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RESUMO: Este trabalho apresenta o desenvolvimento de uma solução 

automatizada voltada para a validação de instrumentos de medição digitais, com foco na 

melhoria da precisão, confiabilidade e eficiência dos processos metrológicos. A proposta 

visa atender à crescente demanda por métodos mais ágeis e menos suscetíveis a erros 

humanos nas rotinas de calibração em ambientes industriais e laboratoriais. Para isso, foi 

desenvolvido um sistema que integra hardware e software, capaz de realizar a leitura dos 

instrumentos por meio da visão computacional e transferir automaticamente o valor 

reconhecido para uma área de texto ativa, mediante acionamento de uma tecla 

configurada. A solução aqui apresentada representa uma contribuição relevante para a 

modernização dos processos de leitura e validação em contextos em que a precisão 

metrológica é indispensável. Ao eliminar etapas manuais, reduzir erros e acelerar os 

procedimentos, ela se torna uma aliada estratégica para empresas que buscam excelência 

operacional e competitividade no mercado. 

Palavras-chave: Leitura; Instrumentos digitais; Metrologia; Visão 

computacional. 

  

ABSTRACT: This work presents the development of an automated solution 

aimed at the validation of digital measuring instruments, with a focus on improving the 

accuracy, reliability, and efficiency of metrological processes. The proposal seeks to meet 

the growing demand for faster methods that are less prone to human error in calibration 

routines within industrial and laboratory environments. To achieve this, system 

integrating hardware and software was developed, capable of reading the instruments 
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through computer vision and automatically transferring the recognized value to an active 

text field upon pressing a configured key. The solution presented here represents a 

significant contribution to the modernization of reading and validation processes in 

contexts where metrological accuracy is essential. By eliminating manual steps, reducing 

errors, and speeding up procedures, it becomes a strategic ally for companies seeking 

operational excellence and competitiveness in the market. 

Keywords: Reading; Digital instruments; Metrology; Computer vision 

 

1. Introdução 

A leitura manual de valores em instrumentos de medição, como multímetros 

digitais, é uma atividade ainda presente em muitos ambientes laboratoriais e industriais. 

Essa prática, embora simples, está sujeita a erros humanos, variações de iluminação, 

posicionamento incorreto do equipamento e atrasos no registro dos dados. Com o avanço 

das tecnologias de automação, inteligência artificial e visão computacional, torna-se 

possível criar soluções que eliminem essas limitações, promovendo maior confiabilidade 

e eficiência no processo de coleta de informações. 

Neste contexto, o presente trabalho propõe o desenvolvimento de um sistema 

automatizado para leitura e validação de valores exibidos em displays de sete segmentos, 

utilizando uma webcam e técnicas de visão computacional baseadas em redes neurais 

convolucionais (CNNs). O sistema desenvolvido utiliza o modelo YOLOv11 para a 

detecção automática do display e dos dígitos presentes na imagem, enquanto o Tesseract 

OCR realiza o reconhecimento dos caracteres, convertendo-os em texto digital. Os 

resultados são integrados automaticamente em planilhas eletrônicas, proporcionando 

maior precisão, redução de erros humanos e otimização do tempo nas rotinas de medição 

em ambientes técnicos e industriais. 

 

2. Revisão da Literatura 

2.1 Visão Computacional e Automação 

A visão computacional é uma das áreas mais promissoras da inteligência artificial, 

responsável por permitir que computadores interpretem informações visuais do mundo 

real. Segundo Gonzalez e Woods, o processamento digital de imagens busca extrair 

informações significativas a partir de dados visuais, aplicando transformações 

matemáticas e algoritmos para interpretação automatizada. Essa tecnologia é amplamente 

empregada na automação industrial, na inspeção de qualidade e em sistemas de 
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monitoramento, oferecendo resultados mais precisos e consistentes do que os obtidos por 

meio da percepção humana. (GONZÁLEZ; WOODS, 2010). 

Figura 1 – Fluxograma da visão computacional 

Fonte: LI et al. 2023 

A Figura 1 apresenta o fluxo geral de um sistema de visão computacional, desde 

a aquisição dos dados até a inferência dos resultados. Inicialmente, imagens e vídeos são 

capturados e passam por um pré-processamento, no qual são aplicadas técnicas para 

melhorar sua qualidade. Em seguida, ocorre o projeto e o treinamento do modelo, etapas 

em que redes neurais aprendem a reconhecer padrões visuais a partir de grandes volumes 

de dados. Por fim, na fase de inferência, o sistema aplica o conhecimento adquirido para 

realizar tarefas como classificação, estimativa de resultados e segmentação de objetos. A 

figura também destaca possíveis vieses de observação, aprendizado e indução, que podem 

influenciar o desempenho do modelo. 

 

A integração da visão computacional com a automação industrial está diretamente 

relacionada ao conceito de Indústria 4.0, que busca a digitalização e a inteligência nos 

processos produtivos. Para Silva e Andrade a automação baseada em visão computacional 

tem como vantagem principal a eliminação de tarefas repetitivas e a capacidade de operar 

em ambientes adversos, onde a presença humana é limitada ou indesejada. Assim, 

sistemas de leitura automática de instrumentos surgem como soluções naturais dentro 

dessa tendência tecnológica (SILVA; ANDRADE, 2020). 
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2.1.1 Biblioteca OpenCV 

A biblioteca OpenCV (Open Source Computer Vision Library) é um dos 

frameworks mais amplamente utilizados em aplicações de visão computacional. 

Desenvolvida inicialmente pela Intel em 1999, ela oferece um vasto conjunto de funções 

para processamento de imagens, análise de vídeo e aprendizado de máquina (BRADSKI; 

KAEHLER, 2008). 

Em aplicações industriais e de automação, o OpenCV é responsável por etapas 

fundamentais de pré-processamento, como conversão para escala de cinza, flood fill, 

binarização adaptativa e filtragem de contornos. Essas operações melhoram 

significativamente a qualidade da imagem e, consequentemente, a precisão de modelos 

de detecção e reconhecimento (PULLI et al., 2012).  

Além disso, a integração entre o OpenCV e frameworks de aprendizado profundo 

permite o desenvolvimento de sistemas robustos e em tempo real, sendo uma base 

essencial para o sistema proposto neste trabalho (ZHANG et al., 2021). 

2.2 Redes Neurais Convolucionais (CNNs) 

As redes neurais convolucionais (CNNs) representam uma das principais 

inovações do aprendizado profundo, especialmente no campo da análise e 

reconhecimento de imagens. Conforme LeCun, Bengio e Hinton (2015), as CNNs são 

compostas por camadas convolucionais que extraem automaticamente características 

relevantes das imagens, como bordas, padrões e texturas, sem necessidade de intervenção 

manual. Essa capacidade as torna altamente eficazes em tarefas como classificação de 

imagens, detecção de objetos e reconhecimento de caracteres (LECUN; BENGIO; 

HINTON, 2015). A estrutura de uma CNN pode ser observada na figura 2. 
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Figura 2 – Estrutura simplificada de uma Rede Neural Convolucional (CNN) 

 

Fonte: GUO et al. (2016).  

 

O processo inicia com a etapa de convolução, em que a imagem de entrada é 

submetida a filtros que extraem características visuais relevantes, como bordas e texturas. 

Em seguida, ocorre o max pooling, que reduz o tamanho das representações geradas, 

mantendo apenas as informações mais significativas e tornando o processamento mais 

eficiente e robusto a variações na imagem. Por fim, as informações extraídas são 

encaminhadas para as camadas totalmente conectadas, responsáveis por combinar as 

características aprendidas e gerar a classificação final. No exemplo, a rede identifica 

corretamente a imagem como pertencente à classe “Peixe”.  

A aplicação das CNNs em sistemas de automação industrial tem crescido 

significativamente. Segundo Krizhevsky, Sutskever e Hinton, o aprendizado profundo 

revolucionou a forma como as máquinas identificam padrões visuais, superando 

abordagens tradicionais baseadas em algoritmos manuais. Em projetos que envolvem 

leitura de displays, as CNNs são responsáveis por identificar as regiões de interesse e 

separar os caracteres do fundo, mesmo em situações de ruído visual ou variações de 

iluminação (KRIZHEVSKY; SUTSKEVER, HINTON, 2017). 

Além disso, o uso de CNNs em conjunto com técnicas de OCR permite melhorar 

a precisão do reconhecimento, pois as redes neurais podem aprender a filtrar 

interferências e realçar regiões específicas da imagem antes do processo de leitura. Esse 

processo híbrido é particularmente útil para displays de sete segmentos, nos quais o 

formato dos números pode variar de acordo com o ângulo de visão ou brilho do display 

(SANTOS et al., 2022). 
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2.3 O Algoritmo YOLO e suas Aplicações 

O algoritmo YOLO (You Only Look Once) é uma das arquiteturas mais 

conhecidas para detecção de objetos em tempo real. Redmon e Farhadi (2018) 

propuseram o YOLO com o objetivo de realizar a detecção de múltiplos objetos em uma 

única passada pela rede neural, em contraste com métodos tradicionais que exigiam 

múltiplas varreduras da imagem. Essa característica confere ao YOLO uma velocidade 

significativamente maior, sem perda substancial de precisão (REDMON; FARHADI, 

2021). 

 

Figura 3 – Aplicação do YOLOv11 na detecção de dígitos 

 

Fonte: Elaborados pelos autores (2025) 

 

A Figura 3 apresenta a aplicação do algoritmo YOLO na detecção de dígitos 

exibidos em um multímetro digital. Observa-se que o modelo identifica automaticamente 

os números presentes no visor, delimitando cada dígito com caixas retangulares e 

classificando-os com rótulos numéricos e níveis de confiança. 

 

Com a evolução das versões — até uma das mais recente, YOLOv11 —, o modelo 

passou a incorporar melhorias estruturais que aumentaram sua precisão e estabilidade em 

diferentes contextos de aplicação. O YOLOv11 introduz mecanismos de otimização de 

convolução e treinamento dinâmico, permitindo resultados superiores em ambientes com 

ruído visual e variações de luminosidade. Essas propriedades o tornam ideal para o 

reconhecimento de displays eletrônicos, como os de multímetros digitais (JOCHER et al., 

2023). 
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Em sistemas que necessitam de identificação precisa de regiões de interesse 

(ROI), o YOLO é amplamente utilizado para localizar o campo de leitura antes que o 

OCR seja aplicado. A utilização conjunta de YOLO e Tesseract OCR cria uma estrutura 

de detecção e leitura altamente eficiente, combinando velocidade, precisão e baixo custo 

computacional — fatores essenciais para sistemas embarcados e de automação industrial 

(SILVA et al., 2023). 

 

2.4 Reconhecimento Óptico de Caracteres (OCR) 

O reconhecimento óptico de caracteres (OCR) é uma técnica que permite 

converter imagens de texto em dados digitais. Segundo Smith, o Tesseract OCR, 

originalmente desenvolvido pela Hewlett-Packard e atualmente mantido pelo Google, é 

um dos motores de OCR mais utilizados e eficientes, principalmente por ser de código 

aberto e compatível com múltiplas linguagens de programação. Ele atua por meio de três 

etapas principais: pré-processamento da imagem, segmentação dos caracteres e 

reconhecimento do texto (SMITH, 2007). 

 

No contexto da leitura automatizada de instrumentos, o OCR é amplamente 

utilizado para identificar números e símbolos exibidos em painéis digitais. A precisão do 

OCR depende diretamente da qualidade da imagem de entrada, sendo o pré-

processamento um fator determinante para o sucesso do reconhecimento. A combinação 

do Tesseract com técnicas de aprendizado profundo tem se mostrado altamente eficaz 

para aplicações industriais e laboratoriais que envolvem leitura automática (SHARMA et 

al., 2020). 

Figura 4 – Detecção e reconhecimento de caracteres utilizando YOLOv11 e OCR 

 

Fonte: FSI ADVANCED RESEARCH INC. (2023). 
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A figura apresenta o resultado do processo de detecção e reconhecimento de 

caracteres em uma superfície metálica. Na parte superior observa-se a imagem original 

com os números gravados. Na parte inferior, o modelo YOLOv11, após o pré-

processamento realizado com a biblioteca OpenCV, identifica e segmenta os dígitos por 

meio de caixas delimitadoras (em verde). Em seguida, as regiões detectadas são enviadas 

ao motor de OCR, responsável pela conversão dos caracteres reconhecidos em formato 

digital (string). Essa integração entre YOLOv11 e OCR otimiza a acurácia da leitura 

automática de dígitos, mesmo em condições visuais adversas. 

 

2.5 Aplicações de IA na Leitura de Instrumentos Digitais 

O uso de inteligência artificial (IA) na leitura automatizada de instrumentos vem 

sendo amplamente pesquisado e aplicado em diferentes áreas. Santos et al. (2022) 

demonstram que sistemas baseados em redes neurais podem substituir completamente a 

leitura humana de medidores, garantindo precisão superior a 98% mesmo sob condições 

adversas. Essa automação contribui não apenas para a confiabilidade dos dados, mas 

também para a redução de custos operacionais (SANTOS et al., 2022). 

 

Segundo Oliveira e Lima (2021), uma das principais vantagens da leitura 

automatizada é a possibilidade de integração direta com sistemas de armazenamento e 

análise de dados, como planilhas e bancos de dados. Essa integração permite a criação de 

ambientes totalmente digitais, nos quais a captura, o processamento e o registro de 

informações ocorrem de forma contínua e sincronizada. Em um cenário de indústria 

inteligente, tais sistemas são indispensáveis para a manutenção da produtividade e da 

rastreabilidade dos processos (OLIVEIRA; LIMA, 2021). 

 

No caso específico deste trabalho, o uso de inteligência artificial e visão 

computacional para a leitura de displays de sete segmentos representa uma aplicação 

prática dessas tecnologias, oferecendo uma solução de baixo custo e alto impacto. A 

Figura 5 ilustra a integração entre os componentes de hardware e software do sistema 

proposto, evidenciando como ferramentas de código aberto podem ser combinadas para 

solucionar desafios reais de medição e automação. 
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Figura 5 – Fluxograma geral do sistema desenvolvido 

 

Fonte: Elaborados pelos autores (2025) 

 

O fluxograma representa o funcionamento geral do sistema desenvolvido para a 

leitura automatizada de medições em multímetros digitais. As imagens são capturadas por 

uma webcam conectada a um notebook, processadas por uma rede neural convolucional 

(YOLOv11) responsável pela detecção dos displays e dos dígitos contidos nele, e 

posteriormente tratadas por uma biblioteca OpenCV que utiliza técnicas de 

processamento de imagens e o OCR para reconhecimento e validação dos valores. Os 

dados reconhecidos são então registrados, gerando relatórios e permitindo a exportação 

automática para documentos ou interfaces de usuário. 
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3. Metodologia 

A metodologia adotada para o desenvolvimento deste trabalho é a Design Science 

Research (DSR), também conhecida como Pesquisa Baseada em Design. Essa abordagem 

metodológica é particularmente adequada para investigações que envolvem a criação, 

implementação e avaliação de artefatos tecnológicos voltados à solução de problemas 

concretos, integrando rigor científico e relevância prática. No contexto deste projeto, que 

propõe o desenvolvimento de um sistema automatizado para leitura e calibração de 

instrumentos de medição digitais com o uso de visão computacional e inteligência 

artificial, a DSR oferece um arcabouço estruturado que orienta desde a identificação do 

problema até a validação do artefato proposto. Segundo Hevner et al. (2004), a DSR visa 

construir conhecimento por meio da criação de soluções inovadoras que atendam às 

necessidades de aplicação real, sendo especialmente eficaz em contextos em que 

tecnologia e prática se entrelaçam. Por fim, destaca-se que a DSR não apenas orienta a 

criação do artefato em si, mas também promove a validação contínua do conhecimento 

gerado, por meio de feedbacks obtidos durante a implementação, testes de desempenho 

do sistema e análise dos resultados frente aos objetivos definidos. Assim, garante-se que 

o desenvolvimento do sistema esteja alinhado com as necessidades reais da indústria, 

fundamentado em bases científicas e tecnológicas consistentes (HEVNER et al., 2004). 

  

3.1 Identificação do problema:  

Durante a validação de instrumentos de medição digitais, que para o projeto foram 

adotados multímetros digitais, foi constatado que haviam algumas falhas no processo tais 

como erros de digitação, ocasionados pela falta de atenção ou pela repetitividade dessa 

ação, o tempo do processo no geral, que acaba gerando aumento direto no custo do 

processo, e em alguns casos pode acabar desenvolvendo doenças ocupacionais como 

tendinites, DORT (Distúrbio osteomuscular relacionado ao trabalho) ou LER (lesão por 

esforço repetitivo). 

  

3.2 Proposta de solução:  

A presente proposta é desenvolver um software, uma inteligência artificial, que 

realize a leitura dos números do display, focados no formato de sete segmentos, e 

disponibilize esse valor, a princípio, em uma planilha, auxiliando assim a extração do 

valor e podendo validar ou reprovar o instrumento.  
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3.3 Desenvolvimento:  

Para desenvolver essa inteligência será utilizado o OpenCV, que se trata de uma 

biblioteca de código aberto amplamente utilizada em visão computacional, 

processamento de imagem e aprendizado de máquina. Também será necessário possuir 

alguns processos de aquisição de imagem, pré-processamento, extração de características 

e pós processamento. 

  

• Aquisição de imagem 

A aquisição de imagem representa a etapa inicial do processo de visão 

computacional e consiste na obtenção de dados visuais, como imagens ou vídeos, a partir 

de dispositivos sensores, como câmeras digitais, scanners, sensores infravermelhos ou 

outros tipos de captadores ópticos. Essa etapa é crítica, pois define a qualidade dos dados 

que serão analisados ao longo do pipeline de processamento. A resolução, taxa de 

quadros, profundidade de cor e formato dos dados capturados influenciam diretamente na 

eficácia das etapas subsequentes (GONZÁLEZ; WOODS, 2010). 

É fundamental garantir que a captura de imagens ocorra sob condições adequadas 

de iluminação e posicionamento, para minimizar a introdução de ruídos e distorções. A 

qualidade da imagem capturada pode ser comprometida por fatores como iluminação 

deficiente, movimento do objeto ou do sensor, além de interferências ambientais. Em 

aplicações industriais, por exemplo, o uso de câmeras de alta velocidade com iluminação 

controlada é essencial para a inspeção de produtos em linhas de produção (GONZÁLEZ; 

WOODS, 2010). 

 

• Pré-processamento 

O pré-processamento de imagens é uma etapa essencial na visão computacional, 

pois visa preparar a imagem capturada para as fases subsequentes de segmentação e 

reconhecimento de padrões. A qualidade do pré-processamento impacta diretamente na 

precisão dos algoritmos de leitura e reconhecimento óptico de caracteres (OCR), 

especialmente em aplicações com displays digitais de sete segmentos (SMITH, 2007). 

No presente projeto, serão utilizadas técnicas clássicas e robustas de pré-

processamento, combinadas de forma a garantir maior confiabilidade mesmo em 



12 
 

   
 

condições adversas de iluminação ou posicionamento. A seguir, descrevem-se as 

principais etapas que serão adotadas: 

• Conversão para Tons de Cinza 

Consiste na redução da imagem colorida para uma escala de cinza, o que 

simplifica os dados a serem processados, mantendo apenas as informações de 

luminosidade. Essa transformação facilita a aplicação de limiares e operações 

morfológicas (GONZALEZ; WOODS, 2010). A figura 6 apresenta um exemplo do 

resultado após o uso da conversão de tons de cinza. 

Figura 6 – Tons de Cinza  

  

Fonte: Elaborado pelos autores (2025) 

  

• Correção de Perspectiva 

Aplica-se quando o display é capturado com distorções causadas pelo ângulo da 

câmera. Por meio de transformações geométricas (como warping e transformadas de 

homografia), a imagem é realinhada para simular uma visualização frontal, melhorando 

a precisão do reconhecimento dos dígitos (GONZALEZ; WOODS, 2010). A figura 7 

apresenta um exemplo do resultado após o uso da correção de perspectiva. 
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 Figura 7 – Perspectiva de câmera 

 

 Fonte: Elaborado pelos autores (2025) 

 

• Thresholding adaptativo 

Técnica de binarização que define o limiar de separação entre pixels claros e 

escuros com base na vizinhança local, sendo particularmente eficaz para lidar com 

variações de iluminação na imagem. Isso garante melhor definição dos segmentos acesos 

do display (GONZALEZ; WOODS, 2010). A figura 8 apresenta um exemplo do resultado 

após o uso do Thresholding adaptativo. 

Figura 8 – Thresholding adaptivo 

 

Fonte: Elaborado pelos autores (2025) 

• Operações Morfológicas 

Incluem erosão e dilatação, utilizadas para eliminar ruídos, preencher lacunas e 

melhorar a integridade estrutural dos caracteres. Essas operações são especialmente úteis 

para realçar os segmentos do display e facilitar sua segmentação (GONZALEZ; WOODS, 
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2010). A figura 9 apresenta um exemplo do resultado após o uso das operações 

morfologicas. 

Figura 9 – Operações Morfológicas 

 

Fonte: Elaborado pelos autores (2025) 

 

• Flood Fill 

Técnica usada para preencher regiões internas dos caracteres, contribuindo para 

uma leitura mais precisa. Em displays de sete segmentos, essa operação ajuda a destacar 

os contornos completos dos dígitos (GONZALEZ; WOODS, 2010). A figura 10 apresenta 

um exemplo do resultado após o uso do Flood Fill. 

Figura 10 – Flood Fill 

 

Fonte: Elaborado pelos autores (2025) 

 

Essas etapas, quando combinadas de maneira sequencial, resultam em uma 

imagem com alto grau de contraste e definição, adequada para o processamento por 
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algoritmos de OCR, como o Tesseract, ou por redes neurais convolucionais. A adoção 

dessas técnicas proporciona redução significativa de erros na leitura automatizada, 

contribuindo para a confiabilidade e rastreabilidade do processo de calibração 

(GONZALEZ; WOODS, 2010). 

• Pós processamento 

A etapa de pós-processamento na visão computacional é responsável por refinar 

e interpretar os resultados obtidos nas fases anteriores, como a segmentação, extração de 

características e reconhecimento. Esta fase visa corrigir inconsistências, melhorar a 

precisão dos resultados e prepará-los para serem utilizados por outros sistemas ou 

interpretados por usuários finais. Frequentemente, o pós-processamento inclui tarefas 

como a remoção de ruídos residuais, agrupamento de regiões semelhantes, suavização de 

contornos e a eliminação de falsos positivos, sendo essencial para garantir a robustez e a 

utilidade da análise visual (SONKA; HLAVAC; BOYLE, 2014). 

Por fim, o pós-processamento também é responsável por traduzir os resultados 

técnicos em formas compreensíveis e utilizáveis. Isso pode incluir a geração de relatórios, 

visualizações com sobreposição de máscaras, caixas delimitadoras, mapas de calor, ou 

mesmo comandos acionáveis para sistemas autônomos. Em aplicações clínicas, 

industriais ou de segurança, essa etapa é essencial para garantir que as decisões baseadas 

em imagens sejam assertivas, seguras e contextualizadas. Assim, o pós-processamento 

não apenas complementa, mas fortalece todo o processo da visão computacional, 

consolidando a análise visual em informações úteis para a tomada de decisão (SONKA; 

HLAVAC; BOYLE, 2014). 

3.4 Demonstração do funcionamento:  

O projeto foi apresentado em duas ocasiões à empresa Balitek. Na primeira 

demonstração, o software ainda não estava totalmente desenvolvido, mas já era capaz de 

realizar a leitura dos dígitos de sete segmentos, apresentando alguns erros.  

Na segunda demonstração, o sistema recebeu diversos elogios e superou as 

expectativas dos representantes da empresa. O projeto realizou leituras precisas e rápidas 

em diferentes condições de luminosidade e posicionamento, apresentando dificuldades 
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apenas em situações de reflexo de luz sobre o display do multímetro. Ainda assim, 

manteve um bom nível de precisão nas medições. 

3.5 Avaliação e validação:  

Após a apresentação à empresa Balitek, o projeto foi validado, demonstrando que 

atende plenamente ao objetivo proposto. Foi solicitado apenas um ajuste na forma de 

exibição dos valores — substituindo o caractere ponto (.) por vírgula (,) — para garantir 

que o Excel, software no qual os dados serão armazenados, reconheça corretamente os 

valores numéricos. 

Com base na avaliação dos representantes da empresa, dos professores e da 

diretora da FATEC Adib Moisés Dib, que acompanharam a demonstração, o projeto foi 

considerado funcional e aprovado quanto ao seu desempenho. 

4. Desenvolvimento do Projeto 

A proposta consistiu em criar um sistema capaz de capturar, processar e 

reconhecer automaticamente valores exibidos em multímetros digitais. Para isso, 

empregou-se uma webcam como dispositivo de aquisição de imagens, conectada a um 

computador no qual foi desenvolvido o software de processamento em linguagem Python, 

utilizando o ambiente de programação Visual Studio Code. A arquitetura geral do sistema 

foi estruturada em quatro etapas principais: captura da imagem, detecção do display, 

reconhecimento óptico de caracteres e exportação automática dos resultados. 

4.1 Coleta de Imagens e Preparação dos Dados 

Na etapa inicial, foram capturadas inúmeras imagens de multímetros digitais 

exibindo diferentes valores, ângulos e condições de iluminação. O objetivo foi criar um 

conjunto de dados diversificado e representativo, capaz de treinar o modelo de rede neural 

convolucional para operar sob variações de ruído, reflexo e inclinação.  
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Figura 11 – Exemplos de imagens capturadas de multímetros digitais exibindo 

diferentes valores, ângulos e condições de iluminação. 

 

Fonte: Elaborado pelos autores (2025). 

4.2 Detecção do Display e dos dígitos com YOLOv11 

A segunda etapa consistiu na implementação do modelo de detecção baseado no 

algoritmo YOLOv11. Essa versão foi escolhida por apresentar maior precisão e 

estabilidade em ambientes com ruído visual.  

  

O modelo foi treinado utilizando o conjunto de imagens previamente preparado, 

com aplicação de técnicas como rotação, variação de brilho e inserção de ruído. O 

processo de treinamento foi conduzido com divisão dos dados em 70% para treinamento, 

15% para validação e 15% para teste. A Figura 12 ilustra o funcionamento do sistema, 

mostrando a detecção do display e dos dígitos. Nessa representação, a etapa de detecção 

dos dígitos foi realizada pelo modelo treinado, enquanto a região do display é mostrada 

de forma ilustrativa. 
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Figura 12 – Exemplo da detecção do display e dos dígitos utilizando YOLOv11. 

 

Fonte: Elaborado pelos autores (2025). 

4.3 Pré-processamento e Reconhecimento Óptico de Caracteres 

Após a detecção do display, foi realizada a etapa de pré-processamento das 

imagens com o objetivo de preparar o conteúdo para o reconhecimento óptico de 

caracteres (OCR).   

Para essa etapa, foi utilizada a biblioteca OpenCV, responsável pela 

implementação prática das rotinas de pré-processamento descritas na metodologia.  

Essas operações permitiram realçar os segmentos iluminados e aumentar a nitidez 

dos dígitos, garantindo imagens mais adequadas à leitura óptica. A Figura 13 apresenta a 

sequência de etapas do processo de tratamento de imagem de um display. 
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Figura 13 – Etapas do pré-processamento de imagem do display digital. 

 

Fonte: Elaborado pelos autores (2025). 

Em seguida, O OCR foi executado com a configuração padrão, realizando o 

reconhecimento automático do conteúdo textual da imagem processada e convertendo-o 

em texto digital, identificando os números exibidos no display. 

4.4 Integração e Exportação dos Resultados 

Após o reconhecimento dos valores, o sistema foi configurado para permitir o 

registro automático das leituras em qualquer campo de texto ativo. Para simplificar a 

interação do operador, foi incorporada uma função de automação, na qual uma tecla foi 

configurada para registrar o valor reconhecido pelo sistema no campo de texto ativo — 

seja em uma planilha, bloco de notas ou outro software selecionado pelo usuário. 
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Figura 14 – Registro automático do valor reconhecido em planilha eletrônica. 

 

Fonte: Elaborado pelos autores (2025). 

Essa abordagem torna o processo de leitura mais dinâmico, permitindo que o 

sistema opere de forma autônoma durante a captura e processamento, enquanto o 

operador decide o momento exato de registrar a medição. Dessa forma, reduz-se a 

intervenção manual repetitiva e elimina-se o risco de erros de digitação durante o registro 

dos valores. 

4.5 Avaliação do Sistema 

Os testes práticos foram realizados em um ambiente controlado, utilizando 

diferentes modelos de multímetros digitais. O sistema apresentou a precisão média de 

detecção de 96%, dessa forma, a taxa de erro associada ao processo de detecção foi de 

aproximadamente 4%, correspondente aos casos em que o display não foi corretamente 

identificado ou localizado na imagem.  

  

O sistema desenvolvido demonstrou potencial para aplicação em processos de 

calibração automatizada, controle de qualidade e registro de dados em tempo real, 

contribuindo para a modernização de rotinas industriais e laboratoriais, em conformidade 

com as diretrizes da Indústria 4.0. 
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4.6 Estrutura Física e Iluminação Controlada 

Após a validação funcional do sistema, foi desenvolvida uma estrutura física 

destinada à fixação da câmera e do multímetro digital, com o objetivo de aprimorar a 

estabilidade e a qualidade das capturas. Essa etapa teve caráter de otimização, permitindo 

padronizar a posição da câmera e reduzir variações de ângulo ou distância que poderiam 

interferir na leitura automática.  

 

O suporte foi projetado para manter o alinhamento entre a câmera e o display do 

instrumento, garantindo maior consistência durante as medições. Além disso, incorporou-

se um sistema de iluminação dedicada, que minimiza reflexos e sombras, resultando em 

imagens com melhor contraste e definição dos dígitos.  

 

Essa melhoria física reforçou a confiabilidade dos testes realizados em ambiente 

laboratorial, ao mesmo tempo em que amplia o potencial de aplicação do sistema em 

outros contextos industriais e empresariais. O suporte desenvolvido permite que o 

conjunto seja facilmente transportado e ajustado a diferentes condições de trabalho, 

garantindo estabilidade e repetibilidade das medições em diversos locais de operação.  

Figura 15 – Suporte para câmera e multímetro 

 

Fonte: Elaborado pelos autores (2025). 
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5. Conclusão 

O desenvolvimento da solução automatizada para validação de instrumentos de 

medição digitais demonstrou a viabilidade técnica e operacional da aplicação de visão 

computacional e inteligência artificial na metrologia. A proposta alcançou os objetivos de 

reduzir o tempo de calibração, eliminar erros humanos e aumentar a rastreabilidade do 

processo.  

Para trabalhos futuros, sugere-se aprimorar o algoritmo de reconhecimento com 

redes neurais profundas (Deep Learning) e integrar o sistema a plataformas IoT, 

possibilitando a validação remota e em tempo real. Além disso, propõe-se adaptar a 

solução para execução em dispositivos de baixo custo e tamanho reduzido, como o 

Raspberry Pi, o que exigirá otimização de desempenho e redução do consumo de memória 

do programa. Também é recomendada a ampliação da capacidade de reconhecimento do 

sistema, permitindo a interpretação de letras, símbolos e diferentes formatos de dígitos, a 

fim de torná-lo compatível com uma variedade maior de displays e instrumentos de 

medição digitais. Essa evolução permitirá maior integração com os princípios da Indústria 

4.0 e com os sistemas de gestão da qualidade industrial. 
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