
ANÁLISE MICROBIOLÓGICA DE ESPONJAS SINTÉTICAS UTILIZADAS EM COZINHAS DOMICILIARES

Amanda Cabriotti Da Silva, Paola Dei Ricardi Pereira, Samara De Paula David e Sarah Andrella Bonfim Silva

Orientador: Guilherme Ferreira Silva Coorientador: Aparecida de Fátima Michelin

RESUMO

Um aspecto desconsiderado que influencia a prevenção das Doenças Transmitidas por Alimentos (DTAs) é o tratamento dado às esponjas sintéticas utilizadas na higienização de utensílios domésticos. Estes objetos são facilmente contaminados por microrganismos e apresentam um risco considerável para a saúde. Com base no exposto, o objetivo deste estudo foi investigar a contaminação por microrganismos em esponjas domésticas e os riscos à segurança alimentar em ambientes residenciais, visando determinar a melhor abordagem de higienização das esponjas para evitar doenças causadas por esses agentes. A análise iniciou-se com a coleta da esponja utilizada em ambiente domiciliar por dez dias, seguida pela fragmentação em cinco partes. Cada parte recebeu diferentes tratamentos e em seguida foi incubada em meio de cultura por 24 horas para permitir o crescimento bacteriano. Posteriormente, foram realizados procedimentos de microscopia, incluindo a coloração de Gram, para identificar a presenca e características morfotintoriais das bactérias. De acordo com os métodos de higienização, conclui-se que a imersão em água sanitária foi o mais eficaz, sendo o único a não apresentar presença de microrganismos. Considerando os resultados desta pesquisa, torna-se evidente que as esponjas de louça domésticas podem propagar microrganismos e aumentar o risco de doenças o que requer a higienização e substituições regulares desses objetos em cozinhas domésticas.

PALAVRAS-CHAVE: Higienização, esponja sintética, proliferação microbiana, coloração de Gram e segurança alimentar.

1. INTRODUÇÃO

Os objetos destinados ao preparo ou consumo das refeições diárias passaram um conjunto de modificações no decorrer do desenvolvimento humano, envolvendo alterações em sua aparência, composição e funcionalidade. Inicialmente, foram concebidos com o intuito de facilitar o consumo e a partilha de alimentos. Atualmente, o uso de talheres e recipientes incorpora não apenas praticidade, mas diligência com

questões higiênicas, com a finalidade de preservar a saúde daqueles que utilizam esses utensílios (Nascimento et al., 2018).

Inúmeros procedimentos sanitários têm sido incorporados ao cotidiano da população brasileira com o intuito de garantir uma diminuição nas incidências de Doenças Transmitidas por Alimentos (DTAs), tais como a lavagem das mãos e dos alimentos, bem como o uso de instrumentos adequados para a sua ingestão. Segundo o Ministério de Saúde (2010, p. 11) a incidência de DTAs vem intensificando-se significativamente em nível mundial. Vários são os fatores que contribuem para a ocorrência dessas doenças, destacando-se o constante crescimento populacional, a presença de comunidades vulneráveis e a produção de alimentos em larga escala, atrelada ao deficiente controle na fiscalização da qualidade dos produtos ofertados.

Entretanto, uma condição desconhecida ou negligenciada que impacta diretamente na prevenção das DTAs é o tratamento incorreto de esponjas sintéticas utilizadas para a higienização de utensílios domésticos, visto que são itens comumente propícios para o crescimento de microrganismos, representando um potencial risco para a saúde.

Conforme relatado por Srebernichs et al. (2005, p. 86):

Durante o processo de limpeza de equipamentos e utensílios (facas, tábuas de cortar, tigelas, panelas, cubas, entre outros), as etapas de pré-lavagem e lavagem são feitas com auxílio de esponjas visando à eliminação de resíduos dos alimentos. Como consequência deste processo, parte dos resíduos fica aderida à superfície das esponjas e juntamente com a água, nelas retidas, podem transformá-las em um ótimo meio de cultura, favorecendo o desenvolvimento de microrganismos. Deste modo, as esponjas podem servir de reservatório e veículo de transmissão de microrganismos patogênicos, o que pode provocar contaminação cruzada dos alimentos e colocar em risco a saúde do consumidor.

Além disso, evidências indicam que equipamentos e utensílios com higienização deficiente têm sido responsáveis por surtos de doenças de origem microbiana e alterações em alimentos processados. De acordo com Chesca et al. (apud BLUME; RIBEIRO, 2022), aproximadamente 16% dos surtos estão associados a utensílios e equipamentos contaminados. Assim, no âmbito doméstico, a higienização inadequada de utensílios representa um elo crítico nessa cadeia de segurança alimentar.

Nesse cenário, este estudo visa investigar a presença e potencial contaminação por microrganismos em esponjas domésticas utilizadas na higienização de utensílios, com foco na identificação de riscos à segurança alimentar em ambientes residenciais, contribuir para o desenvolvimento de conhecimento coletivo que gere práticas mais eficazes de higiene, promovendo a segurança alimentar e prevenindo doenças associadas à contaminação microbiológica.

2. OBJETIVO GERAL

Investigar a contaminação microbiana de esponjas domésticas, uma vez que esses objetos, utilizados na higienização de utensílios relacionados à preparação e consumo de alimentos, podem desempenhar um papel crítico na disseminação de diversos patógenos.

2.1 OBJETIVOS ESPECÍFICOS

- Verificar a presença de contaminação bacteriana nas esponjas de cozinha domiciliar;
- Analisar os métodos frequentemente utilizados pela população para a higienização das esponjas, buscando identificar e selecionar o método mais eficiente em termos de segurança e eficácia.

3. MATERIAIS E MÉTODOS

3.1 TIPO DE ESTUDO

Os tipos de pesquisa empregados foram o experimental e o de campo, uma vez que envolveu o recolhimento das amostras de maneira organizada, visando a detecção dos microrganismos presentes nestes objetos. O método experimental permitiu avaliar as condições reais de utilização das esponjas, contribuindo para a investigação mais aprofundada sobre a presença de bactérias e seu potencial risco para a saúde doméstica.

3.2 PROCEDIMENTOS DE HIGIENIZAÇÃO

A análise iniciou-se com a coleta da esponja, que havia sido utilizada em ambiente domiciliar por 10 dias. O objeto coletado foi isolado em um pacote esterilizado com fecho hermético.

Já no local da análise, removeu-se a esponja do isolamento com o auxílio de uma pinça estéril. Por meio de uma tesoura esterilizada, foi realizada a divisão em cinco partes, conforme a figura 1. Todas as fases do estudo ocorreram com o uso de Equipamentos de Proteção Individual (EPIs), a fim de evitar possíveis interferências na apuração dos resultados e garantir a segurança dos estudantes.

Figura 1 - Divisão da esponja sintética

Após a fragmentação da esponja, cada um dos quatro fragmentos foi submetido a diferentes tratamentos durante três minutos: água; água com detergente; água sanitária e a água aquecida a 60°C. Um fragmento não foi submetido a tratamento.

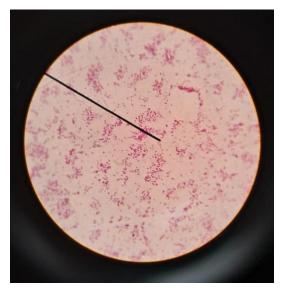
Em seguida, cada amostra foi pressionada em seu respectivo meio de cultura, o qual consistia em placas de Petri contendo ágar BHI. Posteriormente, mantiveramse em uma estufa a 37°C por 24 horas, conforme figura 2.

Figura 2 - Fragmentos e seus respectivos líquidos de imersão

Dado início aos procedimentos de microscopia, foram previamente aplicadas técnicas de assepsia às lâminas. A transferência de uma pequena porção das culturas semeadas efetuou-se com o acréscimo de uma gota de água destilada à lâmina, coleta de um fragmento do material semeado utilizando uma alça de semeadura e a adição dessa porção ao líquido. Por fim, efetuou-se a flambagem, proporcionando a fixação com o calor a partir da rápida passagem pela chama do bico de Bunsen.

A etapa seguinte baseou-se no método de coloração de Gram, que se iniciou com o revestimento da superfície da lâmina pelo corante cristal violeta, seguido de repouso por um minuto e, por fim, o descarte do excesso de corante ou enxágue com água destilada. Posteriormente, foi adicionado o lugol, conforme as mesmas etapas realizadas com a violeta genciana. Posicionando a lâmina de maneira inclinada, despejou-se álcool ou acetona por menos de cinco segundos, do contrário, removeria toda a coloração fornecida pelas outras substâncias. Após a lavagem com água destilada, a superfície foi coberta com fucsina, mantida em repouso por um minuto, sendo enxaguada logo após. Ao término dos procedimentos, foi feita a observação no microscópio óptico e aplicado o óleo de imersão, a fim de determinar a classificação das bactérias como Gram-positivas ou Gram-negativas.

4. RESULTADOS



4.1 FRAGMENTO NÃO IMERSO

Ao término de 24 horas, constatou-se a proliferação significativa de microrganismos em grande parte da placa, com concentração notável, indicando a maior densidade de bactérias, conforme demonstrado na figura 3.

Figura 3 - Meio de cultura da esponja isenta de imersão

Figura 4 - Lâmina de amostra bacteriana após coloração de Gram

Nota-se a presença de microrganismos do tipo Gram-negativo, possuindo a forma de bacilos e cocobacilos. Esta classificação se mantém constante em todas as

amostras analisadas, com exceção da que foi mergulhada em água sanitária que não apresentou nenhum vestígio de microrganismos.

4.2 FRAGMENTO IMERSO EM ÁGUA PURA

Após 24 horas, notou-se a proliferação de microrganismos de modo abundante, assim como citada no fragmento submerso em nenhum líquido, porém não ocupando todo o meio de cultivo, exibindo uma quantidade inferior de microrganismo em comparação à amostra do fragmento não imerso, de acordo com a figura 5.

Figura 5 - Meio de cultura da esponja imersa em água pura

4.3 FRAGMENTO IMERSO EM ÁGUA COM DETERGENTE

Ao término de 24 horas, verificou-se que havia menos bactérias do que no material imerso em água pura, como representado na figura 6.

Figura 6 - Meio de cultura da esponja imersa em água com detergente

4.4 FRAGMENTO IMERSO EM ÁGUA QUENTE

Após 24 horas, observou-se o crescimento de microrganismos de forma menos densa em comparação ao fragmento imerso em água com detergente, além de ocupar uma área menor no meio de cultivo, segundo a figura 7.

Figura 7 - Meio de cultura da esponja imersa em água a 60°C

4.5 FRAGMENTO IMERSO EM ÁGUA SANITÁRIA

Ao término de 24 horas, notou-se constatou-se a ausência de proliferação de bactérias na placa obtendo ágar, tal como demonstrado na figura 8.

Figura 8 - Meio de cultura da esponja imersa em água sanitária

5. CONSIDERAÇÕES FINAIS

Considerando os resultados obtidos, torna-se evidente que a esponja de louça domiciliar tende a propagar microrganismos, aumentando o risco de desenvolvimento de doenças.

Além disso, após a comparação dos métodos de higienização das esponjas, que incluíram imersão em água, água sanitária, água com detergente, água aquecida a 60°C e manuseio sem imersão em líquido, é possível observar que a técnica de limpeza mais eficiente é a inserção do objeto em água sanitária.

É importante ressaltar que, visualmente, o crescimento microbiano mostrou-se maior de acordo com as técnicas utilizadas. A não higienização da esponja resultou em uma quantidade e densidade de bactérias superiores às demais técnicas. Em sequência, observou-se um aumento na seguinte ordem: água, água com detergente, água quente e água sanitária, esta última não apresentando crescimento bacteriano.

Embora o acúmulo de microrganismos seja uma ocorrência comum nas esponjas, devido ao ambiente propício à sua proliferação, é importante avaliar a continuidade do seu uso, desde que sejam implementadas práticas adequadas de higienização.

REFERÊNCIAS

BAGAGLI, E.; BOSCO, S, M, G.; CASTILHO, I.; RAGOZO, L.; ALQUATI, L. H. **Sugestões de Atividades Práticas de Micologia** (algumas atividades poderão ser realizadas na forma de projetos). 2017. Microbiologia Básica (Bacharelado, Licenciatura) - Faculdade de Ciências Biológicas, Universidade Estadual Paulista, 2017.

BEZERRA DE MOURA, D. *et al.* Análise microbiológica, formas de uso e desinfecção de esponjas de uso doméstico na cidade de Teresina, Pi... **Revista Higiene Alimentar**, v. 31, p. 2017, [S.d.].

BLUME, S; RIBEIRO, G. Qualidade sanitária de talheres e pratos utilizados no restaurante-escola da **universidade federal de pelotas – UFPEL**, 2022. Pelotas, 2022.

BRASIL. Ministério da Saúde. Secretaria de Vigilância em Saúde. **Manual integrado de vigilância, prevenção e controle de doenças transmitidas por alimentos.** Brasília: Ministério da Saúde, 2010.

CARVALHO, J. S.; SALES, W. B. Análise microbiológica de esponjas de poliuretano utilizadas em cozinhas domésticas. **Anais do EVINCI - UniBrasil**, v. 3, n. 1, p. 7–7, 2017.

Manual de Métodos de Análise Microbiológica de Alimentos e Água by Editora Blucher - Issuu. Disponível em:

https://issuu.com/editorablucher/docs/issuu_8cc4608f0c0cfd/19. Acesso em: 13 nov. 2023.

MARQUES, A. D. S.; NESPOLO, C. R.; PINHEIRO, F. C.; PINHEIRO, F. C.; SOARES, G. M. Descontaminação microbiológica de esponjas de cozinha utilizadas em serviços de alimentação. **Revista Contexto & Saúde**, [S. I.], v. 17, n. 32, p. 102–114, 2017. DOI: 10.21527/2176-7114.2017.32.102-114.

ROLIM, F. C.; BENERI, V. A.; ROCHA, C. B.; CORRÊA, A. C. Conhecimentos sobre boas práticas em cozinhas domiciliares através de um questionário online. **Revista Ambientale**, [S. I.], v. 13, n. 1, p. 1–13, 2021. DOI: 10.48180/ambientale. v13i1.260.

ROSIANE, R. C.; SILVA, E. M.; FREITAS, J. Good hygiene practices and microbiological contamination in commercial restaurants. **African Journal of Microbiology Research**, v. 12, n. 16, p. 362–369, 28 abr. 2018.

SREBERNICH, S. M.; SOARES, M. M. S. R.; SILVA, S. M. F.; CAOBIANCO, T. C. R. C. Avaliação microbiológica de esponjas contendo agentes bactericidas usadas em cozinhas de unidades de alimentação e nutrição da região de Campinas/SP, Brasil. **Revista do Instituto Adolfo Lutz**, [S. I.], v. 66, n. 1, p. 85–88, 2007.