		
Robustez B	Fase móvel pH 2,0	5,511		
Robustez C	Fase móvel pH 2,0	5,514		
Robustez A	Fase móvel pH 3,0	5,518		
Robustez B	Fase móvel pH 3,0	5,516		
Robustez C	Fase móvel pH 3,0	5,514		

Quadro 23 – Dados robustez PSMA-Precursor tempo de retenção.

Amostra	Condições	Tempo de retenção	Média das Áreas	DPR (%)
Robustez A	Fase móvel com + 5% de acetonitrila durante toda a corrida	15,021		
Robustez B	Fase móvel com + 5% de acetonitrila durante toda a corrida	15,026		
Robustez C	Fase móvel com + 5% de acetonitrila durante toda a corrida	15,031		
Robustez A	Fase móvel com - 5% de acetonitrila durante toda a corrida	3,326		
Robustez B	Fase móvel com - 5% de acetonitrila durante toda a corrida	3,330		
Robustez C	Fase móvel com - 5% de acetonitrila durante toda a corrida	3,326		
Robustez A	Coluna de fabricante diferente	5,798		
Robustez B	Coluna de fabricante diferente	5,611	7,527	54,445
Robustez C	Coluna de fabricante diferente	5,611		
Robustez A	Fase móvel pH 2,0	6,801		
Robustez B	Fase móvel pH 2,0	6,800		
Robustez C	Fase móvel pH 2,0	6,800		
Robustez A	Fase móvel pH 3,0	6,808		
Robustez B	Fase móvel pH 3,0	6,807		
Robustez C	Fase móvel pH 3,0	6,803		

Quadro 24 - Dados robustez PSMA-OH tempo de retenção.

Fonte: Autor.

Quadro 25 – Parâmetros e critérios de aceitação robustez.

Parâmetros	Critérios de aceitação	Resultado PSMA - Precursor	Resultado PSMA - OH
DPR (%) - Área	Máximo 5 %	2,663	0,945
DPR (%) - Tempo de retenção	Máximo 5 %	59,048	54,445