CENTRO ESTADUAL DE EDUCAÇÃO TECNOLÓGICA PAULA SOUZA FACULDADE DE TECNOLOGIA DE BOTUCATU CURSO SUPERIOR DE TECNOLOGIA EM LOGÍSTICA E TRANSPORTES

DAVI SAUER MEDEIROS

UTILIZAÇÃO DO ÁLCOOL RECUPERADO DO PROCESSO DE EXTRAÇÃO VEGETAL PARA O ABASTECIMENTO DA FROTA DE UMA EMPRESA PRODUTORA DE INSUMOS FARMACÊUTICOS DA CIDADE DE BOTUCATU

CENTRO ESTADUAL DE EDUCAÇÃO TECNOLÓGICA PAULA SOUZA FACULDADE DE TECNOLOGIA DE BOTUCATU CURSO SUPERIOR DE TECNOLOGIA EM LOGÍSTICA E TRANSPORTES

DAVI SAUER MEDEIROS

UTILIZAÇÃO DO ÁLCOOL RECUPERADO DO PROCESSO DE EXTRAÇÃO VEGETAL PARA O ABASTECIMENTO DA FROTA DE UMA EMPRESA PRODUTORA DE INSUMOS FARMACÊUTICOS DA CIDADE DE BOTUCATU

Orientador: Prof. Especialista Vicente Cornago Junior

Trabalho de Conclusão de Curso apresentado à FATEC - Faculdade de Tecnologia de Botucatu, para obtenção do título de Tecnólogo no Curso Superior de Logística e Transportes

Botucatu-SP Junho – 2011

DEDICATORIA

Dedico esse trabalho ao meu filho Matheus, que chegou há tão pouco tempo e já mudou a mínha vída, aínda nem sabe falar, mas seu sorriso já expressa tanto sentimento, deu mais sentido e objetivo a mínha vída. Seja bem víndo ao mundo filho e vou fazer o possível e o ímpossível para você ser sempre feliz e sorridente como é hoje com sete meses de idade.

AGRADECIMENTOS

Meus sinceros agradecimentos vão para:

Minha Querida Esposa Janaina, que está sempre ao meu lado me apoiando e motivando;

A minha Mãe Jeanete e Minha Avó Josephina que me deram uma ótima educação;

As minhas irmãs Tainá e Talita que sempre estiveram ao meu lado, e também são grandes amigas;

Aos meus grandes amigos pelos momentos de descontração: Vitor, João, Eduardo, Fernando (Feu);

Ao Grupo Centroflora, que me acolheu desde os meus 18 anos (07 anos atrás) no qual trabalho até hoje, agradecimento especial ás pessoas que me ajudaram na elaboração desse trabalho, são elas: Cesar (Gerência Industrial), Vera (Assuntos Regulatórios), Rovaldo e Ricardo (Logística), Cassia (Qualidade), Josiane (PCP), Vitor (Manutenção).

Aos professores e funcionários da Fatec que tive a oportunidade de conhecer durante esse curso;

A Coordenadora do Curso Bernadete, sempre disposta a nos ouvir a ajudar;

E especialmente ao Professor da Matéria José Benedito e meu Orientador Vicente, no apoio e instruções de como elaborar esse trabalho;

Obrigado a todos vocês;

RESUMO

Este trabalho visou avaliar a viabilidade econômica em utilizar o álcool recuperado de um processo de extração vegetal, para abastecimento da frota de veículos, avaliando o custo para que as características do álcool estejam dentro das especificações das normas vigentes, avaliando as condições de armazenagem e de abastecimento, de acordo com as normas de segurança. Para uma avaliação precisa dos valores economizados foram levantados dados do ano de 2010 sobre o abastecimento de todos os veículos da frota, levantados dados também sobre o custo por litro para concentrar o álcool até atingir a concentração desejada, e a média do custo do álcool nos postos de abastecimento nesse mesmo período para uma comparação adequada, o valor economizado também foi comparado com o valor da frota e feita uma projeção comparando o valor acumulado da economia com o abastecimento com o valor da frota considerando a depreciação dos veículos para os próximos anos. Foi comprovada economia considerável mesmo tendo um gasto para efetuar a concentração do álcool, também foi comprovado que os veículos não sofreram nenhum dano, e que com a economia acumulada é possível recuperar o valor da frota em aproximadamente três anos, considerando a depreciação dos veículos.

Palavras-chave: extração, álcool, frota.

SUMÁRIO

1 INTRODUÇÃO	11
1.1 Objetivo	12
1.2 Justificativa	12
2 REVISÃO DE LITERATURA	13
2.1 Fitoterapia	13
2.1.2 História da Fitoterapia	13
2.2 Extração Vegetal	14
2.2.1 Inicio do Processo - Moagem	14
2.2.2 Processo de Extração	15
2.2.3 Processo de Filtração	15
2.2.4 Processo de Concentração	16
2.3 Normas de especificação da Qualidade do álcool para abastecimento	17
2.4 Líquidos combustíveis e inflamáveis	17
2.5 Ponto de abastecimento	19
2.6 Bacia de contenção	19
3 MATERIAL E METODOS	22
3.1 Material	22
3.2 Métodos	22
3.3 Estudo de Caso	23
3.3.1 Apresentação da empresa	23
3.3.2 Histórico da Empresa	24
3.3.3 Apresentação da linha de Produtos	24
4 RESULTADOS E DISCUSSÕES	26

4.1 Rede de álcool	26
4.2 Ponto de abastecimento	27
4.3 Tanque de Armazenagem de álcool 6.000 L	28
4.4 Especificações do tanque de armazenagem de álcool recuperado 6.000L	29
4.5 Tanque 500 L	29
4.6 Bomba de Abastecimento	30
4.7 Bacia de Contenção	31
4.8 Verificação de segurança – Extintores	32
4.9 Verificação de segurança – Localização do ponto de abastecimento na propriedad	łe33
4.10 Verificação de segurança – Instalações elétricas	33
4.11 Cuidados especiais para utilização do álcool recuperado nos veículos	34
4.12 Especificação da qualidade do álcool para abastecimento	34
4.13 Veículos da Frota e seu consumo durante o ano de 2010	35
4.13.1 Gol 01	35
4.13.2 Gol 02	36
4.13.3 Gol 03	38
4.13.4 Parati 04	39
4.13.5 Parati 05	41
4.13.6 Saveiro 06	42
4.13.7 Saveiro 07	44
4.13.8 Saveiro 12	45
4.13.9 S10	47
4.14 Consumo total da frota	48
4.15 Valor da Frota	49
4.15.1 Valor médio da depreciação do valor da frota para os próximos anos	50
4.16 Valor Médio do Etanol nos Postos de Gasolina de Botucatu em 2010	50
4.17 Tabela de valor gasto por litro para concentrar o álcool no Evaporador	51
4.18 Cálculos de avaliação do valor economizado	51
4.19 Cálculo de verificação de tempo de retorno do valor da frota	
5 CONCLUSÃO	54

LISTA DE FIGURAS

Figura 1 – Moinho de martelos	.14
Figura 2 – Reator térmico	.15
Figura 3 – Filtro Rotativo	.16
Figura 4 – Evaporador Falling Film	.16
Figura 5 – Rede de álcool	.27
Figura 6 – Ponto de abastecimento	.27
Figura 7 – Tanque de armazenagem 6.000 L	.28
Figura 8 – Tanque 500 L	.30
Figura 9 – Bomba de abastecimento.	.30
Figura 10– Extintores	.32
Figura 11 – Gol 01	.35
Figura 12- Gráfico de consumo do Gol 01 em 2010	.36
Figura 13 – Gol 02	.37
Figura 14– Gráfico de consumo do Gol 02	.38
Figura 15 – Gol 03	.38
Figura 16 – Gráfico de consumo do Gol 03 em 2010	.39
Figura 17– Parati 04	.40
Figura 18– Gráfico de consumo da Parati 05 em 2010	.41
Figura 19 – Parati 05	.41
Figura 20 – Gráfico de Consumo da Parati 05 em 2010	.42
Figura 21– Saveiro 06	.43
Figura 22 – Gráfico de Consumo da Saveiro 06 em 2010	.44
Figura 23– Saveiro 07	.44
Figura 24– Gráfico de consumo da Saveiro 07 em 2010	.45
Figura 25 – Saveiro 12	.46
Figura 26 – Gráfico de consumo da Saveiro 12 em 2010	.47
Figura 27– S10	.47
Figura 28 – Gráfico de consumo da S10 em 2010	.48
Figura 29 – Gráfico de consumo da Frota em 2010	.49
Figura 30– Gráfico de economia utilizando o álcool recuperado em 2010	.52
Figura 31- Gráfico de comparação do valor da frota com a previsão de economia para	ı os
próximos anos	.53

LISTA DE TABELAS

Tabela 1 - Classificação dos líquidos combustíveis.	17
Tabela 2 – Distâncias dos locais de Instalação dos tanques de armazenamento de combi	ustíveis
da divisa de propriedade adjacente e das vias públicas.	18
Tabela 3 – Especificação de extintores para locais de armazenamento de líquidos infla	máveis
	21
Tabela 4 – Especificação do tanque de armazenagem de álcool 6.000L	29
Tabela 5 – Especificação da Bomba de abastecimento	31
Tabela 6 – Verificação da bacia de contenção	31
Tabela 7 - Verificação dos extintores	32
Tabela 8 – Localização do ponto de abastecimento na propriedade	33
Tabela 9 – Verificação das instalações elétricas	34
Tabela 10 – Especificação do álcool para abastecimento	35
Tabela 11 – Consumo de álcool do Gol 01 em 2010	36
Tabela 12 - Consumo de álcool do Gol 02 em 2010	37
Tabela 13 – Consumo de álcool do Gol 03 em 2010	39
Tabela 14 – Consumo de álcool da Parati 04 em 2010	40
Tabela 15 – Consumo de álcool da Parati 05 em 2010	42
Tabela 16 – Consumo de álcool da Saveiro 06 em 2010	43
Tabela 17 – Consumo de álcool da Saveiro 07 em 2010	45
Tabela 18 – Consumo de álcool da Saveiro 12 em 2010	46
Tabela 19 – Consumo de álcool da S10 em 2010	48
Tabela 20 – Consumo de combustível pela frota em 2010	49
Tabela 21 – Valor da frota	50
Tabela 22 – Depreciação da frota para os próximos anos	50
Tabela 23 – Valor médio do etanol nos postos de Botucatu em 2010	51
Tabela 24 – Verificação do custo por litro para concentrar o álcool recuperado	51
Tabela 25 – Comparação do valor da frota com depreciação com a economia dos pro-	óximos
anos	52

LISTA DE ABREVIATURAS E SIGLAS

a.a – Ao ano

ABFISA – Associação Brasileira das empresas do setor fitoterápico, suplemento alimentar e de promoção da saúde.

AISI 304 - Aço inoxidável 304

ANP - Agência Nacional do Petróleo, gás natural e Biocombustíveis

BPF - Boas Práticas de Fabricação

cm/s - Centímetro por segundo

IBD - Instituto Bio Dinâmico

ISO – International Organization Standardzation

Kg - Quilo

Kgf – Quilograma força

Kgf/cm² - Quilograma força por centímetro quadrado

Kg/m³ - Quilograma por metro cúbico

Km - Quilometro

L – Litro

L/min – Litros por minuto

L/h – Litros por hora

m - Metro

mm - Milímetro

m³ - Metro cúbico

NBR – Denominação de norma da Associação Brasileira de normas técnicas

NR – Norma Regulamentadora

pH - Potencial Hidrogeniônico

PSI – Libras por polegada quadrada

R\$ - Reais

V - Volts

XV – Quinze

°INPM - Graduação alcoólica

°C – Graus Celsius

 $\mu S/m$ – Micro Siemens por metro

1 INTRODUÇÃO

Com a constante busca em melhoria de produtividade, correta destinação de seus resíduos e aproveitamento otimizado de todos os recursos disponíveis, visando sempre a constante redução de custo melhorando sua margem de lucro, as empresas estão sempre em busca de diferenciais, uma idéia para obter economia aproveitando um resíduo do processo produtivo, desencadeou em um dilema, o que fazer com o álcool utilizado na etapa de extração após ele já ter colaborado com o processo e ser retirado como resíduo, esse álcool é utilizado logo no inicio do processo, onde a planta após a moagem é levada aos Reatores (tanques de extração), onde em uma combinação de determinado tempo sob determinada temperatura com uma agitação constante, resulta no primeiro estágio da extração, onde o bagaço é retirado, e o liquido passa por processos de filtrações e concentrações, além do bagaço vegetal, também sobra desse processo o álcool, misturado também com certa quantidade de água, não tendo mais utilidade no processo esse álcool se torna um resíduo, mas após ser novamente concentrado em um equipamento onde ocorre a evaporação da água, esse álcool pode voltar a ter uma concentração adequada, podendo ser utilizado para abastecimento dos veículos, tendo apenas que obedecer alguns requisitos, como alem das especificações de suas características, deve ser armazenado em local adequado, e o abastecimento deve ser efetuado por pessoa treinada e competente para obedecer os requisitos de segurança.

1.1 Objetivo

A aplicação de um estudo sobre a utilização do álcool recuperado de um processo de Extração vegetal para o abastecimento da frota visa dois grandes objetivos, o primeiro deles economia, pois como os carros da frota são utilizados para viagens, busca de peças, materiais, funcionários, etc.. ocorre um grande consumo de combustível, e conseqüentemente alto custo. O segundo objetivo seria o aproveitamento do álcool recuperado do processo, ou seja, o álcool já efetuou seu papel no processo produtivo, ajudando na extração do principio ativo de drogas vegetais, e após essa utilização se torna um resíduo do processo.

1.2 Justificativa

Esse estudo se justifica a partir do momento que comprova o alto valor economizado para a organização, e como esse combustível já está sendo utilizado a pouco mais de um ano, já existem dados suficientes para executar uma avaliação do impacto desse combustível nos veículos, avaliando se afetou de alguma forma suas características, se esse processo é viável, visto que após sua utilização na etapa produtiva deve passar por um concentrador para eliminar certa quantidade de água que foi misturada durante a produção, até atingir a concentração necessária para o abastecimento e também para atingir a concentração exigida pela legislação vigente referente ao mínimo necessário da concentração para o abastecimento.

2 REVISÃO DE LITERATURA

2.1 Fitoterapia

De acordo com a ABFISA (2011), fitoterapia consiste no tratamento de doenças, através de remédios de origem vegetal, seja por meio de drogas vegetais secas, recém colhidas ou extratos naturais.

2.1.2 História da Fitoterapia

Ainda de acordo com a ABFISA (2011), a história da fitoterapia se inicia há muitos séculos, registros provam que mesmo 2.000 anos antes do surgimento dos primeiros médicos gregos, já era consistente a medicina egípcia. O inicio da descoberta da capacidade de curar doenças através da utilização de plantas teve inicio na observação de animais doentes que buscavam cura em plantas. As ervas mais utilizadas pelos egípcios eram: Zimbro, semente de linho, funcho, alho, folha do sene e lírio, muito tempo depois foram os gregos e os romanos que foram aperfeiçoando as técnicas da medicina através das plantas, tendo evolução constante até que no século XV iniciaram-se as preocupações em catalogar grande número de vegetais, identificando suas características e suas propriedades, até que em 1735 ouve a publicação do sistema Naturae de Lineu, difundindo muito as pesquisas das propriedades das plantas, chegando até os dias atuais onde existem vários centros de pesquisa e universidades, registrando cada vez mais trabalhos científicos sobre plantas e a melhor forma de utilização de seus princípios ativos.

2.2 Extração Vegetal

Ainda de acordo com a ABFISA (2011), podem-se obter diferentes resultados medicinais de uma planta levando em consideração a maneira de preparação, suas propriedades físicas, aspecto, características organolépticas, concentração de seus princípios ativos, propriedades farmacológicas e finalidade.

2.2.1 Inicio do Processo - Moagem

De acordo com Sharapin (2000) a finalidade do processo de moagem é a redução do tamanho das partículas da droga vegetal, preparando-a para o processo de Extração, esse processo de redução das partículas permite melhor penetração do solvente no tecido vegetal, a moagem destrói parcialmente as membranas celulares, facilitando a dissolução dos constituintes celulares no liquido exterior, porem a droga vegetal deve ser reduzida a tamanhos ideais, pois partículas muito pequenas podem causar problemas à próxima etapa do processo dependendo da forma de extração.

Figura 1 – Moinho de martelos Fonte: Grupo Centroflora, 2011

2.2.2 Processo de Extração

Para Sharapin (2000), antes de iniciar o processo de extração a escolha do solvente adequado deve ser muito bem avaliada, dependendo do que se pretende extrair da planta, pois pode ser um extrato de composição de maior parte dos constituintes químicos da planta, onde pode-se utilizar como solvente o álcool etílico, ou um extrato apenas com uma determinada característica de constituintes químicos. Além do estado de divisão da droga (Moagem), e do solvente adequado, o processo de extração depende de outras variáveis importantes, como: Agitação, temperatura, pH e tempo de extração.

Figura 2 – Reator térmico Fonte: Grupo Centroflora, 2011

2.2.3 Processo de Filtração

De acordo com Sharapin (2000) Filtração é uma maneira de efetuar a separação do sólido de liquido ou fluido em suspensão, passando o liquido ou fluido por meios permeáveis, retendo as partículas sólidas.

Figura 3 – Filtro Rotativo Fonte: Grupo Centroflora, 2011

2.2.4 Processo de Concentração

Para Sharapin (2000) o processo de Concentração consiste em aumentar o teor de sólidos no extrato, esse processo de concentração é feito de acordo com o que se objetiva dele, pois a concentração pode visar atingir determinado teor de resíduo seco, para fabricar extratos moles ou etapa preliminar da produção de extratos secos.

Figura 4 – Evaporador Falling Film Fonte: Grupo Centroflora, 2011

2.3 Normas de especificação da Qualidade do álcool para abastecimento

De acordo com a NBR 5992 (2008) que especifica a determinação da massa especifica e do teor alcoólico do álcool etílico e suas misturas com água, especifica que a massa especifica a 20°C deve ficar entre 805,0 a 811,0 kg/m³, e o teor alcoólico deve ficar entre 92,6 a 94,7 °INPM.

De acordo com a NBR 13993 (2002) que tem como objetivo prescrever o método de determinação do teor de gasolina em álcool etílico anidro combustível e álcool etílico hidratado combustível diz que o teor de hidrocarbonetos deve ser de no máximo 3.0.

De acordo com a NBR 10891 (2006) que prescreve a determinação do ph em álcool etílico hidratado diz que o potencial hidrogeniônico (pH) a 20°C deve ficar entre 6,0 a 8,0.

De acordo com a NBR 10547 (2006) que prescreve o método para determinação da condutividade elétrica em álcool etílico, diz que a condutividade elétrica deve ser de no máximo 500 µS/m.

2.4 Líquidos combustíveis e inflamáveis

De acordo com a NR 20 (1978), são considerados líquidos combustíveis, aqueles cujo ponto de fulgor está entre 70°C e 93,3°C. E são classificados como líquido inflamáveis aqueles cujo ponto de fulgor são inferiores a 70°C e com pressão de vapor não excedendo 2,8 Kgf/cm² absoluta a 37,7°C.

A classificação da classe do liquido combustível é feita da seguinte forma:

Tabela 1 - Classificação dos líquidos combustíveis.

Ponto de Fulgor	Classe
Até 37,7°C	I
Superior a 37,7°C e Inferior a 70°C	II
De 70°C até 93,3°C	III

Fonte: NR 20

De acordo com a NBR 7505 (2000) a definição de ponto de fulgor é: "A menor temperatura na qual um líquido desprende quantidade suficiente de vapor para formar mistura inflamável com o ar, próximo a sua superfície".

Para a NR 20 (1978), para armazenamento de líquidos combustíveis, devem ser utilizados tanques de material apropriado às características do combustível, e seu local de instalação deve atender algumas especificações de distâncias, como a de no mínimo 1 metro entre um tanque e outro de mesmo material, e distância mínima de 6 metros entre tanques de materiais diferentes, as especificações da distância do tanque à linha de propriedade adjacente e das vias públicas devem ser de acordo com a capacidade do tanque, atendendo a tabela abaixo:

Tabela 2 – Distâncias dos locais de Instalação dos tanques de armazenamento de combustíveis da divisa de propriedade adjacente e das vias públicas.

Distância Mínima do			
tanque à linha de divisa	Distância mínima do		
da propriedade	tanque às vias		
adjacente	públicas		
1,5 m	1,5 m		
3 m	1,5 m		
4,5 m	1,5 m		
6 m	1,5 m		
9 m	3 m		
15 m	4,5 m		
25 m	7,5 m		
30 m	10,5 m		
40 m	13,5 m		
50 m	16,5 m		
52,5 m	18 m		
	tanque à linha de divisa da propriedade adjacente 1,5 m 3 m 4,5 m 6 m 9 m 15 m 25 m 30 m 40 m 50 m		

Fonte: NR 20 – Líquidos combustíveis e inflamáveis

2.5 Ponto de abastecimento

De acordo com a ANP (2008), as instalações de consumidores foram classificadas como Ponto de abastecimento as instalações dotadas de equipamentos e sistemas que visam armazenar combustíveis, possuindo registrador de volume adequado para abastecer equipamentos móveis, veículos automotores terrestres, aeronaves, embarcações ou locomotivas. Não considerando como Ponto de abastecimento locais destinados ao armazenamento de equipamentos fixos ou estacionários. Seja qual for a capacidade de armazenamento, se for para equipamentos fixos ou estacionários não é considerado como ponto de abastecimento, porem os locais considerados pontos de abastecimento só necessitam de autorização da ANP se sua capacidade for superior a 15m³, mesmo as instalações não necessitem da autorização da ANP, devem ser construídas conforme exigido pelas normas técnicas aplicáveis, porem se o consumidor abastecer exclusivamente equipamentos de sua propriedade, deve manter no local a relação dos equipamentos acompanhada da cópia comprobatória de propriedade.

2.6 Bacia de contenção

De acordo com o Corpo de bombeiros (2004), as bacias de contenção dos tanques de até 1000m³ deve existir uma via de acesso que permita a passagem de veículos de combate à incêndio, ou 3 metros de largura (o que for maior), e para tanques acima dessa capacidade devem existir pelo menos duas vias de acesso, permitindo passagem de veículos de combate à incêndio, ou 5 metros (o que for maior). Dentro da bacia de contenção além do próprio tanque só são permitidas suas tubulações, as bombas devem estar localizadas do lado de fora, outras condições essenciais das bacias de contenção são:

- a) A capacidade volumétrica da bacia de contenção deve ser, no mínimo, igual ao volume do maior tanque, mais o volume de deslocamento da base deste tanque, mais os volumes equivalentes aos deslocamentos dos demais tanques;
- **b**) A capacidade volumétrica da bacia de contenção de tanques horizontais deve ser, no mínimo, igual ao volume de todos tanques horizontais nela contidos;
- c) No caso da bacia de contenção que possua um único tanque, sua capacidade volumétrica deve ser no mínimo igual ao volume deste tanque mais o volume correspondente à base deste tanque;

- d) Coeficiente de permeabilidade máximo de 10-6 cm/s, referenciado a água a 20°C
 e a uma coluna de água igual a altura do dique;
- e) Declive do piso de, no mínimo, 1% na direção do ponto de coleta nos primeiros
 15 m a partir do tanque ou até o dique, o que for maior;
- f) Ser provida de meios que facilitem o acesso de pessoas a equipamentos ao seu interior, em situação normal e em casos de emergência;
- g) Seu sistema drenagem deve ser dotado de válvulas posicionadas no lado externo, pelo menos 15 m do dique e devem ser mantidas fechadas;
- h) A altura máxima do dique, medida pela parte interna, deve ser de 3 m; a altura do dique deve ser o somatório da altura que atenda a capacidade volumétrica da bacia de contenção, como estabelecido acima, mais 0,2 m para conter as movimentações do líquido e, no caso de dique de terra, mais 0,2 m para compensar a redução originada pela acomodação do terreno, não se aplicação para tanques horizontais;
- i) Um ou mais lados externos do dique podem ter altura superior a 3 m, desde que todos os tanques sejam adjacentes, no mínimo, a uma via na qual esta altura nos trechos frontais aos tanques não ultrapasse 3 m;
- **j**) Dique de terra deve ser construído com camadas sucessivas de espessura não superior a 0,3 m,deverão cada camada ser compactada antes da deposição da camada seguinte;
- **k**) A distância mínima entre a base externa do dique (pé do dique) e o limite de propriedade não deverá ser inferior a 3 m, para qualquer classe de produto;
- I) A superfície superior do dique de terra deve ser plana,horizontal e ter uma largura mínima de 0,6 m; o dique deve ser protegido da erosão, não deverão ser utilizado para este fim material de fácil combustão.No caso de reservatórios, com capacidade volumétrica inferior a 250 L, no interior de edificação, especificamente para abastecer motores para funcionamento de bombas,geradores ou outros equipamentos, devem ter bacia de contenção com volume igual, no mínimo, ao volume do reservatório mais 10%.

Ainda de acordo com o corpo de bombeiros (2004), os locais de armazenamentos de líquidos inflamáveis devem possuir extintores, e a especificação do extintor correto deve ser realizada de acordo com a tabela a seguir:

Tabela 3 – Especificação de extintores	para locais de armazenamento de líquidos inflamáveis
Canacidade de armazenagem	Quantidade de extintores (Pó Químico Seco)

Capacidade de armazenagem	Quantidade de extintores (Pó Químico Seco)
Inferior a 5.000 L	02 Extintores 40 B:C
De 5.000 L a 10.000 L	02 Extintores 80 B:C ou 01 Extintor 40 B:C e 01 80
	B:C sobre rodas
De 10.000 L a 20.000 L	01 Extintor 80 B:C e 01 80 B:C sobre rodas, ou 04
	extintores 40 B:C e 01 80 B:C sobre rodas
De 20.000 L a 100.000 L	02 Extintores 80 B:C e 02 80 B:C sobre rodas, ou 03 80
	B:C sobre rodas
Superior a 100.000 L	04 Extintores 80 B:C sobre rodas

Fonte: Corpo de bombeiros

2.7 Instalações elétricas no local

De acordo com a NBR 5418 (1995), que especifica como devem ser as instalações elétricas em atmosferas onde existe a possibilidade de formação de ambientes com misturas explosivas, existe a preocupação em minimizar ao máximo qualquer risco de dano material ou pessoal, em virtude de acidentes com incêndios e explosões.

Para o corpo de bombeiros (2004), dentro da bacia de contenção de tanques de armazenagem de líquidos combustíveis, não deve existir nenhuma instalação elétrica, as bombas e suas ligações devem ficar do lado de fora.

3 MATERIAL E METODOS

3.1 Material

- Word e Excel (Windons XP);
- Caderno universitário 96 folhas, formato 200x275 mm;
- Caneta esferográfica, ponta grossa na cor preta;
- Internet:
- Livros sobre o assunto, normas relacionadas;
- Impressora HP Laser Jat 2300L;
- Máquina Fotográfica Digital Sony Cyber Shot 12,1 Mega pixels;
- Note book marca LG;

3.2 Métodos

Para a realização desse estudo foram utilizados métodos qualitativos e quantitativos, verificando as informações que os funcionários do Grupo Centroflora têm sobre o caso de Abastecimento da frota, além da verificação dos procedimentos internos elaborados de acordo com a exigência das normas vigentes, e acompanhamento das características do combustível utilizado, alem do estudo das normas associadas ao assunto e pesquisas sobre o assunto.

3.3 Estudo de Caso

O estudo foi desenvolvido junto ao Grupo Centroflora, coletando os dados de 2010, sobre ao assunto Abastecimento da frota, acompanhando os abastecimentos, e as planilhas de controle, visando calcular o montante economizado, as características do combustível de acordo com a legislação vigente, avaliação desse período e das condições do posto de abastecimento, elaborando um diagnóstico visando sugerir melhorias nesse processo visando sempre economia e aproveitamento desse resíduo do processo que não teria mais utilidade após já ter cumprido sua função no processo produtivo.

3.3.1 Apresentação da empresa

O Grupo Centroflora possui tecnologias e processos que permitem o isolamento, extração, concentração e secagem de ativos naturais diferenciados, com qualidade e rastreabilidade asseguradas.

A empresa oferece ao mercado ampla variedade de extratos provenientes de diversas regiões do planeta, com especial atenção àqueles derivados da biodiversidade brasileira.

O Grupo Centroflora busca a melhor forma de extração, padronização e estabelecimento de fitomarcadores específicos para seus extratos, oferecendo também apoio ao patenteamento, estudo de eficácia, segurança e validações clinicas.

O compromisso com a responsabilidade socioambiental é materializado pelo programa corporativo "Parcerias para um mundo melhor", representado por uma cadeia de abastecimento de matéria-prima composta por pequenas comunidades agrícolas. Este programa garante a compra planejada de safras e pagamento justo de espécies botânicas cultivadas por meio de praticas orgânicas e manejo sustentável. Desta maneira a empresa viabiliza o fornecimento de matérias-primas de qualidade, rastreadas em sua origem e lastreadas pela responsabilidade socioambiental.

Suas unidades de produção possuem as seguintes certificações: ISO 9001 e 22000, Boas Praticas de Fabricação (BPF), Kosher, Ecocert e certificação IBD Orgânico.

Atualmente a empresa consta com uma forte rede de distribuição no Brasil, América Latina, Estados Unidos, Europa e Ásia.

3.3.2 Histórico da Empresa

Fundada em 1957, na cidade de São Paulo, o Grupo Centroflora contou com a experiência das técnicas de extração trazidas da Europa por seu fundador que inovou a produção de extratos fitoterápicos para o mercado brasileiro. Foi pioneira no desenvolvimento dos extratos secos de plantas medicinais (processo de secagem por atomização) destinados à indústria farmacêutica, que até então conhecia apenas extratos líquidos e moles, os quais eram transformados em comprimidos após um difícil processamento tecnológico. Esta descoberta foi considerada na época uma grande inovação no ramo farmacêutico, propiciando à Centroflora o crescimento e firmação como empresa líder na produção de extratos vegetais na América Latina.

Em Junho de 2001 transferiu sua planta de extração para a cidade de Botucatu, situada a 230 km da cidade de São Paulo, ampliando sua capacidade produtiva (está equipada para processar até 600 toneladas por mês de plantas desidratadas) e possibilitando o desenvolvimento de projetos agrícolas experimentais dentro de sua própria área.

3.3.3 Apresentação da linha de Produtos

3.3.3.1 Saúde

A utilização de plantas com fins medicinais permeia a tradição de várias culturas ao longo da historia da humanidade. Os extratos botânicos desenvolvidos pelo Grupo Centroflora viabilizam a utilização dos benefícios terapêuticos vindos da biodiversidade. Através da ciência e da tecnologia, a empresa disponibiliza ativos padronizados garantindo maior segurança e eficácia de ação para atender o seguimento farmacêutico, que exige altos padrões de qualidade e especificidade em relação às atividades farmacológicas.

3.3.3.2 Cuidados Pessoais

A conscientização atual em relação ao meio ambiente e à biodiversidade trás crescentes oportunidades de mercado para utilização de extratos e ativos botânicos em formulações cosméticas e cosmocêuticas.

O Grupo Centroflora possui uma linha de extratos vegetais padronizados com alto padrão de qualidade, visando à oferta de soluções ágeis e inovadoras que satisfazem às diversas aplicações desse seguimento.

3.3.3.3 *Nutrição*

O Grupo Centroflora possui uma linha de polpas desidratadas e de extratos botânicos que oferece soluções de aromatização e funcionalidade para as diversas aplicações do seguimento de nutrição. Com foco no promissor e inovador mercado de alimentos nutracêuticos, a empresa desenvolve extratos botânicos padronizados de alta qualidade e teor e ativos que atuam como agentes funcionais para a manutenção da saúde.

4 RESULTADOS E DISCUSSÕES

4.1 Rede de álcool

Toda a rede do sistema de álcool é em aço inox AISI 304, e toda a transferência de locais é feito através de tubulações onde o álcool é bombeado ao seu destino, quando o álcool hidratado chega na fabrica é descarregado nos tanques de álcool virgem, onde ficam armazenados até a necessidade de utilização na produção, depois o álcool é enviado ao tanque de armazenamento de álcool virgem já localizado na área de produção, onde a quantidade necessária para a produção é enviada ao reator, e controlada através do medidor de vazão de álcool, e após a utilização na produção esse álcool passa por um filtro rotativo, onde são retirados os resíduos de plantas, e enviado ao evaporador Falling Film, onde ele é concentrado e posteriormente enviado ao tanque de armazenagem de álcool recuperado já no ponto de abastecimento, já pronto para a utilização.

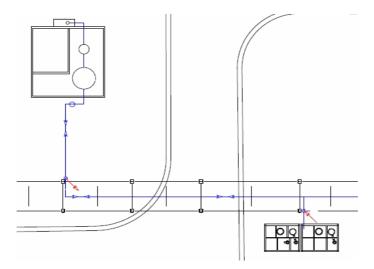


Figura 5 – Rede de álcool Fonte: Grupo Centroflora, 2011

4.2 Ponto de abastecimento

O Ponto de abastecimento fica localizado no centro da fábrica, ele possui a bacia de contenção que em seu interior tem apenas os tanques de álcool e tubulações em aço inox AISI 304, e do lado de fora da bacia existe a casa de proteção da bomba de abastecimento, e suas ligações elétricas. Existe uma via de acesso ao ponto de abastecimento e um local aberto onde podem ficar carros estacionados.

Figura 6 – Ponto de abastecimento Fonte: Grupo Centroflora, 2011

4.3 Tanque de Armazenagem de álcool 6.000 L

Após o álcool sair da área produtiva, onde foi concentrado no Evaporador Falling Film, ele é bombeado através de tubulações em aço inox AISI 304 até o tanque de armazenamento de álcool recuperado, disponível para o abastecimento.

Figura 7 – Tanque de armazenagem 6.000 L Fonte: Grupo Centroflora, 2011

4.4 Especificações do tanque de armazenagem de álcool recuperado 6.000L

Tabela 4 – Especificação do tanque de armazenagem de álcool 6.000L

Land Especificação do tanque de armazenagem de aleccor o.cool		
Item	Especificação	
Fabricante	Kroma Equipamentos especiais Ltda	
Capacidade Útil	6.000 L	
Capacidade Total	7.070 L	
Peso Vazio	570 Kgf	
Peso cheio	6.870 Kgf	
Pressão de operação	Atmosférica	
Temperatura de Operação	Ambiente	
Pressão de Projeto	Atmosférica	
Temperatura de Projeto	Ambiente	
Pressão do teste Hidrostático	Coluna D'água	
Temperatura do teste Hidrostático	Ambiente	
Norma de Projeto	Padrão construtivo Kroma	
Material de Fabricação	AISI 304	
Data de fabricação	Dezembro 2000	
Código do Equipamento	37-CK-55-OP-01-01-R1	

Fonte:Grupo Centroflora

4.5 Tanque 500 L

Antes do consumo, o álcool recuperado que estava armazenado no Tanque de 6.000 L, alimenta o tanque de 500 L, que possui um filtro em sua entrada e outro em sua saída, são apenas uma garantia a mais, visto que o álcool já passou pelo processo de filtração, eliminando todos os resíduos da planta, mas esses filtros foram instalados pois desse tanque o álcool já vai direto para a bomba de abastecimento, impedindo que qualquer resíduo indesejável chegue aos tanques dos veículos.

Figura~8-Tanque~500~L Fonte: Grupo Centroflora, 2011

4.6 Bomba de Abastecimento

A bomba de abastecimento é própria para utilização com combustíveis, é fica lacrada no local, onde apenas um funcionário (Treinado e autorizado), pode utilizá-la para realizar os abastecimentos, a bomba possui um medidor do total que já foi abastecido e outro medidor indicando a quantidade de cada abastecimento.

Figura 9 – Bomba de abastecimento Fonte: Grupo Centroflora, 2011

Tabela 5 – Especificação da Bomba de abastecimento

Item Especificaçã	
Fabricante	Fill-Rite
Modelo	914A-22
Material	Aço fundido
Sistema	Válvula by pass
Tensão	220V
Filtro	Filtro Interno
Pressão de Trabalho	22 PSI
Vazão	70 L/Min
Conexão de Entrada	2"
Conexão de Saída	1"
Medidor	Mecânico de 3 Dígitos
Mangueira	04 mt de Mangueira ¾"
Bico	Manual de alumínio
Niple	Duplo de 2"
Redução interna	1"
Peso	25 Kg

Fonte: Grupo Centroflora

4.7 Bacia de Contenção

A bacia de contenção existente no ponto de abastecimento é construída em alvenaria, suportando a capacidade somada dos dois tanques 6.500 L, e o fundo da bacia é concretado, impedindo que em caso de vazamento o álcool penetre no solo. Dentro da bacia além dos tanques existem apenas tubulações, bombas e instalações elétricas estão localizadas fora da bacia.

Tabela 6 – Verificação da bacia de contenção			
Capacidade mínima necessária	Capacidade da bacia de		
para o volume dos dois tanques	contenção do local		
6,5 m³	17,5 m³		

Fonte: Corpo de bombeiros

A bacia de contenção do local tem uma capacidade acima do especificado devido o local anteriormente possuir um tanque de maior capacidade.

4.8 Verificação de segurança – Extintores

O Corpo de Bombeiros especifica de acordo com a capacidade de armazenagem dos tanques de líquidos inflamáveis quais os extintores corretos de Pó químico seco que devem ser utilizados. De acordo com essa especificação foi feita a comparação com os extintores do local, visando comprovar essa conformidade com a legislação.

Tabela 7 - Verificação dos extintores

Capacidade	Faixa de capacidade que	Extintores necessários para o	Extintores existentes
de	o local se enquadra de	local especificados pelo	no local
armazenagem	acordo com o Corpo de	Corpo de Bombeiros	
do Tanque	Bombeiros		
6.500 L	De 5.000 L a 10.000 L	02 Extintores 80 B:C ou 01	01 Extintor 40 B:C e
		Extintor 40 B:C e 01 80 B:C	01 80 B:C sobre rodas
		sobre rodas	

Fonte: Corpo de bombeiros

Figura 10– Extintores

Fonte: Grupo Centroflora, 2011

4.9 Verificação de segurança - Localização do ponto de abastecimento na propriedade

O Local onde o ponto de abastecimento está localizado também é de grade importância, o Corpo de Bombeiros especifica distâncias mínimas que esse ponto deve estar de vias publicas e de propriedades adjacentes, a tabela a seguir demonstra a verificação do local avaliando o cumprimento desse item da norma.

Tabela 8 – Localização do ponto de abastecimento na propriedade

Capacidade	Faixa de	Distância	Distância da	Distância	Distância
de	capacidade que	Mínima do	linha mais	mínima do	entre a via
armazenagem	o local se	tanque à linha	próxima entre	tanque às	publica e o
do Tanque	enquadra de	de divisa da	as	vias públicas	ponto de
	acordo com o	propriedade	propriedades	especificada	abastecimento
	Corpo de	adjacente	adjacentes e o	pelo corpo de	no local
	Bombeiros	especificada	ponto de	bombeiros	
		pelo corpo de	abastecimento		
		bombeiros	no local		
6.500 L	Acima de 2.801	4,5 m	80 m	1,5 m	70 m
	até 45.000				

Fonte: Corpo de bombeiros

4.10 Verificação de segurança – Instalações elétricas

Para evitar qualquer risco de incêndio ou explosão em caso de vazamento do liquido combustível, a principal exigência do corpo de bombeiros em relação à parte elétrica, é que nenhuma instalação elétrica ou equipamento esteja dentro da bacia de contenção, essa verificação foi realizada conforme a tabela abaixo:

Tabela 9 – Verificação das instalações elétricas

Exigência do Corpo de bombeiros

Situação atual no local de abastecimento

Dentro da bacia de contenção só devem existir os tanques e tubulações, as os tanques e as tubulações, a bomba de instalações elétricas e bombas devem alimentação do tanque e a bomba de abastecimento dos veículos e suas ligações elétricas ficam do lado externo

Fonte: Corpo de bombeiros

4.11 Cuidados especiais para utilização do álcool recuperado nos veículos

A frota estudada consiste nos carros do Grupo Centroflora que possibilitam o abastecimento com álcool, o qual foi substituído pelo álcool recuperado resultante do processo de extração à quente nos reatores, o qual deve passar por um processo de filtração para eliminar resíduos de plantas e depois por um processo de concentração no Evaporador Falling Film, afim de obter a concentração necessária para o abastecimento, por garantia é feito uma vez por ano uma limpeza geral nos tanques de combustíveis dos veículos, visando eliminar qualquer resíduos de planta ainda existente no combustível e que possa ter decantado no tanque, também para garantir o máximo de qualidade nessa utilização é feita a troca do filtro de combustível.

4.12 Especificação da qualidade do álcool para abastecimento

Os cuidados com a segurança no armazenamento e no abastecimento são de grande importância, mas a qualidade do combustível também não pode ficar para trás e deve obedecer algumas especificações, além da necessidade de ter um aspecto límpido e isento de impurezas deve obedecer as características especificadas na tabela abaixo e comparadas com os resultados da analise realizada na amostra.

Tabela 10 – Especif	ficação do álcoo	l para abastecimento
racterística	Método	Especificação

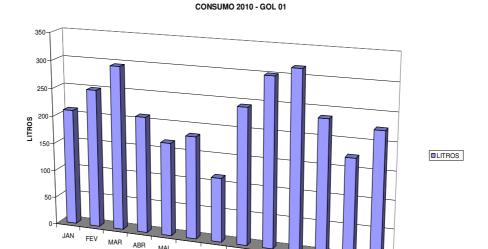
Característica	Método	Especificação	Resultado
Massa especifica a 20°C	NBR 5992	805,0 a 811,0 Kg/m³	806,0 kg/m³
Teor alcoólico	NBR 5992	92,6 a 94,7 °INPM	93,1 °INPM
Teor de Hidrocarbonetos	NBR 13993	3,0 máximo	0,0
Potencial Hidrogeniônico (pH) a 20°C	NBR 10891	6,0 a 8,0	6,0
Condutividade elétrica a 20°C	NBR 10547	500 μS/m máximo	83,2 μS/m

Fonte:Grupo Centroflora

4.13 Veículos da Frota e seu consumo durante o ano de 2010

4.13.1 Gol 01

O Gol 01 é mais utilizado na Unidade I da Anidro, que fica localizada na área urbana de Botucatu, é bastante requisitado para serviços na cidade como buscar peças, funcionários, e transporte de funcionários até a Unidade II da Anidro, localizada na Zona Rural da cidade.


Figura 11 - Gol 01

Fonte: Grupo Centroflora

Tabela 11 – Consumo de álcool do Gol 01 em 2010

Mês de consumo do ano de 2010	Litros consumidos no	
	mês	
Janeiro	210	
Fevereiro	250	
Março	296	
Abril	210	
Maio	168	
Junho	184	
Julho	115	
Agosto	244	
Setembro	301	
Outubro	317	
Novembro	237	
Dezembro	175	
Média	225,5833	

Fonte: Grupo Centroflora

SET

Figura 12– Gráfico de consumo do Gol 01 em 2010 Fonte: Grupo Centroflora,2011

JUL

4.13.2 Gol 02

O Gol 02 é o carro de maior utilização na frota, de uso da Unidade II tem a função de serviços de cidade, como banco, fornecedores de peças, funcionários, etc.

Figura 13 – Gol 02 Fonte: Grupo Centroflora, 2011

Tabela 12 - Consumo de álcool do Gol $02\ \mathrm{em}\ 2010$ Mês de consumo do ano de 2010 Litros consumidos no mês

Janeiro	710	
Fevereiro	517	
Março	812	
Abril	661	
Maio	797	
Junho	745	
Julho	715	
Agosto	691 886	
Setembro		
Outubro	683	
Novembro	663	
Dezembro	706	
Média	715,5	
_ ~ ~ ~		

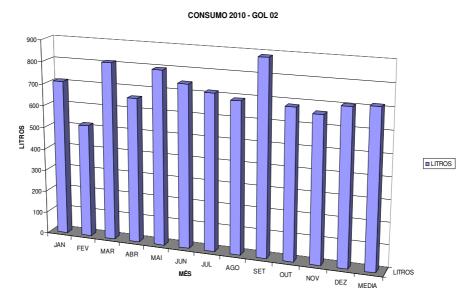


Figura 14— Gráfico de consumo do Gol 02 Fonte: Grupo Centroflora, 2011

4.13.3 Gol 03

O Gol 03 também é bastante utilizado para serviços de cidade e entre unidades.

Figura 15 – Gol 03 Fonte: Grupo Centroflora, 2011

Tabela 13 – Consumo de álcool do Gol 03 em 2010 Mês de consumo do ano de 2010 Litros consumidos no mês

Janeiro	290
Fevereiro	361
Março	313
Abril	362
Maio	528
Junho	288
Julho	360
Agosto	428
Setembro	345
Outubro	356
Novembro	305
Dezembro	273
Média	350,75

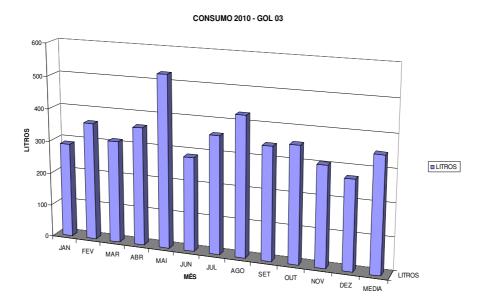


Figura 16 – Gráfico de consumo do Gol 03 em 2010 Fonte: Grupo Centroflora, 2011

4.13.4 Parati 04

A Parati 04 é bastante utilizada em viagens pelo Brasil em visitas a fornecedores e parceiros, etc.

Figura 17– Parati 04 Fonte: Grupo Centroflora, 2011

Tabela 14 – Consumo de álcool da Parati 04 em 2010 Mês de consumo do ano de 2010 Litros consumidos no mês

280
283
463
364
368
452
456
533
391
475
404
522
415,9167

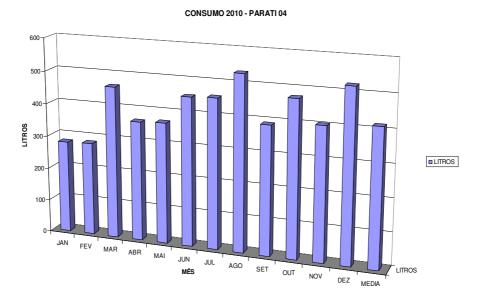


Figura 18– Gráfico de consumo da Parati 05 em 2010 Fonte: Grupo Centroflora, 2011

4.13.5 Parati 05

A Parati 05 também é bastante utilizada em viagens pelo Brasil, visitando fornecedores, clientes e o que for necessário.

Figura 19 – Parati 05

Tabela 15 – Consumo de álcool da Parati 05 em 2010 Mês de consumo do ano de 2010 Litros consumidos no mês

Janeiro	120
Fevereiro	329
Março	526
Abril	358
Maio	553
Junho	410
Julho	385 669
Agosto	
Setembro	307
Outubro	449
Novembro	328
Dezembro	246
Média	390

700 600 500 300 200 100

CONSUMO 2010 - PARATI 05

Figura 20 – Gráfico de Consumo da Parati 05 em 2010 Fonte: Grupo Centroflora, 2011

4.13.6 Saveiro 06

A Saveiro 06 é bastante utilizada pela área de manutenção, para o plantão fora dos horários normais de expediente, além de buscar peças e equipamentos maiores na cidade e entre unidades.

Figura 21– Saveiro 06 Fonte: Grupo Centroflora, 2011

Tabela 16 – Consumo de álcool da Saveiro 06 em 2010 Mês de consumo do ano de 2010 Litros consumidos no mês

285
290
407
279
278
308
345
366
403
372
393
344
339,1667

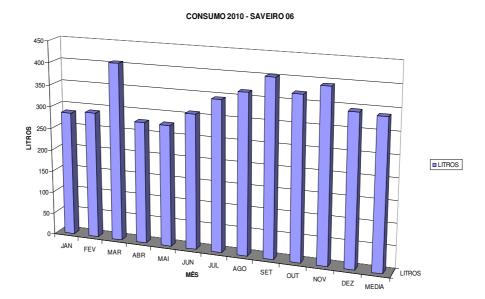


Figura 22 – Gráfico de Consumo da Saveiro 06 em 2010 Fonte: Grupo Centroflora, 2011

4.13.7 Saveiro 07

A Saveiro 07 também é bastante utilizada para buscar peças e equipamentos, e também tem a finalidade de levar refeições da Unidade II para a Unidade I.

Figura 23– Saveiro 07 Fonte: Grupo Centroflora, 2011

Tabela 17 – Consumo de álcool da Saveiro 07 em 2010 Mês de consumo do ano de 2010 Litros consumidos no mês

Janeiro	280
Fevereiro	351
Março	406
Abril	380
Maio	382
Junho	421
Julho	421
Agosto	503
Setembro	494
Outubro	473
Novembro	487
Dezembro	387
Média	415,4167

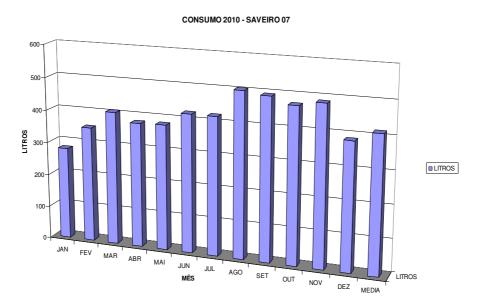


Figura 24– Gráfico de consumo da Saveiro 07 em 2010 Fonte: Grupo Centroflora, 2011

4.13.8 Saveiro 12

A Saveiro 12 é de uso da Unidade I, é bastante utilizada para buscar itens na cidade e entre Unidades.

Figura 25 – Saveiro 12 Fonte: Grupo Centroflora, 2011

Tabela 18 – Consumo de álcool da Saveiro 12 em 2010 Mês de consumo do ano de 2010 Litros consumidos no mês

Não Utilizava
Não Utilizava
144
120
131
210
195
174
157
140
127
83
148,1

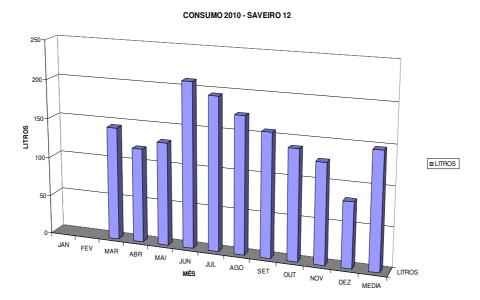


Figura 26 – Gráfico de consumo da Saveiro 12 em 2010 Fonte: Grupo Centroflora, 2011

4.13.9 S10

A principal utilização da S10 na empresa é feita pela área de Botânica, onde fazem visitas aos agricultores e parceiros agrícolas.

Figura 27– S10

Tabela 19 – Consumo de álcool da S10 em 2010 Mês de consumo do ano de 2010 Litros consumidos no mês

Janeiro	250	
Fevereiro	410	
Março	417	
Abril	301	
Maio	209	
Junho	370	
Julho	428	
Agosto	497	
Setembro	312	
Outubro	562	
Novembro	545	
Dezembro	516	
Média	401,4167	

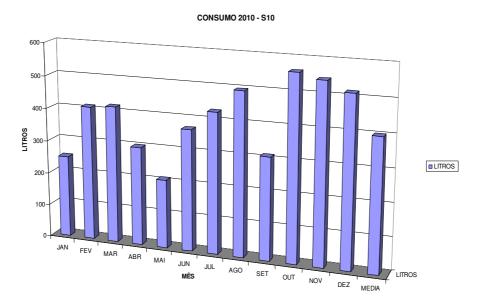


Figura 28 – Gráfico de consumo da S10 em 2010 Fonte: Grupo Centroflora, 2011

4.14 Consumo total da frota

Para melhor visualização da quantidade de combustível consumida pela frota durante o ano, a tabela e o gráfico a seguir ilustram o consumo de cada veículo e a soma total, a fim de facilitar os próximos cálculos do estudo.

Tabela 20 – Consumo de combustível pela frota em 2010 Veículo Litros consumidos em 2010

Gol 01	2707
Gol 02	8586
Gol 03	4209
Parati 04	4991
Parati 05	4680
Saveiro 06	4070
Saveiro 07	4985
Saveiro 12	1481
S10 14	4817
Total	40526

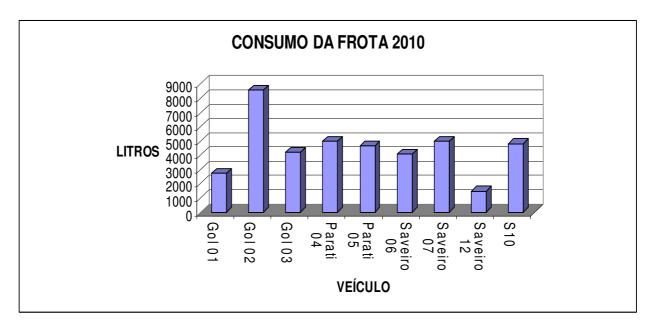


Figura 29 – Gráfico de consumo da Frota em 2010

Fonte: Grupo Centroflora, 2011

4.15 Valor da Frota

A tabela a seguir expõe o valor atual dos veículos da frota, para posteriores cálculos de retorno do valor da frota com a economia obtida.

Ano	Valor
2008	R\$ 25.000,00
2008	R\$ 25.000,00
2008	R\$ 25.000,00
2008	R\$ 28.000,00
2008	R\$ 28.000,00
2008	R\$ 25.000,00
2008	R\$ 25.000,00
2005	R\$ 20.000,00
2010	R\$ 45.000,00
Total	R\$ 246.000,00
	2008 2008 2008 2008 2008 2008 2008 2005 2010

4.15.1 Valor médio da depreciação do valor da frota para os próximos anos

De acordo com o Departamento fiscal do grupo Centroflora, a taxa de depreciação para os próximos anos dos veículos de passageiros e outros veículos automóveis principalmente concebidos para transporte de pessoas é de 20% ao ano, conforme ilustrado na tabela abaixo:

Tabela 22 – Depreciação da frota para os próximos anos

Ano	Valor da Frota	Taxa de depreciação	Valor da frota para o próximo ano
2011	R\$ 246.000,00	20 %	R\$ 196.800,00
2012	R\$ 196.000,00	20 %	R\$ 157.440,00
2013	R\$ 157.440,00	20 %	R\$ 125.952,00
2014	R\$ 125.952,00	20 %	R\$ 100.761,60

Fonte: Grupo Centroflora

4.16 Valor Médio do Etanol nos Postos de Gasolina de Botucatu em 2010

Para podermos ter uma comparação coerente entre o valor do álcool do posto com o valor do álcool recuperado, foi necessário fazer uma média do preço do álcool do posto durante o ano de 2010 em Botucatu, conforme a tabela a seguir:

<u>Tabela 23 – Valor médio do etanol nos postos de Botucatu em 2010</u> <u>Mês de 2010 Valor Médio do Etanol nos Postos de Botucatu – R\$</u>

Janeiro	1,875	
Fevereiro	1,940	
Março	1,739	
Abril	1,593	
Maio	1,476	
Junho	1,414	
Julho	1,415	
Agosto	1,463	
Setembro	1,528	
Outubro	1,633	
Novembro	1,712	
Dezembro	1,741	
Média	1,627	

Fonte: ANP - Agência Nacional do Petróleo, gás natural e Biocombustiveis

4.17 Tabela de valor gasto por litro para concentrar o álcool no Evaporador

Também foi necessário calcular o valor gasto para concentrar o litro do álcool recuperado na empresa, para possibilitar a comparação coerente com o álcool do posto.

Tabela 24 – Verificação do custo por litro para concentrar o álcool recuperado

Valor da hora do Capacidade do equipamento Valor gasto por litro

equipamento (L/h) produzido

(Para esse produto – Álcool)

R\$ 500,00 2.000 L/h R\$ 0,25

Fonte: Grupo Centroflora

4.18 Cálculos de avaliação do valor economizado

Para avaliar a economia durante o período de um ano (2010), foi levada em consideração a quantidade consumida durante toda a frota no ano todo (40.526 Litros), e multiplicado pelo preço médio do álcool durante o mesmo ano (R\$ 1,627), chegando ao custo de (R\$ 65.935,80). Esse valor teria sido gasto caso a mesma quantidade de álcool consumida tivesse sido abastecida nos postos de combustíveis, mas para avaliar a real economia desse

valor encontrado foi subtraído o valor gasto pra concentrar a mesma quantidade de álcool (R\$ 10.131,50), chegando a um valor economizado de R\$ 55.804,30.

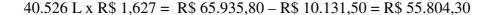


Figura 30– Gráfico de economia utilizando o álcool recuperado em 2010 Fonte: Grupo Centroflora, 2011

4.19 Cálculo de verificação de tempo de retorno do valor da frota

Para avaliar o tempo de retorno do valor da frota foi feito uma avaliação da quantidade de álcool consumida em um ano, fazendo uma projeção de quanto será consumido nos próximos anos, chegando ao custo que será economizado, e comparando com o valor da frota, descontando o valor da taxa de depreciação para os próximos anos. Conforme a tabela a seguir:

Tabela 25 – Comparação do valor da frota com depreciação com a economia dos próximos

Ano de avaliação do	Valor da frota com taxa de	Valor de economia dos
valor da frota	depreciação (20 % a.a)	próximos anos
2011	R\$ 246.000,00	R\$ 55.804,30
2012	R\$ 196.800,00	R\$ 111.608,60
2013	R\$ 157.440,00	R\$ 167.412,90

Levando em consideração a depreciação que os veículos sofrem a cada ano, é possível observar no gráfico abaixo que a economia com abastecimento em 3 anos, possibilita recuperar um valor acima do valor da frota.

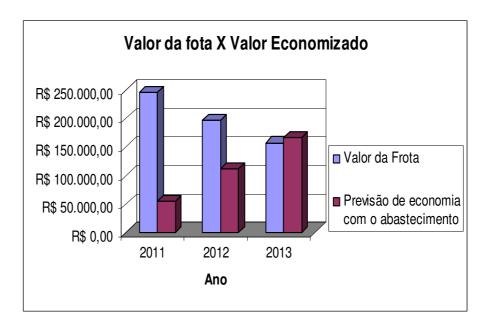


Figura 31– Gráfico de comparação do valor da frota com a previsão de economia para os próximos anos

5 CONCLUSÃO

Com a realização desse estudo foi possível concluir que houve grande economia no abastecimento dos veículos, verificamos que com criatividade as empresas podem utilizar melhor seus resíduos e otimizar cada vez mais suas formas de obter lucro, verificamos melhorias na disponibilidade dos tanques de armazenagem, pois utilizando o álcool recuperado para o abastecimento, como o consumo é freqüente, o álcool após a utilização como solvente não fica mais ocupando espaço em tanques de armazenagem de produtos.

Verificamos que as características do álcool utilizado e o local de armazenagem obedecem às especificações e exigências das normas vigentes.

Os veículos também não sofreram nenhum impacto fora do normal, pois com os rigorosos cuidados com os filtros até o ultimo tanque antes da bomba de abastecimento, foi possível observar que nenhum resíduo atingiu o tanque de combustível de nenhum dos veículos.

Interessante observar também que o valor gasto por litro pra concentrar mais o álcool até atingir a concentração desejada, é bastante inferior ao valor do litro do álcool nos postos de abastecimento, comprovando claramente a economia utilizando o álcool recuperado.

E relacionando o valor economizado com os abastecimentos com o valor da frota que deprecia a cada ano, foi possível observar que é possível substituir a frota em aproximadamente três anos, utilizando apenas o valor economizado nesse período, um fato muito atrativo para empresas, que estão em busca constante na redução de custos.

REFERENCIAS

ABIFISA. **Histórico da Fitoterapia.** Disponível em: historico.asp. Acesso em 16 de abril de 2011

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 7505-1:** armazenagem de líquidos inflamáveis e combustíveis - Parte 1: Armazenagem em tanques estacionários: apresentação. Rio de Janeiro, 2000.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 5418:** instalações elétricas em atmosferas explosivas: apresentação. Rio de Janeiro, 1995.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NR 20**: líquidos combustíveis e inflamáveis: apresentação. Rio de Janeiro, 1978.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 5992:** álcool etílico e suas misturas com água – Determinação da massa especifica e do teor alcoólico – Método do densimetro de vidro: apresentação. Rio de Janeiro, 2008.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 13993:** Álcool etílico Hidratado – Determinação do teor de Gasolina: apresentação. Rio de Janeiro, 2002.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR10891:** Álcool etílico hidratado – Determinação de pH – Método potenciométrico: apresentação. Rio de Janeiro, 2006.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 10547:** Álcool etílico hidratado – Determinação da condutividade elétrica: apresentação. Rio de Janeiro, 2006.

AGENCIA NACIONAL DO PETROLEO, GÁS NATUAL E BIOCOMBUSTIVEIS. **ANP Nº 12:** apresentação. São Paulo, 2008.

BRASIL. Corpo de Bombeiros, Instrução técnica nº 27/2004. **Armazenagem de Líquidos** inflamáveis e combustíveis. 2004.

SHARAPIN, N. Fundamentos de tecnologia de produtos Fitorerapicos. **Cyted, S**antafé de Bogotá, 2000

	Botucatu, 27 de Junho de 2011.
	Davi Sauer Medeiros
. A 1	
De Acordo:	
Prof. Especialista Vicente Marcio Cornago Junior (orientador)	
	Botucatu, 27 de Junho de 2011.
	s. Bernadete Rossi Barbosa Fantin a do Curso de Logística e Transportes