CENTRO PAULA SOUZA

ETEC ITAQUERA II

edificações

Karina Morais Salas

Rhenan Selmikaitis Hag Mantovani

AS APLICAÇÕES DA ALVENARIA ESTRUTURAL NA CONSTRUÇÃO CIVIL

São Paulo

2024

Karina Morais Salas

Rhenan Selmikaitis Hag Mantovani

AS APLICAÇÕES DA ALVENARIA ESTRUTURAL NA CONSTRUÇÃO CIVIL

Trabalho de Conclusão de Curso apresentado ao Curso Técnico em Edificações da Etec Itaquera II, orientado pelo prof. Antônio Carlos e Profa Dra. Aparecida Massako Tomioka como requisito parcial para a obtenção do título de técnico em Edificações.

São Paulo

RESUMO

Este trabalho de conclusão de curso aborda a alvenaria estrutural, destacando suas características, vantagens e desvantagens em comparação à alvenaria convencional. O objetivo principal é apresentar um método construtivo que evidencie a eficiência e a viabilidade da alvenaria estrutural, especialmente em projetos de edificações de pequeno e médio porte. Inicialmente, são discutidos os princípios básicos da alvenaria estrutural, que utiliza blocos de concreto como elementos portantes, permitindo a redução do uso de elementos estruturais adicionais. Em seguida, são analisados aspectos como a rapidez na execução, a economia de materiais e a sustentabilidade, em contraste com a alvenaria convencional, que depende de pilares e vigas para suportar as cargas. Além disso, o trabalho inclui um estudo de caso que ilustra a aplicação prática da alvenaria estrutural, apresentando resultados quantitativos e qualitativos que demonstram sua eficácia. Ao final, conclui-se que a alvenaria estrutural se apresenta como uma alternativa viável e eficiente, podendo contribuir para a modernização do setor da construção civil.

Palavras-Chave: alvenaria estrutural; construção civil; método construtivo.

SUMARIO

1. INTRODUÇAO	1
1.1 Justificativa e Objetivos	2
2. FUNDAMENTOS TEORICOS	3
2.1 Historia da alvenaria estrutural	3
2.2 Definições e caracteristucas gerais	4
2.3 Materiais Utilizados no sistema construtivo da Alvenaria Estrutural	5
2.3.1 Blocos estruturais	5
2.3.2 Argamassa	8
2.3.3 Graute	9
2.3.4 Aço e Vergalhões	11
2.3.5 Tela metálica e grampo	12

3. EXECUÇÃO DA ALVENARIA ESTRUTURAL	13
3.1 Planejamento e Preparação do Canteiro de Obras	13
3.1.1Projeto	15
3.1.2 Limpeza do terreno	18
3.1.3 Terraplanagem	19
3.1 Fundação	21
3.1.1 Fundação tipo radier	21
3.1.2 Fundação tipo sapata corrida	21
3.2 Instalações hidráulicas e elétricas	22
3.3 Juntas de dilatação	22
3.4 Patologias Comuns e Prevenção	24
3.5 Comparação com outros Sistema Construtivos Comparativo entre o convencional e o estrutural	o sistema 25
4. CONSIDERAÇÕES FINAIS	26
4.1 Conclusões	26
5. REFERÊNCIAS BIBLIOGRÁFICAS	28

1. INTRODUÇÃO

Depois da primeira metade do século XX, a alvenaria estrutural soube adaptar-se a novas tecnologias e estéticas da construção contemporânea, mantendo uma boa posição no mercado. No Brasil, a construção em alvenaria estrutural tem recebido enorme interesse da comunidade técnica, com claras vantagens na racionalização da construção, (MOHAMAD, 2020).

A alvenaria estrutural, torna-se uma solução bastante viável para o grande déficit habitacional do Brasil, uma vez que é mais rápida, racional e barata, quando comparada com a construção tradicional. (Menezes, BRP; Junior, LAMA; Diniz, TI; Eiras, DHM; Gomes, GJC; Paschoal, CJF, 2018)

Diante do contexto, este trabalho tem como objetivo apresentar o método construtivo da alvenaria estrutural, junto a comparação do método convencional utilizado no Brasil. Os aspectos citados buscam fornecer uma análise comparativa de custo e sustentabilidade.

1.1 Justificativa e Objetivo

Esse trabalho tem como objetivo aprofundar o entendimento e realizar uma comparação do método construtivo de alvenaria estrutural com a alvenaria convencional. A análise abordará diversos fatores de sua execução, levando não só em conta fatores técnicos, mas também econômicos e de rentabilidade de ambos os métodos analisados. A partir disso, visando entender suas propriedades e definir parâmetros de sua complexidade, a pesquisa definirá o passo a passo de uma edificação feita em alvenaria estrutural, mostrando que, mesmo necessitando de mão de obra especializada, é uma forma construtiva válida.

Devido às suas peculiaridades em relação ao método convencional, o sistema de alvenaria estrutural, que se baseia em alvenarias autoportantes, apresenta elementos distintos. Existem normas técnicas específicas que definem os componentes, abrangendo desde a superestrutura até a estrutura como um todo. Considerando essas diferenças em comparação ao método convencional, é fundamental apresentar e avaliar todo o processo construtivo da alvenaria estrutural, abordado assim itens estruturais importantes e suas diferenças com o método convencional.

A utilização da alvenaria estrutural se justifica pela sua capacidade de oferecer um sistema construtivo mais eficiente e integrado, que, apesar de exigir mão de obra especializada e ter certas restrições de reformas após sua execução, traz muitos benefícios, como rentabilidade econômica e viabilidade prática, se comparado à alvenaria convencional, que apresenta certas limitações e custos adicionais. Assim, a pesquisa proposta busca não apenas explorar essas características, mas também demonstrar a importância da alvenaria estrutural como uma alternativa construtiva sustentável e eficaz.

2 FUNDAMENTOS TEÓRICOS

2.1 História e Evolução da Alvenaria Estrutural

Segundo MOHAMAD (2015), a alvenaria estrutural teve o seu princípio no século XX, no estado de São Paulo, com a construção do conjunto habitacional "Central Park Lapa", a mesma foi executada com blocos de concreto, tinham apenas 3 pavimentos e paredes com 4cm de espessura. Na década de 1970, foram construídos 4 edifícios com 12 pavimentos cada.

Figura 3: Conjunto Habitacional Central Park Lapa

Fonte: viva decora

[...] anteriormente, poderia ser considerada como uma "alvenaria resistente", ou seja, fruto apenas de conhecimento empírico, como consequência da inexistência de regulamentos que fixassem critérios de dimensionamento e segurança dos elementos estruturais, de forma a relacionar as diferentes tensões atuantes à resistência do elemento. (Mohamad, 2021, p.18)

3.1 Definição e Características Gerais

Segundo Mohamad (2021) a alvenaria estrutural baseia-se na distribuição de cargas através da alvenaria. Na alvenaria convencional, temos como principal objetivo a distribuição de cargas e tensões por meio das vigas e pilares, o mesmo não ocorre na alvenaria estrutural, pois a mesma tem função autoportante.

"Nesse tipo de edificação, a segurança estrutural é garantida pela rigidez da edificação em virtude da união (amarrações) entre as paredes estruturais, nas duas direções principais." (MOHAMAD, 2021, p.111)

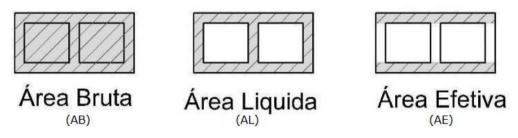
A principal função desse sistema construtivo reside na transmissão de cargas provenientes através dos esforços gerados, diante disso, o projeto a ser desenvolvido deve apresentar todas as tipologias fundamentais. "Aspectos como volumetria, simetria, dimensões máximas dos vãos e flexibilidade da planta devem ser também estudadas". (Mohamad, 2021, pg. 113)

Além disso, a implementação de projetos envolvendo alvenaria estrutural são frequentemente confrontados com restrições estabelecidas por normas técnicas, como por exemplo:

- Limitação no número de pavimentos;
- Arranjo e amarração das paredes;
- Limitação na transição entre ambientes
- Impossibilidade de remoção de paredes;

2.3 Materiais utilizados no sistema construtivo em Alvenaria Estrutural

2.3.1 Blocos estruturais


A NBR 6136/2016 emitida pela ABNT (Associação Brasileira de Normas Técnicas), estabelece requisitos para a produção e aceitação de blocos vazados de concreto simples, destinados à execução de alvenaria com ou sem função estrutural.

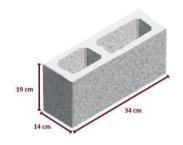
Essa norma é responsável por estabelecer requisitos de resistência à compressão, tem como principal objetivo a padronização e a eficiência, otimizando o uso dos materiais corretos gerando maior desempenho.

A área bruta de um bloco é a soma de todas as faces e superfícies planas, de forma autoexplicativa, tem como principal objetivo: a estimativa correta de materiais, o cálculo de peso, planejamento e projetos, controle de qualidade e cálculo de custos.

Já a área líquida de um bloco é basicamente a soma de todas as áreas externas, dispensando as áreas internas. Tem como principal objetivo a melhor precisão no planejamento dos materiais

Figura 5: Áreas do bloco de concreto

Fonte: passeidireto


De acordo com a NBR 6136/2016, os blocos de concreto simples ou com função estrutural podem ser denominados em três categorias, sendo

- Classe A: Os blocos de classe A, costumam ser os de maior resistência possuindo 8 Mpa. Recomendado para alvenarias abaixo ou acima do solo.
- Classe B: Os blocos de classe B, possuem entre 4 e 8 Mpa, sendo adequados apenas para alvenarias acima do solo.
- Classe C: Os blocos de classe C são indicados assim como os blocos de classe B, para obras com alvenaria acima do nível do solo. Por possuírem resistência entre 3 e 4 Mpa é ideal para edifícios de até um pavimento e estruturas menores onde a carga e a resistência não são tão críticas.

Na alvenaria estrutural, o princípio da modulação baseia-se na amarração de blocos que exercem função estrutural. Portanto, referente a blocos de concreto, as dimensões dos blocos devem, geralmente, ser múltiplas para facilitar a modulação. Por essa razão, os blocos de concreto são classificados em duas famílias: a família 39 e a família 29.

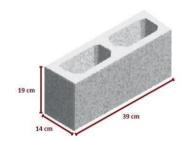

Na modulação apresentada, foi utilizada a família 39 apresenta um módulo de 20 cm para a altura, enquanto a largura é de 15 cm. Para modular essas medidas, utilizam-se blocos específicos, como o 14x19x34 (Figura 6), que é empregado nos cantos, e o 14x19x54 (Figura 7), utilizado em encontros de parede em "T". O bloco 14x19x39 (Figura 8) é o mais comum para os comprimentos das paredes, enquanto o meio bloco dessa mesma medida, o 14x19x19 (Figura 9), é amplamente utilizado em vãos de portas e janelas, garantindo que a armação da alvenaria termine em prumo.

Figura 6: Bloco 14X19x34

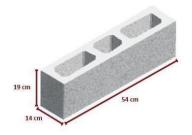

Fonte: Pavibloco

Figura 8: Bloco 14X19x39

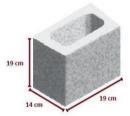

Fonte: Pavibloco

Figura 7: Bloco 14X19X54

Fonte: Pavibloco

Figura 9: Meio bloco 14X19X19

Fonte: Pavibloco

2.3.2 Argamassa

A argamassa é uma "mistura homogênea de agregado (s) miúdo (s), aglomerante (s) inorgânico (s) e agua, contendo ou não aditivos, com propriedades de aderência e endurecimento, podendo ser dosada em obra ou instalação própria", NBR 13281.

As argamassas são elementos fundamentais, segundo Schankoski existem diversas vantagens na utilização da argamassa, tais como a redução de perdas, limpeza da obra, maior produtividade, vantagens econômicas e misturas mais constantes. Além de ser consumo constante esse tipo de argamassa vem sendo utilizado em situações de assentamento de blocos de concreto na alvenaria estrutural o que pode gerar problemas patológicos futuramente caso a argamassa não atenda a resistência necessária de carga para suportar as paredes.

As argamassas de assentamento são responsáveis por manter a estabilidade do edifício, as juntas de argamassa preenchidas de modo incompleto sem uniformidade, podem gerar tensões indesejadas, provocando a diminuição da resistência inicial da parede e fissuração precoce (MEDEIROS, SABBATINI, 1993).

Segundo MOHAMAD (2°17), as argamassas utilizadas para o assentamento das unidades podem ser classificadas segundo os materiais presentes na mistura

- Argamassas de Cal: Constituem se por uma mistura de cal e areia. São indicadas, portanto, em casos onde as ações de cargas são evidentemente pequenas.
- Argamassas de cimento: Constituem se por cimento Portland e areia.
 Devido a rapidez na secagem, garante a execução de varias fiadas sem o risco de esmagamento, alem de, serem indicadas em regiões que entram em contato com a agua e para nivelamento.

- Argamassas mistas: Constituem se por cimento Portland, cal e areia. A
 presença do cimento ajuda no aumento da resistencia a compressão,
 entretanto, no caso da cal ajuda a melhorar a trabalhabilidade e a
 retenção de agua diminuindo a retração.
- Argamassas Industrializadas: Nesse caso acontece a substituição da cal por aditivos, o que comparativamente proporciona menor resistência.

Segundo JANTSCH (20para resistências a compressão, deve ser atendido o valor mínimo de 1,5 Mpa e o máximo limitado a 0,7 Fbk (resistência característica do bloco) na área liquida.

2.3.3 Graute

Segundo a NBR 15961/1, o graute e um material composto por cimento, agregados miúdos e graúdos, agua e cal ou outra adição por proporcionar trabalhabilidade e retenção de agua de hidratação a mistura. Os mesmos materiais utilizados na produção do graute podem ser usados na utilização do concreto, as diferenças estão no tamanho dos agregados graúdos e na relação água/ cimento. CAMACHO (2006) afirma que o graute deve apresentar tamanha fluidez de modo que preencha adequadamente os vazios necessários.

"O graute pode ser comumente utilizado para aumentar a capacidade de resistência a compressão da parede e solidificar as armaduras com alvenaria [...] Como material de enchimento, atuar como reforço estrutural, principalmente em zonas de concentração de tensões" (MACHADO, 2021, pg. 66)

De acordo com Machado (2021) e importante considerar que a mistura deve apresentar coesão e consistência e ao mesmo tempo apresentar fluidez, não deve haver deslocamento entre o graute e as paredes internas dos blocos, sendo assim, a resistência à compressão do graute, aliada às propriedades mecânicas dos blocos e da argamassa, irá definir as características de compressão da alvenaria.

Com base nas ideias de Mohamad (2021) e Machado (2021), o graute em situações de alvenaria não armada apresenta função de preenchimento de vazios entre blocos, aumentando a estabilidade e a coesão da estrutura. Além de adicionar peso, o que pode ser vantajoso para resistir a ações externas, o graute também atua como nivelador, proporcionando superfícies uniformes para acabamentos. Sua aplicação minimiza a formação de fissuras, melhorando a integridade e a durabilidade da construção.

2.3.4 Aço e Vergalhão

Na alvenaria estrutural, o aço / vergalhão exerce papel crucial, é utilizada para resistir a esforços de tração e cisalhamento, além de ser utilizada para conectar paredes e outros elementos não estruturais.

Segundo JANTSCH (2021), o aço pode ser utilizado em tais situações:

Figura 7: Utilizações do aço

Fonte: Calculando a obra

"É fundamental o uso de armaduras de reforço para controlar a fissura por retração ou expansão que ocorre, normalmente, acima ou abaixo da área de seção transversal da alvenaria. As treliças planas na junta horizontal de assentamento devem ser longas o suficiente para distribuir as tensões de tração nas proximidades do entorno da abertura" (JANTSCH, 2021, pg. 70)

Para elucidar o tema, devemos levar em conta que a utilização de armaduras de reforço é essencial para prevenir fissuras na alvenaria, que ocorrem devido a processos de retração ou expansão dos materiais. As armaduras de reforço, como treliças são incorporadas nas juntas horizontais para garantir que as tensões sejam bem distribuídas de maneira a ficar nas proximidades das aberturas, como portas e janelas. A extensão adequada dessas treliças é crucial para evitar a concentração de tensões, prevenindo a formação de fissuras e assegurando a integridade e durabilidade da estrutura.

2.3.5 Tela metálica e grampo

Em determinadas situações onde não e possível o uso da amarração na modulação da alvenaria estrutura, é necessário unir através de telas ou grampos metálicos. É fundamental destacar que, ao adotar esses métodos, a possibilidade de aproveitar o efeito de uniformização na distribuição de cargas verticais ou horizontais fica totalmente comprometida, uma vez que a tela ou o grampo atuam apenas como elementos de união entre as alvenarias.

3. EXECUÇÃO DA ALVENARIA ETSRUTURAL

3.1 Planejamento e Preparação do canteiro de obras

Um bom planejamento e controle de obras é fundamentai para a inicialização de uma edificação, garantindo que toda a obra ocorra com êxito e conforme planejada, esse passo é onde devemos seguir o controle de execução de obra conforme a ABNT NBR 16868-1

O controle da execução da alvenaria estrutural deve ser planejado de acordo com os seguintes aspectos mínimos:

1. "a) atendimento a um projeto estrutural elaborado conforme a ABNT NBR 16868-1 e devidamente compatibilizado com os projetos das demais especialidades técnicas: b) determinação dos responsáveis pela execução do controle e circulação informações; das c) determinação dos responsáveis pelo tratamento e resolução das não conformidades; d) definição da forma de registro e arquivamento das informações: e) estabelecimento de procedimentos específicos para o controle dos materiais e componentes, do processo de execução da alvenaria e para a sua aceitação" (ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, 2020, p. 2).

Essas são etapas de grande importância para a obra, pois definem todos os requisitos necessários para sua execução. A norma afirma que a compatibilização entre projetos deve ser atendida. É exigido que sejam compatíveis entre si, pois só assim conseguimos aplicar de forma correta e segura todas as especialidades técnicas. Por exemplo, a parte hidráulica e elétrica não deve ter conflitos com a parte

estrutural, garantindo, futuramente, a harmonia das partes e evitando retrabalhos devido a falhas de projeto.

O responsável pelo controle da obra deve manter uma abordagem rigorosa, já que é crucial que o projeto seja executado conforme a sua conformidade previamente definida. Qualquer problema na execução pode acarretar empecilhos significativos para a continuidade da obra.

A norma também exige que haja responsáveis pelo tratamento de qualquer não conformidade. Sempre que algo estiver fora dos padrões, o responsável deve agir com medidas corretivas para manter a qualidade da obra e os prazos estabelecidos.

O arquivo da obra garante a documentação de todas as etapas, registrando o que já foi executado ou rejeitado. Essa ferramenta garante o controle e a verificação contínua durante a obra, diminuindo possíveis falhas de comunicação entre as equipes.

Por fim, os procedimentos específicos asseguram que a execução de todas as etapas siga o padrão de qualidade definido no projeto.

3.1.1 Etapas pré-construtivas:

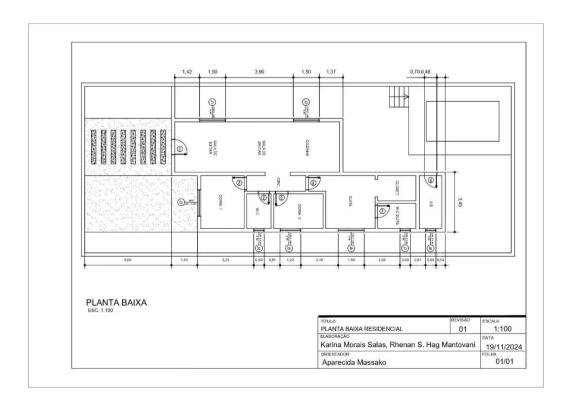
Para a alvenaria estrutural, essa análise torna-se ainda mais essencial, uma vez que a eficiência e a segurança dessa técnica construtiva dependem da capacidade do solo em suportar as cargas transmitidas pela edificação. A identificação de características geotécnicas, como a resistência e a compressibilidade do solo, é fundamental para o dimensionamento adequado das paredes estruturais. Se o solo não for adequado, pode haver comprometimento da estabilidade da estrutura, resultando em fissuras, deslizamentos ou até mesmo colapsos.

O primeiro passo, baseia se na finalidade do terreno, e indispensável que se observe a localização em que o terreno se encontra, a infraestrutura da região o tipo

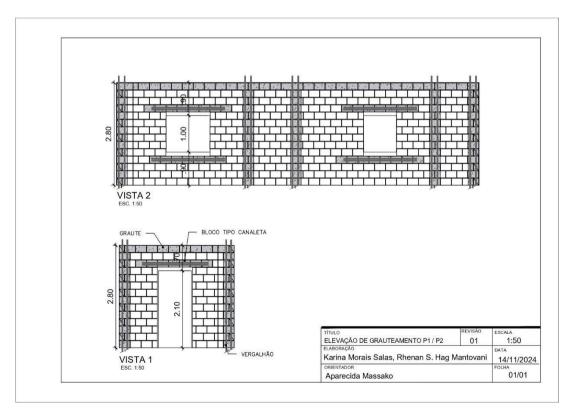
de solo do terreno, se há facilidade de acesso e aspectos do lote, essas condições influenciam diretamente na obra, em seus gastos e tempo (A.D., 2018; RETONDO, 2021; SOUZA, 2013).

Também vale ressaltar que para qualquer construção, há a necessidade de planejamento prévio, o que inclui projetos, orçamentos, legalização, plano diretor, código de obras, lei e uso de ocupação do solo, alvará de construção e habite-se.

3.1.2 Projetos


Desde já, vale ressaltar que a elaboração de projetos e essencial para o processo de modulação. A modulação tem como princípio a previsão da posição dos blocos, deve-se considerar a 1º e a 2º fiada como principais e as demais seguindo a sequência, o projetista deve se atentar a posição de cada bloco, a posição de pontos elétricos e hidráulicos, vergas e contravergas, pontos de graute e armaduras.

De acordo com CAMACHO (2006), os projetos (arquitetônicos, estrutural e de vedação) devem unir-se pois a parede além de receber função estrutural e vista como um todo, contendo elementos de instalações. Sendo assim, todos os projetos devem estar alinhados entre si para que não cause interferências e imprevistos no momento da execução.


" A forma da parede, e muitas vezes condicionada por sua função. [...] do ponto de vista estrutural a distribuição das paredes portantes e a forma da edificação devem ser rígidas o suficiente para resistir a esforços. Portanto, a escolha e a modulação são responsáveis pela maior parte da racionalização obtida nas obras em alvenaria estrutural. ." (MOHAMAD, 2021, p. 91 e 92).

Além disso, MOHAMAD (2020) afirma que o código de obras municipais, impõe algumas restrições especificas para projetos em alvenaria estrutural. Existem diversas limitações a serem consideradas na concepção de uma estrutura. Em primeiro lugar, a quantidade de pavimentos é restrita devido à resistência dos componentes e à relação com os esforços que atuam sobre eles. Além disso, não é possível realizar a remoção posterior de paredes estruturais, o que compromete a flexibilidade do projeto. O uso de balanços também é inviável, exigindo um planejamento cuidadoso.

Outro aspecto importante é o arranjo dos elementos em relação às duas direções principais de vento, o que torna necessária a amarração entre os componentes estruturais para garantir a estabilidade. É fundamental, ainda, que a passagem hidráulica seja planejada com antecedência, evitando cortes em elementos estruturais. Por último, a utilização de juntas de dilatação é imprescindível para acomodar as variações térmicas e de movimentação da estrutura.

3.1.3 Limpeza do terreno

Sabe-se que a preparação do terreno e essencial antes do início de qualquer obra. De início, devemos considerar a limpeza do terreno como foco principal, nessa etapa é necessário verificar se será preciso desmatar o terreno, devido a licenças ambientais. E fundamental que a limpeza seja feita antes do levantamento topográfico da região, pois a vegetação pode atrapalhar na captação.

Segundo GEOSENSORI (2019), após a limpeza do terreno e o levantamento topográfico, deve-se fazer a inspeção geotécnica do solo. A inspeção é de extrema importância e serve para que se conheça as camadas que estão abaixo da superfície, portanto, e relevante para o processo de terraplanagem e cálculo estrutural, assim é possível saber as dificuldades na escavação e como o solo reagira aos esforços recebidos.

Figura xxx

Fonte: Limpeza do lote

3.1.4 Terraplanagem

A terraplanagem e um elemento fundamental antes do início de qualquer obra. Consiste em retirar o excesso de terra e deixar a região nivelada, muitas vezes o material retirado pode ser reaproveitado em espaços do terreno que necessitam de preenchimento, contudo, para que esse reaproveitamento seja útil o solo necessita passar por testes, para ver se necessita de algum tipo de tratamento.

Segundo ARMAC (2021), o primeiro passo para a execução da terraplanagem é a análise de região, tais como o nível de declive e aclive que a região tem. O processo de terraplanagem divide-se em varia etapas:

Escavação: O processo, tem como início a remoção da terra existente junto a uma unidade escavadeira. Esse processo, pode ser executado de duas formas diferentes, a primeira consiste na retirada e transporte da terra para um bota-fora. Já a segunda possibilidade seria, utilizar o excesso retirado em cortes para utilização em aterros em campo.

Figura xxx: Unidade escavadeira terraplanagem

Fonte: APELMAT

Aterro: Tem como princípio, preencher espaços vazios em campo. Pode acontecer o transporte de terra por exportação, na qual acontece o transporte, ou por meio da reutilização das áreas em corte, no entanto vale ressaltar que para que a terra seja reutilizada, há a necessidade do estudo do solo para que tenha certificação de que a terra não está contaminada. Geralmente, o estudo do solo tem de ser feito antes do início da movimentação de terra.

Figura: Aterro

Fonte: TerraService

Compactação do solo: Após o processo de corte e aterro, e importante que a terra fique nivelada e compactada. Sendo assim, o processo é feito por meio de rolos compactadores que assentam a terra. O processo se repete diversas vezes até atingir o que foi especificado no projeto.

Figura xx: Rolo compactador

Fonte: JL Terraplanagem

E possível que aconteça questões problemáticas no momento da terraplanagem, como por exemplo, terrenos com encostas de morros são propícios a sofrerem com deslizamentos, sendo assim, há a necessidade de drenagem. Já em locais com ala inclinação, pode acontecer a descida de barreiras.

3.2 Fundação

A fundação é um elemento estrutural fundamental em qualquer construção, responsável por transmitir ao terreno as cargas de uma estrutura. Segundo Azeredo (1977, p. 29), "fundações são os elementos estruturais destinados a transmitir ao terreno as cargas de uma estrutura". É necessário entender os critérios importantes para escolher a melhor fundação em alvenaria estrutural.

3.2.3 Fundação tipo radier

O radier, também conhecido como fundação de placa, é um tipo de fundação rasa amplamente utilizado em alvenaria estrutural. Quando se trata de apoiar grandes construções, o radier protendido é mais viável. Este tipo de fundação emprega uma armadura ativa de aço de alta resistência, fornecida em bobinas, composta por cordoalhas engraxadas e plastificadas de sete fios (FEITOSA, 2012)."

3.2.4 Instalações hidráulicas e elétricas

As instalações hidráulicas e elétricas em alvenaria estrutural possuem elementos específicos que as distinguem da alvenaria convencional, devido às suas limitações na execução. Portanto, é fundamental realizar um planejamento cuidadoso antes da execução dessas instalações. Para garantir uma implementação eficaz, é recomendável seguir alguns passos durante a instalação.

3.2.5 Instalação hidráulica

É necessário levar em consideração o projeto das instalações hidráulicas, devido suas limitações e peculiaridades.

"A passagem das tubulações hidráulicas é mais complicada, uma vez que não se pode embuti-las nas paredes estruturais. A passagem da tubulação deve ser feita através de shafts e forros falsos. O ideal é que as áreas molhadas (banheiros, cozinhas, áreas de serviço) fiquem concentradas em uma mesma região da edificação, permitindo assim a otimização das prumadas e Consequente utilização dos shafts, gerando economia e produtividade" (Nonato, 2013, p 13).

3.2.6 Instalação elétrica

A instalação elétrica segue regras e normas que definem sua aplicação nos blocos de alvenaria estrutural. Segundo NONATO (2013), Como princípio geral, o caminhamento das tubulações elétricas será sempre feito na direção vertical, aproveitando-se os vazios dos blocos para a passagem de mangueiras, cortes horizontais não são permitidos para interligação de pontos.

3.2.7 Juntas de dilatação

Segundo JANTSCH (2021), as juntas de dilatação são espaçamentos com função de absorver os movimentos que a estrutura exerce. São espaços deixados entre duas paredes estruturais a fim de permitir a movimentação do edifício sem concentrar as tensões.

"As ocorrer na estrutura provenientes da variação de temperatura e devem estar presentes juntas de controle têm por função absorver os movimentos que possam nas estruturas sempre que essa movimentação puder comprometer a integridade da estrutura. Se não for feita avaliação do comportamento térmico, recomenda-se que as juntas sejam aplicadas em edifícios a cada 20 metros de estrutura em planta" (CAMACHO, 2006, pg 45).

A NBR 15812 1 (2010) e a NBR 15961 1 (2011), definem que deve ser prevista uma junta de dilatação a cada 24m, no entanto, quando for possível ou a edificação possuir dimensões inferiores a 24m, deve prever-se pelo menos uma junta de forma a separar a edificação ao meio. As juntas devem ser preenchidas com materiais flexíveis, como por exemplo borracha ou silicone, e devem ser impermeabilizadas para evitar a entrada de agua.

MOHAMAD (2021) afirma que, os locais mais indicados para execução de juntas de dilatação são em encontro de paredes, abertura de portas e janelas, mudanças de espessura de paredes e em mudanças de altura.

3.6 Patologias comuns e prevenção

"Uma estrutura composta por um material tão suscetível a modificações quanto o concreto exige monitoramento contínuo, além de um planejamento e execução adequados. Essas etapas são cruciais para prevenir o surgimento de patologias, como trincas e fraturas, que, se não tratadas, podem reduzir significativamente a vida útil da edificação". (Grandiski, 2013).

As trincas e fraturas geralmente resultam de tensões excessivas no concreto, causadas por uma combinação de fatores, como esforços estruturais inadequados, variações de temperatura e movimentos no solo. Especialmente em construções que utilizam o sistema de alvenaria estrutural, a ausência de reparos e a falha na identificação dos agentes causadores dessas patologias levam ao agravamento progressivo dos danos. Ao longo do tempo, isso pode resultar em maior desgaste da estrutura e comprometimento de sua segurança e funcional. É de extrema importância um controle rigoroso desde o início do processo construtivo, tanto para evitar problemas quanto para garantir a durabilidade da edificação.

3.7 Comparação com outros Sistema Construtivos Comparativo entre o sistema convencional e o estrutural

A alvenaria estrutural vem ganhando cada vez mais espaço na construção civil, uma vez que apresenta várias vantagens se comparada aos processos construtivos convencionais.

"Como a redução de custos da obra, aumento da produtividade, diminuição de desperdícios e auxílio no gerenciamento da obra. Em se tratando de custos, ela tem uma vasta economia, pois reduz drasticamente a utilização da madeira, aço e concreto" (BERTI E RAFAEL, 2019).

Na Engenharia Civil, é fundamental que o projetista responsável defina qual modo construtivo melhor se adapta ao projeto, levando em contas especificações técnicas da edificação, custo para sua execução, e tempo para sua construção.

"A alvenaria estrutural exige uma mão de obra com maior qualificação e aptidão para o uso de instrumentos e ferramentas adequadas para sua execução, sendo necessário um treinamento prévio da equipe, para que não existam riscos de falhas comprometendo a segurança da estrutura. Entretanto, a alvenaria convencional em concreto armado ainda é predominante no Brasil, pois se apresenta como um sistema familiarizado pelos trabalhadores, apesar de manifestar um

grande nível de desperdícios e baixa produtividade" (RAMALHO E CORRÊA, 2003).

Devido a alvenaria convencional ter sua predominância no mercado, mesmo a estrutural sendo utilizada em algumas obras ainda se há muitos debates em questão de benefícios e comparação de vantagens e desvantagens.

4. CONCLUSÃO

A alvenaria estrutural, ao longo das últimas décadas, tem se consolidado como uma solução eficiente e economicamente viável na construção civil, especialmente em obras de pequeno e médio porte. Sua adoção representa uma importante evolução no setor, pois alia a funcionalidade estrutural à economia de recursos. A utilização de blocos de concreto ou cerâmicos, dispostos de forma a suportar as cargas da edificação, reduz a necessidade de elementos estruturais adicionais, como pilares e vigas, tornando a obra mais simples e rápida de ser executada.

Além disso, a alvenaria estrutural oferece vantagens como a durabilidade, o bom desempenho térmico e acústico, e a facilidade de execução, principalmente quando empregada com materiais modernos e técnicas construtivas inovadoras. A normatização e as melhorias no processo de fabricação dos blocos também contribuíram para garantir a segurança e a resistência das construções, o que reforça a confiabilidade desse sistema.

Entretanto, apesar dos benefícios, é importante destacar que a alvenaria estrutural exige cuidados específicos no planejamento e execução, uma vez que o correto dimensionamento das paredes e o controle rigoroso da qualidade dos materiais são essenciais para garantir a estabilidade e o desempenho adequado da edificação. A formação contínua

de profissionais e o aprimoramento das técnicas de construção são pontoschave para o sucesso de obras que utilizam esse sistema.

Dessa forma, conclui-se que a alvenaria estrutural, quando adequadamente aplicada, representa uma solução promissora para a construção civil, que permite otimizar recursos, reduzir custos e aumentar a eficiência na execução das obras, sem comprometer a qualidade e a segurança das edificações.

9 REFERENCIAS BIBLIOGRAFICAS

VIEIRA, Ricardo de Souza. Título do trabalho. Trabalho de conclusão de curso (TCC) – Instituto Federal de Santa Catarina (IFSC), 2019. Disponível em: https://repositorio.ifsc.edu.br/bitstream/handle/123456789/1526/TCC-Ricardo_de_Souza_Vieira.pdf?sequence. Acesso em: 15 ago. 2024.

JÚNIOR, Wilson. A utilização da fundação do tipo radier. ResearchGate, 2020. Disponível em: https://www.researchgate.net/profile/Wilson-Junior-8/publication/342217676_A_Utilizacao_da_Fundacao_do_Tipo_Radier/links/5ee963ff 458515814a6523a0/A-Utilizacao-da-Fundacao-do-Tipo-Radier.pdf. Acesso em: 20 ago. 2024.

JUSTE, Andrea Elizabeth. Análise de sistemas de drenagem de águas pluviais: estudo de caso. São Carlos: Universidade de São Paulo, 2001. Disponível em: http://sistemas.set.eesc.usp.br/static/media/producao/2001ME_AndreaElizabethJust e.pdf. Acesso em: 20 ago. 2024.

NEPAE. Projeto de edifícios de alvenaria estrutural. São Paulo: Universidade Estadual Paulista (UNESP), [s.d.]. Disponível em: https://www.feis.unesp.br/Home/departamentos/engenhariacivil/nepae/projeto-deedificios-de-alvenaria-estrutural.pdf. Acesso em: 22 ago. 2024.

MATOS, Paulo de; COSTA, Rafael; SILVA, Juliana; e LIMA, Marcos. Estudo da utilização de argamassa estabilizada em alvenaria estrutural de blocos de concreto.

ResearchGate, 2019. Disponível em: https://www.researchgate.net/profile/Paulo-De-Matos-

3/publication/331964955_Estudo_da_utilizacao_de_argamassa_estabilizada_em_alv enaria_estrutural_de_blocos_de_concreto/links/5c957b15299bf11169409996/Estudo -da-utilizacao-de-argamassa-estabilizada-em-alvenaria-estrutural-de-blocos-de-concreto.pdf. Acesso em: 22 ago. 2024.

SANTOS, Luís Carlos. Patologias nas construções em alvenaria estrutural. 2018. 60 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Civil) — Universidade Federal da Paraíba, João Pessoa, 2018. Disponíve lem: https://ct.ufpb.br/ccec/contents/documentos/tccs/copy_of_2018.2/patologias-nas-construcoes-em-alvenaria-estrutural.pdf. Acesso em: 02 set. 2024.

MOHAMAD, Gihad (Org.). Construções em Alvenaria Estrutural: Materiais, projeto e desempenho. 1. ed. São Paulo: Blucher Ltda, 2015. Disponível em https://books.google.com.br/books?hl=en&Ir=&id=BAkVEAAAQBAJ&oi=fnd&pg=PP1 &dq=info:IDDyuTmmMe0J.google.com&ots=4nWjhwPicO&sig=F3ZmN6ilhQz2PXMA 7GuP6qoF7hY&redir_esc=y#v=onepage&q&f=false

ASSOCIAÇÃO BRASILEIRA DE ENGENHARIA E ARQUITETURA (AERA).

Alvenaria Estrutural. Disponível em: https://aera.org.br/alvenaria-estrutural/#:~=A%20Alvenaria%20Estrutural%2C%20como%20a,o%20que%20disse minou%20esse%20sistema. Acesso em: 2 set. 2024.

PARSEKIAN, Guilherme Aris; MEDEIROS, Wallisson Angelim. Parâmetros de projeto de alvenaria estrutural. 2. ed. revista conforme NBR 16868:2020. São Paulo:

Editora Exemplo, 2024. Disponível em: https://www.google.com.br/books/edition/Par%C3%A2metros_de_projeto_de_alvena ria_estr/FteSEAAAQBAJ?hl=pt-

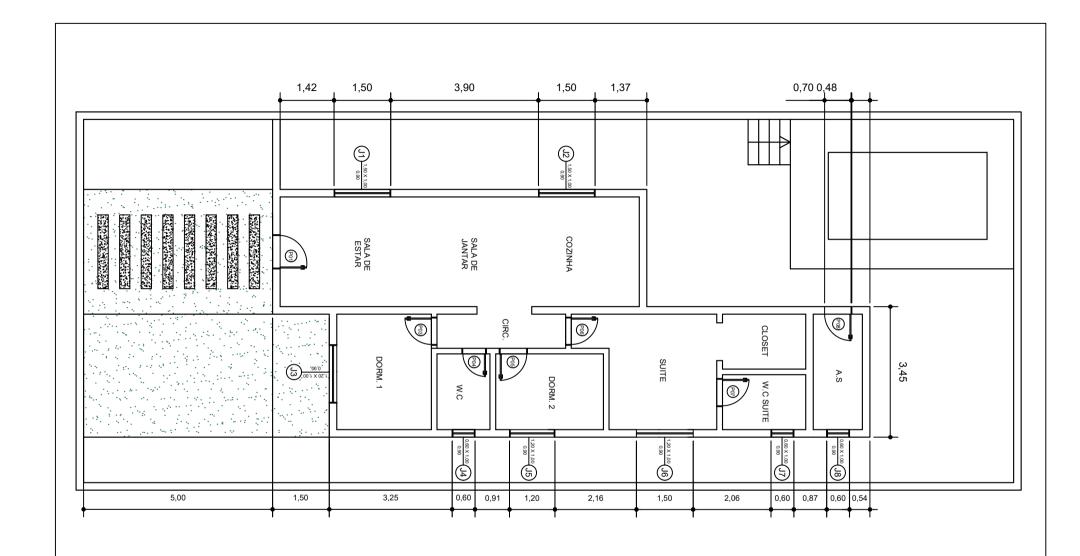
BR&gbpv=1&dq=alvenaria+estrutural+metodo+construtivo&printsec=frontcov.

Acesso em: 2 set. 2024.

MOHAMAD, Gihad; MACHADO, Diego Willian Nascimento; JANTSCH, Ana Claudia Akele. Alvenaria estrutural: construindo o conhecimento. 1. ed. São Paulo: Editora Blucher, 2017.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 16868-1:

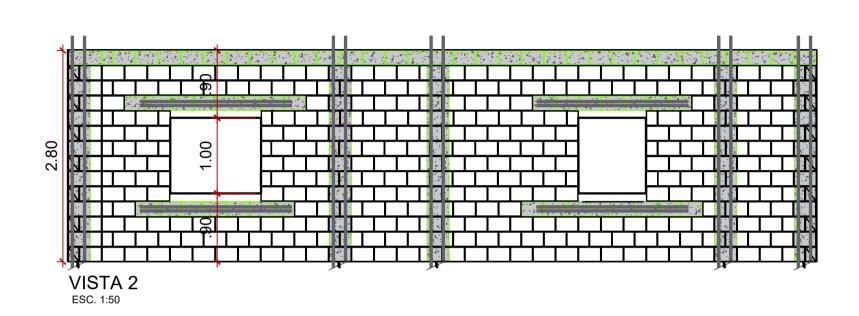
Projeto de sistema de climatização de ambientes comerciais - Parte 1: Requisitos gerais. 1. ed. Rio de Janeiro: ABNT, 2020.

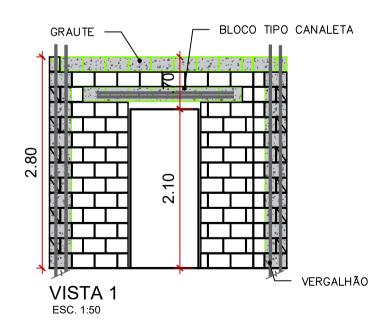

AMIGO CONSTRUTOR. Qualidade na alvenaria estrutural. Disponível em: https://www.amigoconstrutor.com.br/conteudos/qualidade-na-alvenaria-estrutural.html. Acesso em: 2 out. 2024.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 16868-1: Projeto de sistema de climatização de ambientes comerciais - Parte 1: Requisitos gerais. 1. ed. Rio de Janeiro: ABNT, 2020.

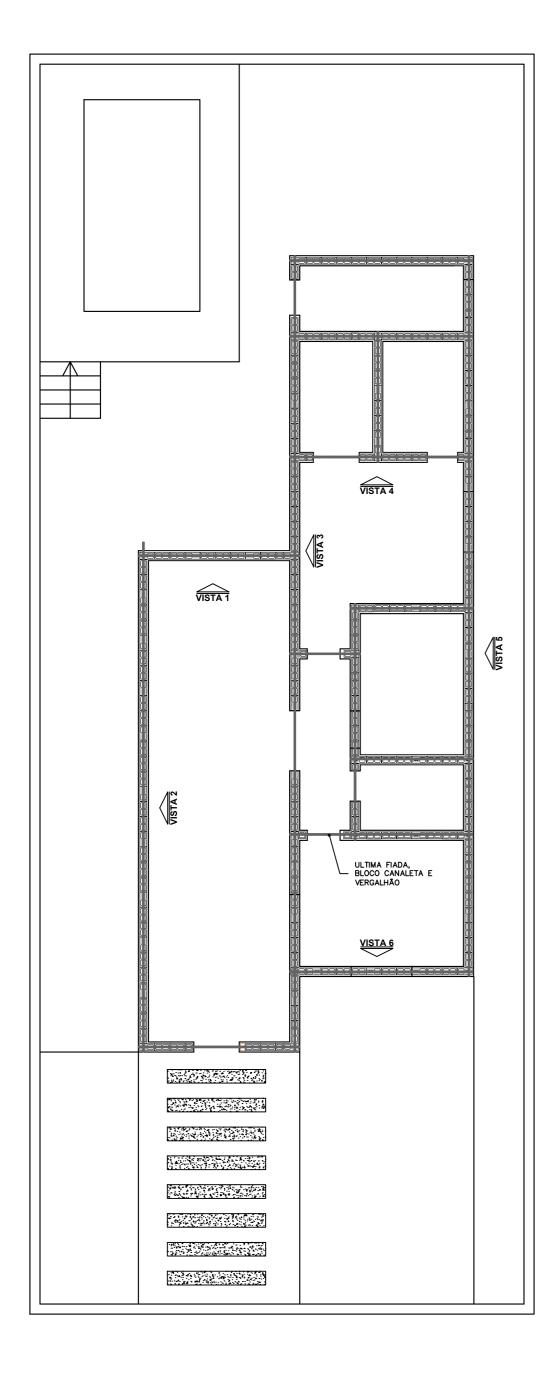
GRANDISKI, Paulo. Monitoramento e durabilidade de estruturas de concreto. São Paulo: Editora Técnica, 2013.

AZEREDO, H. Fundações. 2. ed. São Paulo: Editora Técnica, 1977.

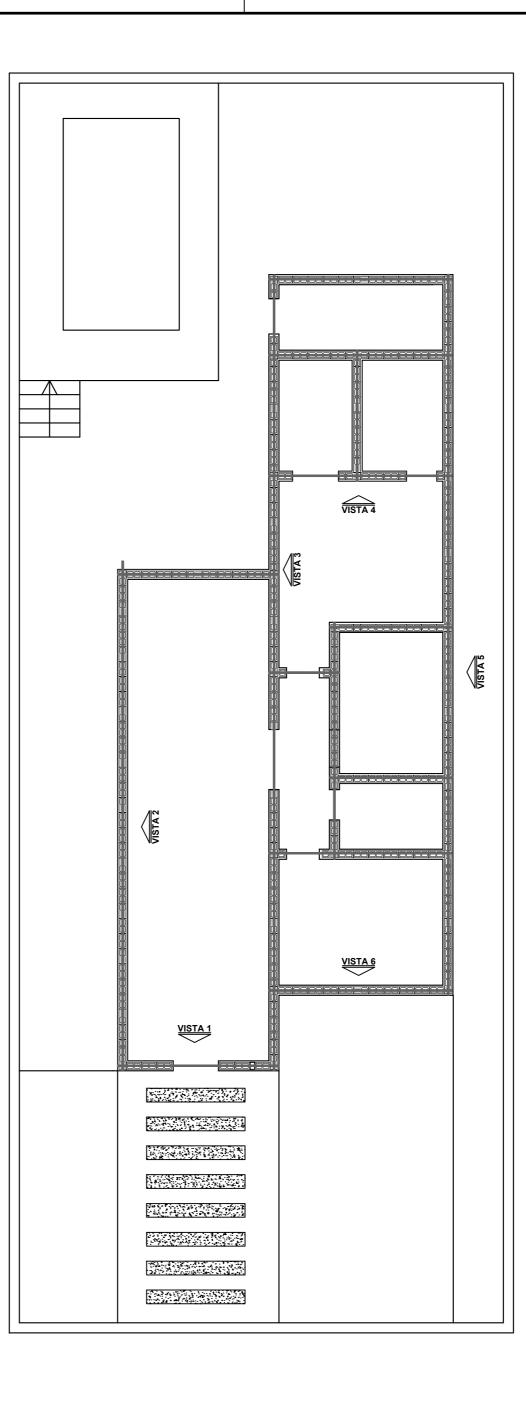

FEITOSA, João. Fundações em Alvenaria Estrutural. São Paulo: Editora Universitária, 2012.

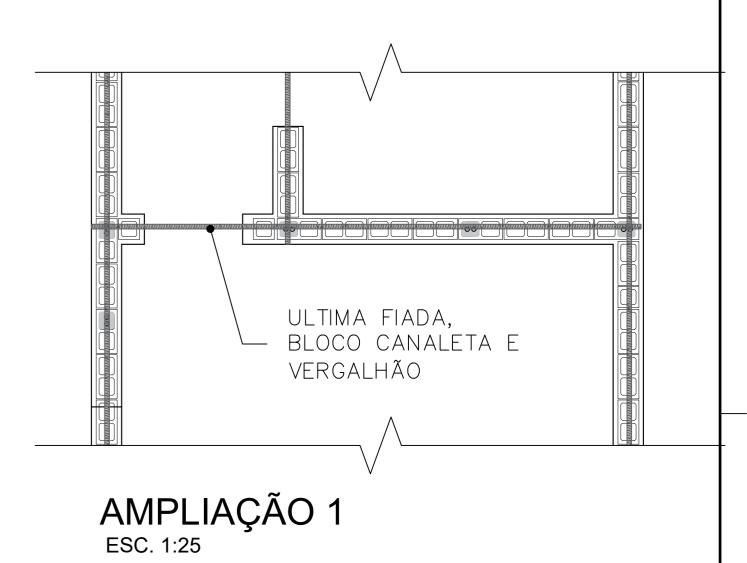


PLANTA BAIXA


ESC. 1:100

ΤΊΤυLΟ	REVISÃO	ESCALA
PLANTA BAIXA RESIDENCIAL	01	1:100
ELABORAÇÃO		DATA
Karina Morais Salas, Rhenan S. Hag Mantovani		19/11/2024
ORIENTADOR		FOLHA
Aparecida Massako		01/01




ΤΊΤυLΟ	REVISÃO	ESCALA
ELEVAÇÃO DE GRAUTEAMENTO P1 / P2	01	1:50
ELABORAÇÃO		DATA
Karina Morais Salas, Rhenan S. Hag Ma	14/11/2024	
ORIENTADOR		FOLHA
Aparecida Massako		01/01

PLANTA BAIXA- 1° FIADA ESC. 1:50

PLANTA BAIXA- 2º FIADA ESC. 1:50

LEGENDA:

	BLOCO 0,14m x 0,19mx 0,29m
	BLOCO 0,14m x 0,19m x 0,54m
	BLOCO 0,09m x 0,19m x 0,19m
	AMARRAÇÃO EM L
	AMARRAÇÃO EM T
VISTA 6	INDICAÇÃO DE VISTA EM ELEVAÇÃ

ROFESSOR	REVISÃO	ESCALA
parecida Massako Tomioka	01	1:50
TULO		DATA
PLANTA- FIADAS		19/11/2024
LABORAÇÃO		FOLHA
Karina M. Salas/ Rhenan S. H. Mantovani		01/01
SSINATURA		
		ETEC

ITAQUERA II